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efficiency, bias, and even consistency (King, 1988). A second 
problem exists in performing cross-equation hypothesis tests with 
event count data, such as testing for the equality of coefficients in 
different equations; Zellner (1962) referred to another special case 
of these tests as "tests for aggregation bias." With such tests, one is 
presented with a choice among three unsatisfactory alternatives: 
(1) Do not do the hypothesis tests; (2) use equation-by-equation 
Poisson models, and assume that the covariance between the 
parameter estimates of the two equations is known a priori; or 
(3) use Zellner's model and do the hypothesis tests in the presence 
of bias, inefficiency, and incon~istency.~ 

This article proposes a joint Poisson regression estimator as a 
solution to these problems in the special case of two "seemingly 
unrelated" Poisson regressions. This estimator provides a full 
information maximum likelihood solution that is consistent and 
asymptotically more efficient than an equation-by-equation 
exponential Poisson model or Zellner's model applied to event 
count data. The larger the covariance between the two event 
counts, the greater the gain in efficiency. When the covariance is 
zero, the results are identical to the equation-by-equation estima- 
tors. The proposed method also permits reliable cross-equation 
hypothesis tests. 

Section 2 provides background information on the linear, log- 
linear, and exponential Poisson models of univariate event count 
data and briefly reviews Zellner's seemingly unrelated linear 
regression model. Section 3 reviews the bivariate Poisson distri- 
bution in a form useful for further analysis. The proposed estima- 
tor is introduced in Section 4. Asymptotic efficiency advantages 
are demonstrated in Section 5, and Section 6 contains an applica- 
tion of the model to presidential vetoes of defense and social 
welfare legislation. Section 7 concludes. 

(2) BACKGROUND 

Observation i (i = 1, . . . , n) in event count data consists of the 
number of occurrences of an event in a fixed domain. The domain 
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for each observation may be time (a month, year, hour, or some 
appropriate interval) or space (a geographic unit, an individual, 
or others). This article is concerned with analyses with two con- 
temporaneously correlated event count variables; observations 
thus vary over both time and space-a pooled time-series cross- 
sectional framework. Consider a few recent examples of uni- 
variate event counts: the number of consultations of a medical 
doctor for each survey respondent (Cameron and Trivedi, 1986), 
the number of triplets born in Norway in each half-decade 
(El-Sayyad, 1973), the number of presidential veto override 
attempts in the House and the number in the Senate per year 
(Rhode and Simon, 1985), the annual number of presidential 
appointments to the Supreme Court (King, 1987), the number of 
patents per firm (Hausman et al., 1984), the number of citizen- 
initiated and the number of support-related political activities 
engaged in and reported by Soviet emigres (Di Franceisco and 
Gitelman, 1984), the number of suicides per month, the number 
of spells of unemployment, and so on. There are numerous other 
examples from many disciplines. 

Unfortunately, in many cases, event count data such as these 
are analyzed by expressing the expected value of each event count 
as a separate linear function of exogenous variables. This does 
not rule out negative, and therefore meaningless, fitted values; it 
results in substantial inefficiency; and, it almost surely uses the 
wrong functional form. In the single equation case there is little 
justification for the linear approach. 

However, Zellner (1962) has shown that, by jointly estimating a 
set of linear regressions, efficiency can be improved over the 
equation-by-equation case. His model was not meant to analyze 
event counts, but it is sometimes used for this purpose. The key 
feature of this procedure is that it allows afully efficient estimator 
even in the presence of contemporaneous correlations among the 
disturbances. The estimator is a "stacked" version of the linear 
model. Let 
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be the set of M equations, with kj exogenous variables and N 
observations in each equation. Then, define K =  kj and let y ,  
X, j3, and E be (MN X I), (MN X K ) ,  (K X l), and (MN X 1) 
vertically stacked vectors of yj, Xj, p,, and ej, respectively. Assume 
that E(E,) = 0 and E(+) = uijZn. Hence, the variance of the joint 
disturbance vector is E(EE') = C €3 I, where C = (aij). The 
estimator 2 is based on the equation-by-equation residuals, ej 
yi - 4Bj,  and has elements Bij= eiq'/ N. Finally, by letting = $ @ I  
and assuming that X has rank K, Zellner's seemingly unrelated 
linear regression model estimator can be written in a generalized 
least squares form: 

Zellner has also shown that if oij= 0, for all i# j, or if X1 X2 . . . = 
X,, then the joint solution is identical to, and provides no 
improvement over, the equation-by-equation solution. 

With correlated endogenous event count variables, Zellner's 
model will improve efficiency over the linear equation-by- 
equation model somewhat, but considerable inefficiency remains 
because the non-Normal distribution of the disturbances is not 
taken into account. The functional form and the risk of negative 
fitted values introduce further problems. 

Another approach has been to take the natural log of y and 
regress it on avector of explanatory variables, either equation-by- 
equation or using Zellner's joint model. This partially corrects the 
heteroskedasticity and functional form problems. However, this 
approach is also problematic. Since the log of zero is undefined, 
the conditional expectation of lnb,), given avector of exogenous 
variables x' and given that yi - Poisson (e,), is approximately 
equal to negative infinity, even in finite samples.2 Moreover, 
adding an arbitrary small constant to yi only complicates this 
problem by biasing the coefficients and making them highly 
sensitive to the choice of the constant; it is also not solved by using 
the positive Poisson distribution, or by replacing the logarithm 
with a square root transformation. Furthermore, Monte Carlo 



King / POISSON REGRESSION MODEL 239 

experiments indicate that in finite samples this estimator is gener- 
ally biased and between three and fourteen times less efficient that 
the Poisson regression estimator (King, 1988). 

An alternative approach is to use the theoretically more 
appropriate exponential Poisson regression model (e.g., McCul- 
lagh and Nelder, 1983). Because a technique forjointly estimating 
a set of exponential Poisson regressions has not previously been 
available, opting for this model has also meant sacrificing certain 
efficiency gains. However, using this model does rule out negative 
fitted values and improves efficiency over the single equation 
linear and log-linear models. A special case of Nelder and Wed- 
derburn's (1972) "Generalized Linear Model," with the following 
likelihood function, is generally applied in such instances: 

Bi is often assumed to be an exponential function of a vector of 
exogenous variables, x, both to ensure that fitted values never 
fall below zero, and for various substantive reasons (King, forth- 
coming a). Incorporating this assumption, the conditional expec- 
tation function can be written as: 

The asymptotic variance of f i  can be estimated by taking the 
inverse of the negative of the expected value of the second deriva- 
tive of the log-likelihood function.3 
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With a univariate model, this asymptotic variance is equal to 
the Cramer-Rao lower bound. However, the seemingly unrelated 
Poisson regression model will reduce this variance by simultan- 
eously estimating two Poisson regression models. It eliminates 
the need to choose between two unsatisfactory alternatives-an 
inefficient equation-by-equation exponential Poisson model and 
an inconsistent seemingly unrelated log-linear regression esti- 
mator-and combines the advantages of both. This new estima- 
tor will also allow the testing of interesting cross-equation hy- 
potheses. I begin with a description of the bivariate Poisson 
distribution on which the seemingly unrelated Poisson regression 
estimator will be based. 

(3) THE BIVARIA TE POISSON DISTRIBUTION 

Campbell (1934; see also M'Kendrick, 1926) first derived the 
bivariate Poisson distribution by letting n -- 00 in a two-by-two 
contingency table, while constraining the marginal distributions 
to approach the Poisson limit. At the same time, the covariance 
approached a nonnegative limit. Marshall and Olkin (1985) pro- 
vide a very useful review and also derive this distribution as the 
limit of a bivariate negative binomial. For present purposes, 
Holgate's (1964: 241; see also Johnson and Kotz, 1969: 297-298) 
approach and definition are most useful. My presentation in this 
section differs primarily in notation. 

Let y;, y;, and U be independently distributed Poisson vari- 
ables with means A,, A,, and 6, respectively. Also let y, y; + U 
and y, = y; + U. Then, y, and y, are each univariate Poisson with 
parameters 8, = A, + 6 and 8, = A, + 6, respectively. The covariance 
of y, and y, is 6. Together (y,, y,) are distributed bivariate Poisson: 
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Note that the bivariate Poisson and the bivariate Normal are 
among the very few distributions for which a zero covariance 
implies independence. This useful property, which has not been 
noted before for the bivariate Poisson, can be demonstrated by 
factoring this equation into the product of two marginal Poisson 
distributions, under the condition that 0: 

(4) THE SEEMINGLY UNRELATED 
POISSON REGRESSION MODEL 

To define the proposed seemingly unrelated Poisson regres- 
sion model (SUPREME), let X, and A, vary over i observations 
(i = 1, . . . , n). Then assume 

I further assume that y;, y;,, and Uare independent at observa- 
tion i and that, for observations i and j (i # j), all three random 
variables are uncorrelated among themselves and each other. The 
observed dependent variables are then functions of these un- 
observed factors: 
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Thus y,i and y2{ are distributed as bivariate Poisson with 
parameters 

f o r i -  1 , .  . . , n .  
A consequence of the above assumptions is that y,, and y,, are 

uncorrelated and yZi and y,, are uncorrelated for all i # j. Thus, 
although there is no autocorrelation within each series, there is a 
constant contemporaneous covariance (8 between the two vari- 
ables.4 Now let e,i and e2 ,  the expected values of their respective 
dependent variables at observation i, be exponential functions of 
separate linear combinations of exogenous variables and un- 
known parameters: 

where xii and xhi are vectors of k ,  and k, exogenous variables and 
p, and p, are coefficient vectors. The likelihood function of the 
SUPREME estimator, LS, is then 
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where 

The first and second derivatives of the log-likelihood function 
with respect to p, can now be presented in a manner that makes 
later comparison with the derivatives of the univariate Poisson 
model convenient: 

where m = min(y,,, y2& 

(5) THE GAIN IN EFFZCZENC Y 

The asymptotic variance of the seemingly unrelated Poisson 
regression model can be estimated as usual for a maximum likeli- 
hood solution by taking the inverse of the expected value of the 
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negative of the second derivative in equation 3 (see King, forth- 
coming a). Let 1(, be the parameter vector containing p,, p2, and 6 
vertically stacked in order, with k,, k2, and 1 elements respec- 
tively. The variance of $ is then a (k, + k2 + 1) x (k, + k2 + I)  
symmetric matrix. Since this is a full information maximum 
likelihood solution, it is assured to have at least as small an 
asymptotic variance as the limited information equation-by- 
equation models. This variance matrix is shown here in parti- 
tioned form: 

To demonstrate explicitly the gain in asymptotic efficiency that 
occurs when moving from the equation-by-equation Poisson 
model to the seemingly unrelated Poisson regression model, take 
the difference between two matrices: the variance of /?sin the joint 
model [ v(&), the 1 , l  element of equation 41 and the variance of 
the parameter estimate vector in the separate equation exponen- 
tial Poisson model [~( ' (p ) ,  the matrix in equation I]. If 

can be shown to be negative semidefinite, then the joint model 
would be proven to be asymptotically more efficient than the 
equation-by-equation Poisson model. Equivalently, the superior- 
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ity of the seemingly unrelated Poisson regression model can be 
demonstrated by showing that the following difference is positive 

The denominator and the two terms outside the square brackets 
in the numerator of this equation are positive. Thus, since the 
term in the square brackets is negative when t is not zero, the 
entire expression is positive semidefinite. 

Furthermore, because of the position of 6 in the square 
brackets, the gain in efficiency will be larger when the covariance 
between the two dependent variables is larger. This result paral- 
lels that in the linear case (Zellner, 1962: 354), where a larger 
correlation also results in greater efficiency. Since this procedure 
can easily produce a test of the hypothesis that 6 is zero, one can 
readily test for the advantage of this joint technique over 
equation-by-equation estimation in empirical applications. This 
test is a relatively automatic by-product of the joint estimation 
procedure; there is no need also to run the equation-by-equation 
models. 

One conceptual difference between the seemingly unrelated 
Poisson and seemingly unrelated linear regression models occurs 
when the independent variables from both equations are identi- 
cal. In this situation, the latter "'collapses' to yield single- 
equation least-squares estimators even if disturbance terms in 
different equations are correlated" (Zeller, 1962). No such limita- 
tion applies to the exponential Poisson estimator: Even when 
identical exogenous variables are used in both equations, a con- 
temporaneous correlation among the disturbances will generally 
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yield a more efficient solution than equation-by-equation Pois- 
son models.6 

(6) AN APPLICATION TO PRESIDENTIAL VETOES 

In Congressional Government, Woodrow Wilson (1885: 173) 
argued that the president's "power of veto. . . is, of course, beyond 
all comparison, his most formidable prerogative." Although this 
has been known for some time, presidency scholars have only 
recently begun to explain presidential vetoes systematically. To 
date, only highly aggregated analyses have been conducted. 
Empirical research in this area indicates that the use of the veto 
"varies according to the resources of the president and the charac- 
ter of the political environment" (Rhode and Simon, 1985: 41 1). 
Specifically, Rhode and Simon provide a model that explains the 
number of public bills vetoed per year as a linear function of 
public approval, the proportion of the president's party in both 
houses of Congress, international conflict, and the electoral 
cycle.' 

Since presidential veto decision making is likely to differ when 
legislation is in defense policy versus social welfare policy, a more 
differentiated approach to explaining vetoes is warranted. There 
are other categories of congressional legislation than "guns and 
butter," but the well-established literature exploring the differ- 
ences on other dimensions of these "two presidencies" makes 
these categories most likely to yield interesting findings (see 
Wildavsky, 1966; Sigleman, 1979; King, 1986). 

For the purpose of this analysis, the number of presidential 
vetoes per year, 1946-1984, were individually coded into social 
welfare and defense policy categories (from Presidential Vetoes, 
1789-1976 and Presidential Vetoes, 1977-1984). Both the average 
annual public approval rating of the president and the average 
proportion of the president's party in both houses of Congress 
were included in the social welfare and the defense policy equa- 
tions.* To measure the electoral cycle, the variable cycle was 
coded 1 if it was a presidential election year and 0 otherwise. Since 
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the frequency of social welfare legislation is far more likely to vary 
with the electoral cycle than defense legislation (Hibbing, 1984), 
cycle was not included in the defense veto equation. Finally, 
international conflict was coded as 1 for those periods when the 
U.S. military was engaged in combat during the entire legislative 
year and 0 for other years.9 This variable was included only in the 
defense equation on the assumption that the decision to veto 
social welfare policy is independent of the existence of military 
conflict; preliminary analyses supported this assumption.10 

Table 1 presents equation-by-equation and joint, linear, and 
log-linear estimates (with variances in parentheses). These esti- 
mates are problematic for the reasons indicated above, and the 
results provide some indication of these problems. The estimated 
linear models (see the first two columns of numbers) are implau- 
sible because when premultiplied by the explanatory variables 
they yield negative fitted values for 13% of the observations. This 
occurs for both the separate equation-by-equation results and for 
Zellner's joint estimator, although the magnitude of most of the 
negative values was slightly reduced in the latter case. 

Since there were some years with no social welfare or military 
policy vetoes, a small constant was added, as usual, to the de- 
pendent variable to implement the log-linear procedure. The last 
five pairs of columns in Table 1 present estimates from the sepa- 
rate and jointly estimated log-linear models (with variances in 
parentheses). The different columns demonstrate the enormous 
sensitivity of the estimates to the value of the "arbitrary" con- 
stant. The joint parameter estimates are slightly less sensitive but 
even in this case one of the coefficients for ln(y + 0.0001) is 
forty-five times what it is for ln(y + 9 . 1 1  For the linear model and 
for the five log-linear models, the average efficiency of the joint 
procedure was between 2.96% and 6.48% greater than the 
equation-by-equation procedure. Improvement is relatively small 
because there are two identical explanatory variables in each 
equation. 

The results indicate the implausibility of the linear and log- 
linear models, estimated either equation-by-equation or jointly as 
a set of seemingly unrelated linear regression equations. This 



TABLE I 
Linear and Log-Linear Models of Presidential Vetoes 

Constant 

Approval 

Congress 

Cycle 

Defense 
Constant 

Approval 

Congress 

Conflict 

-- 
Covariance 

Variable 
Social Welfare 

In(y + 0.01) 
Separate Joint 

Y 
Separate Joint 

Correlation 
Mean Efficiency 
Advantage 

ln(y 4 0.5) 
Separate Joint 

In(y + 0.0001) 
Separate Joint 

0.4449 0.3065 

1.0695 1.0296 

In(y + 1) 
Separate Joint 

I l l ( ~  + 5) 
Separate Joint 
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TABLE 2 

Poisson Models of Presidential Vetoes 

Variable 
Social Welfare 
Constant 
Approval 
Congress 
Cycle 
Defense 
Constant 
Approval 
Congress 
Conflict 

Separate Joint Efficency 
Estimate Stan.  Error 1 Estimate Stan.  Error 1 Advantage 

is compounded by the analytical results indicating the relative 
inefficiency of these models compared to the Poisson models. It is 
of little interest, therefore, to interpret the value of any of these 
coefficients. 

Next, consider the two exponential Poisson models. Table 2 
presents the parameter estimates and approximate asymptotic 
standard errors. The estimate o f t  is statistically significant at the 
0.001 level, indicating that the seemingly unrelated Poisson 
regression estimator is superior to the equation-by-equation 
estimators in these data. In addition, a likelihood ratio test, 
performed by adding the likelihoods of the separate models and 
comparing it to that for the joint model, indicates a similar 
improvement: The chi-square statistic is 34.56 with only one 
degree of freedom. The last column, which presents the ratio of 
the equation-by-equation Poisson regression variances to the 
seemingly unrelated Poisson regression variances, indicates that 
the joint model appears more efficient for every parameter esti- 
mate. The range of improvement is from 0.6% to 132.5%-33.3% 
on average. As an example of how large this improvement is, note 
that Zellner's (1962) seemingly unrelated regressions model 
improves efficiency by only about 0.20 times the equation-by- 
equation linear alternative. Note that finite sample standard 
errors will not necessarily be smaller for the SUPREME model 
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than the individual equation-by-equation models; the advantages 
of the former proven in Section 5 are all asymptotic, and standard 
errors are only asymptotic approximations in finite data. To the 
extent that the parameter estimates differ, concentration should 
generally be focused on the joint model. 

Poisson models assume independence and homogeneity of the 
accumulating events within each period. When these assumptions 
are violated, parameter estimates are still consistent, but they are 
less efficient and the standard errors are biased (Gourieroux et al., 
1984). For this reason, the equation-by-equation models are usu- 
ally checked for the fit to the data by comparing them to a broader 
model based on the negative binomial or generalized event count 
distributions (King, forthcoming b). A check of the individual 
equations for this example indicates only very slight deviations 
from the Poisson assumptions (the data are about 15% over- 
dispersed). In cases such as these, the minor efficiency one would 
theoretically gain with the negative binomial or generalized event 
count distributions would be lost because of having to estimate an 
additional parameter. More importantly, parameter estimates 
and standard errors across the different models in this case are 
almost identical. In theory we should also check the fit of the 
seemingly unrelated Poisson regression model estimator by com- 
paring it to a more general joint model that allows for non- 
independence and heterogeneity. Developing a more general 
model such as this remains an important topic for research (see 
Hausman et al., 1984). 

For a more specific interpretation of the coefficients of the 
exponential relationship, I take a linear approximation to it: 

Thus the linear effect of an explanatory variable on the expected 
number of events, holding constant the effects of the other 
explanatory variables, is the product of the corresponding coeffi- 
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cient and the expected value of the dependent variable. This 
expected value is of course unknown, and in any event varies over 
observations, so for interpretation one can replace it with the 
value of a typical observation, such as the empirical mean of 
the dependent variable. Alternatively, one could just think of the 
effect in proportion to the unobserved expected value. 

The substantive results confirm my initial hypothesis that 
social welfare and military vetoes have different explanations. 
Previous research had used an aggregate model, incorrectly 
(albeit implicitly) assuming equal coefficients across these two 
equations, but even a cursory glance at this table indicates that 
this is not so. For example, the effect of presidential approval is 
essentially zero for social welfare vetoes. For defense policy, 
however, the coefficient indicates that a president who enjoys an 
approval rating increase of ten percentage points will decrease 
defense vetoes by about half of whatever is the expected number 
([-0.0471108 = -0.478), other things being equal. Furthermore, a 
cross-equation hypothesis test for the equality of the two approval 
coefficients is rejected at the a = 0.0041 level, indicating that this 
difference was probably not due to random error.12 The strong 
association between military matters and public approval of the 
president has long been noted (Mueller, 1975), but this is the first 
empirical demonstration that public approval has a substantially 
different effect on defense than social welfare policy. Rhode and 
Simon (1985: 412) found that approval decreased the aggregate 
number of vetoes, providing "supporting evidence for a proposi- 
tion which has, in effect, remained untested for over twenty 
years." Table 1 lends credence to this proposition with respect to 
defense policy vetoes but not for social welfare vetoes. 

As anticipated, a 10% increase in the number of members in 
Congress of the president's party decreased the frequency of 
presidential vetoes of social welfare legislation by about 28% of 
the expected number. Over four years with about average 
expected vetoing, this will do away with about one and a half 
presidential vetoes. In the case of military legislation, 10% more 
members of the president's party increase the number of vetoes by 
about 50% of the expected number. This difference does not 
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appear to be accounted for by random error, since the cross- 
equation hypothesis for the equality of coefficients is rejected at 
the a < 0.0001 level.13 Whereas the opposition party in Congress, 
even as a majority, is not usually in a position to challenge the 
"bipartisan foreign policy" standard, members of the president's 
party, especially when in the majority, can usually dissent without 
such high political costs (King, 1986). 

The remaining results were generally as expected. A presiden- 
tial election year led to about a third more social welfare vetoes 
than the expected number, and the existence of military conflict 
decreased vetoing of defense legislation by about one veto a year. 

(7) CONCLUDING REMARKS 

I have presented a full information maximum likelihood 
method for simultaneously estimating two seemingly unrelated 
Poisson regression models. This new estimator enables researchers 
analyzing event count data to take advantage of Zeller's (1962) 
insight that sets of equations estimated together can increase 
efficiency, thereby avoiding the major drawbacks associated with 
linear or log-linear models applied to event count dependent 
variables. It also allows meaningful tests of cross-equation hy- 
potheses in the situation of contemporaneously correlated en- 
dogenous variables. These advantages were demonstrated both 
analytically and empirically. 

NOTES 

1. Although Gallant's (1975) nonlinear model may be applied here, it does not take 
advantage of the non-Normal distribution of the disturbances. 

2. For observations i (i = 1, . . . , n), 
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Since this conditional expectation function does not exist, the estimator is also not 
meaningful: 

3. Since this model is a special case of Nelder and Wedderburn's (1972), their iterative 
weighted least squares algorithm generally provides the quickest solution. In GLIM 
(Baker and Nelder, 1978), specifying a log link and Poisson error yields this model. See 
King (1988: Appendix 2) for other computer programs that will estimate this model. See 
also note 12. 

4. The seemingly unrelated linear regression model makes almost identical as- 
sumptions. 

5. Here I apply the result that if A and Bare invertible matrices and A - Bis negative 
semidefinite, then (A-') - (B-') is positive semidefinite. 

6. The variance-covariance matrix in equation 4 can easily be used for tests of 
cross-equation hypotheses. For example, if one were interested in whether the parameter 
on the first exogenous variable were the same for both equations 

one can calculate 

u - ~ ( j ; ' ,  - j;)  = V(j;PI) + v(,y') - 2c(p*;,, ,y,) 

where the first subscript refers to the equation and 
coefficient in that equation. Then 

is the point estimator, qH the hypothesized value, and 

the second to the number of the 

forms an asymptotically standard Normal test statistic. The estimate of the covariance in 
this formula is a major contribution of this model, but it should also yield different 
parameter estimates and smaller variance estimates than in the equation-by-equation 
model. Considerably more complex cross-equation hypotheses can be similarly tested. 
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7. Except for the use of linear-Normal rather than an exponential-Poisson regres- 
sion, Rhode and Simon conduct a relatively careful analysis, testing for and finding no 
evidence of autocorrelation or negative fitted values. - 

8. About every month, the Gallup polling organization asks a random sample of the 
American people, "Do you approve or,disapprove of the way [the incumbent] is handling 
his job as president?" Preliminary analyses indicated that alternative measures of the 
Congress variable, such as dichotomous In partylout party measure, did not perform as 
well as this one. 

9. Other measures of conflict, such as the weighted number of conflictual events 
directed toward the United States, did not perform as well in preliminary analyses. 

10. I have written a computer program called COUNT to estimate the SUPREME 
model, and many other models for event count data (see King, forthcoming a, forthcom- 
ing b, forthcoming c, 1988). The program is available from Aptech Systems, Inc., 26250 
196th Place South East, Kent, WA 98042; 206-547-1733. 

11. This sensitivity is also consistent with the analytical results given in King (1988). 
Some have argued that In(y + 0.5) should be used since E(ln[y + 0.51) - In(E[y]) - 0 as 
E(y) - m. The problem with this logic is that the advantage of the Poisson models, and the 
need for the small constant to be added, are both greatest when E(y) is smaller. 

12. According to the procedure described in note 6 ,  the difference in the two coeffi- 
cients is 0.0418, and the variance of this difference is 0.000099 + 0.000202 - 2(0.000025) = 
0.000251. The ratio of the difference to the square root of the variance is 2.640535, the 
value of an asymptotically standard Normal test statistic. 

13. The difference between the two coefficients is 0.083074, and the variance is 
0.000142 + 0.000229 - 2(0.000008) = 0.000355. The value of the test statistic is then4.4092. 
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