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1 Likelihood Function

This appendix provides the full likelihood function for our model, including all the fea-

tures described in Section 2.2 in the paper, as well as situations where elections are un-

contested for both the election at hand and for the lagged vote as a covariate. We begin by

extending our model to uncontested elections in Section 1.1 and then bring all the parts

together in Section 1.2.

1.1 Allowing for Uncontested Elections

In the standard approach, the vote in uncontested elections is often recoded to fixed val-

ues such as vit = 0.25 for Democrats running uncontested and vit = 0.75 for Republicans

running uncontested, or sometimes uncontested elections are deleted entirely. We instead

formally distinguish between the observed vote vit and the effective vote v∗it, defined as the

vote proportion that would be observed if the election had been contested (e.g., King and

Gelman, 1991). The effective vote is observed v∗it = vit in contested elections but unob-

served if one party runs unopposed. We then impute unobserved values (for uncontested

elections) during Bayesian estimation simultaneous with the rest of the model.

To model v∗it when unobserved, we replace the outcome variable vit in Equation 2

with the effective vote, and add a “censoring assumption”: candidates who run unopposed

would have won even if the election were contested. This assumption is intuitive, probably

accounts for why the district was uncontested in the first place, and is a special case of the

assumption made by Katz and King (1999). We then replace Equation 2 with

v∗it ∼ ALT(µit, ϕ
2
t , νt), (1)

and write the likelihood function for an election district that is fully contested as ALT(vit |

µit, ϕ
2
t , νt), for a district where a Democrat runs uncontested as ψit ≡

∫ 0.5

0
ALT(v∗ |

µit, ϕ
2
t , νt)dv

∗, and for a district where a Republican runs uncontested as 1 − ψit. The

integral implements the censoring assumption.

In Figure 1, we show the historical rate of uncontestedness in U.S. Congressional

elections, which ranges from 21 percent in 1954 to 4 percent in 1996. Rather than drop
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Figure 1: Uncontested Elections over Time

these estimates which compose a nontrivial share of the data in any given election year,

we impute predictive vote shares within our fully Bayeisan model, described in Section

1.2.

To account for missing data due to uncontestedness, we jointly estimate a multivariate

model that predicts the uncontested vote share and missing lagged uncontested vote share.

To this end, we assume that missing vote share is a censored variable where an uncontested

incumbent is constrained to always win. That is, we know uncontested vote share data are

not missing at random.

In Figure 2, we show that our predictions are bimodal around modes centered at 25 and

75 percent vote shares. These predictions are in line for historical estimates of uncontested

vote shares (Gelman and King, 1994).

1.2 Full Model

To write the full likelihood function, define an uncontestedness indicator Uit as 1 if the

Democrat runs uncontested, 0 if contested, and −1 if the Republican runs uncontested
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Figure 2: Histogram of Predicted Values for Uncontested Elections

in district i and time t. Then partition elections into four sets depending on whether the

current election i, t and its lag i, t− 1 are contested or uncontested. Denote CC as the set

of all elections for which Uit = 0 and Ui,t−1 = 0; UC as the set of elections for which

Uit ̸= 0 and Ui,t−1 = 0; CU as the set of elections where Ui,t = 0 and Ui,t−1 ̸= 0; and

UU as the set of elections for which Uit ̸= 0 and Ui,t−1 ̸= 0. Then the likelihood function

factors into four parts corresponding to these sets:

L =

 ∏
i,t∈{CC}

LCC
it

 ∏
i,t∈{UC}

LUC
it

 ∏
i,t∈{CU}

LCU
it

 ∏
i,t∈{UU}

LUU
it

 (2)

each of which we now define.

The first component of the likelihood, for when election i, t and i, t − 1 are both

contested, is by far the most prevalent for the US congress. The likelihood for observation

i, t is then simply

LCC
it = ALT(vit | µit, ϕ

2
t , νt). (3)
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The second component of the likelihood accounts for which party is running uncon-

tested at time t:

LUC
it = 1(Uit = 1)ψit + 1(Uit = −1)(1− ψit), (4)

where our censoring assumption from Section 1.1 implies that ψit ≡
∫ 0.5

0
ALT(v∗ |

µit, ϕ
2
t , νt)dv

∗, given the indicator function defined as 1(a) = 1 if a is true and 0 oth-

erwise, for any statement a.

To write the third component, where the lagged value of the effective vote is unob-

served (because it is uncontested), we require a prior distribution for how this variable

is distributed. The posterior will be computed from the entire model, but to begin we

need an assumption about this prior. One option is to let v∗i,t−1 be a censored ALT when

unobserved (and equal to vit when observed) but this creates a substantial computational

burden with little substantive benefit. Instead, we find we can represent almost all rel-

evant information by assuming that, when unobserved, v∗i,t−1 ∼ N (Zi,t−1αt, σ
2
v), with

Zi,t−1 a vector of covariates such as lagged presidential vote in a congressional district

and incumbency status. Then this component of the likelihood is

LCU
it =

∫ ∞

−∞
ALT(vit | µi,t, ϕ

2
t , νt) · N (v∗ | Zi,t−1αt, σ

2
v)dv

∗, (5)

where the unobserved lagged effective vote v∗ is included in X and so contributes to µit.

For the final component of the likelihood, we use features of all three previous com-

ponents, so that

LUU
it = 1(Uit = 1)ψ′

it + 1(Uit = −1)(1− ψ′
it), (6)

where

ψ′ =

∫ ∞

−∞

∫ 0.5

0

ALT(v | µi,t, ϕ
2
t , νt)dv · N (v∗ | Zi,t−1αt, σ

2
v)dv

∗.

2 Ablation Studies

We introduce four modeling innovations for our generatively accurate model: a national

trend, coefficient stability, local uniqueness, and electoral surprises (see Section 2.2 in the

paper). In this section, we conduct “ablation studies,” where each model component is
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Figure 3: Comparison of Model Calibration under Ablation

sequentially removed to show how the model degrades. The results here demonstrate that

each separate model component is essential to achieve the performance we report.

The linear-normal model treats the data as having 435 independent district-level obser-

vations for each election year. In reality, congressional elections data have high levels and

sophisticated patterns of dependence among voting outcomes across districts. In Figure 3,

we replicate the calibration exercise from Figure 4 in the paper, which reports the model

predictions and observed values for the median congressional seat in the given election

year. We report results for three ablated models. We give the normal model with none of

the modeling innovations (in gold); a model with neither a national trend assumption nor

coefficient stability, but with an additive logistic student-T (ALT) assumption on the error

term (in yellow); and a model with normal errors, but with a national trend and coefficient

stability (in green).

We would expect a well-calibrated model to contain the true value of the median seat’s

vote share about ∼ 95 percent of the time. To that end, we see that the normal (with none

of our innovations) fares poorly, correctly containing the true value for the median seat

for only 25% of the elections. If we switch to the ALT specification, we achieve a 40%

accuracy rate, which is still inadequate, but better than normal alone. When we assume
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normal errors with a national trend and coefficient stability, we achieve 64% accuracy.

Under the ablated models, we find that the coefficient stability and national trend alone

allow the model to achieve about 60 percent accuracy in our calibration, while the ALT

error assumption achieves 40 percent accuracy. Only the inclusion of all our modeling

assumptions allowed us to achieve 100 percent accuracy.

In Figure 4, we reproduce Figure 4 from the paper with additional information. As

in the original, the linear-normal model (in gold), which assumes independence, has con-

fidence intervals that are extremely overconfident, and the LogisTiCC (in black) has ac-

curately calibrated intervals. To these results, we add a version of our LogisTiCC that

zeros out the parameters that model the dependence among elections. These include the

national swing parameter ση and also our covariate stability parameter σβ > 0 which,

after transforming to the vote scale, also allows for some dependence across districts. In

this model, we retain local uniqueness.
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Figure 4: Expected Vote Share of the Median House Seat (95 Percent Credible Interval)

Thus, we add to Figure 4, in green, estimates from the LogisTiCC model constrained

to give predictions with zero cross-district independence, while retaining local unique-
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ness. While this set of assumptions reduces model’s overconfidence relative to the normal

somewhat, the model is still much too overconfident. Only when we allow our full ALT

error structure with cross-district correlations are the out-of-sample model predictions

from the LogisTiCC well-calibrated to the historical data (in black). Indeed, under the

linear-normal error structure, the incumbent party will never lose control of the House of

Representatives. Under the ALT without cross-district correlation, the uncertainty gets

larger so that the incumbent party is sometimes forecast to lose an election, but clearly

not as often as it should. By introducing cross-district correlation, our forecasts are well-

calibrated.

3 Alternative Modeling Assumptions

We tried to eliminate any feature of our model not required for accurate out-of-sample

validation and accurate uncertainty intervals (see the previous section), to include addi-

tional features that would improve performance, and to consider alternative specifications

that might be easier to understand.

As we have shown in the main text, the linear-normal model is poorly calibrated for

congressional elections. Additionally, we fit a linear-normal Student-t, which failed be-

cause it lacked the flexibility and asymmetry in the tails provided by the additive logistic

t (ALT). The Additive Logistic Normal failed because it could not properly capture the

levels of concentration (nearly 60 percent in the 1980s) exhibited in Figure 9(a), nor did

it accurately capture surprises with appropriate tails. Fitting an independent ALT, that is

without contemporaneous correlations, is not well-calibrated because it misses the corre-

lations due to year-to-year swings in the national trend or dependence due to the stability

of coefficient estimates.

We also tried other flexible distributions. We tried the Beta distribution, which models

the unit interval directly, but produces poorly calibrated results because it, like the IID

normal, does not capture appropriate levels of concentration or tail behavior. We also

tried mixture distributions and errors which, while flexible, wound up being highly model

dependent, poorly identified, and computationally fragile.
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We also attempted to find alternative correlation structures, besides time mixed effects

and district random effects on the logit scale, such as regional mixed effects. Besides

districts in the south and outside the south, there was little predictable regional variation.

Districts in the North, West, and Southwest do not seem to systematically vary, condi-

tional on other covariates. Our covariates include an indicator for districts in the South

that varies over time to capture what appear to be the most important systematic effects.

In terms of covariate selection, we made choices for easy comparison to the literature.

Our general model structure, like the normal, can easily accommodate other indicators if

discovered by future scholars to be relevant.

4 Computational Details

The standard approach is usually estimated with a linear regression for forecasting (i.e.,

dropping γi) or, for other quantities of interest, via an approximate two-step procedure

designed to avoid computational challenges that were difficult in the 1990s (see Gelman

and King, 1994).

Because of improvements in computation and Bayesian modeling, we estimate our

LogisTiCC model via a fully Bayesian specification of Equation 2, beginning with the

likelihood in Equation 2. We implement the model in “brms,” open-source software that

calls on Stan, which uses Hamiltonian Markov Chains (HMC) sampling to draw from

the posterior distribution of a mixed-effects model (Bürkner, 2018). In practice, we draw

50,000 samples of the posterior distribution from the Bayesian mixed-effects representa-

tion (and 200,000 for the final run). When lagged congressional vote share is a covariate,

we drop the first election of each redistricting decade to fit the model. Our Bayesian

methods are computationally demanding but efficient, which enables us to analyze large

legislatures, and does not require asymptotic assumptions, which is especially important

for legislatures like the small U.S. Senate class up for election in any one year, small na-

tional legislatures, or the many small state houses. We are also able to simulate quantities

of interest directly from the full joint posterior distribution of the predicted values and pa-

rameters, which means researchers can easily calculate any relevant quantity of interest,
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along with accurate and calibrated uncertainty estimates.

In order to achieve valid calibrated uncertainty estimates, we use conservative search

parameters for Stan’s HMC sampler. We set a delta step of 0.999, set a maximum tree

depth of 11, draw 16, 000 samples with a warm up of 6, 000 iterations on 20 chains run

in parallel, for a total of 200, 000 posterior samples per parameter. All Markov Chains

successfully converged, with no divergent transitions, Rhats of 1 across all parameters,

well-mixed chains, and no breaches of maximum tree depth.

We employ weakly informative priors for estimation convenience. In our case, be-

cause we have an average of about 1, 500 elections per decade, we do not require reg-

ularization to identify model parameters, although our weakly informative priors reduce

computational time for HMC convergence. Priors are useful for speeding computation

but, in our data, the choice of hyperprior parameter values does not have a material ef-

fect on empirical results. In fact, even under robustness tests with tight priors far away

from their implied values, core results are largely unchanged. The one exception is that

a strong, tight prior on the midterm penalty simultaneously increases the penalty and

lowers the national trend. That is because with only 3 years of data per decade per

leave-one-year-out run, the difference between the national trend and midterm penalty

is sometimes weakly identified. We impose a empirically backed assumption on midterm

penalty — that it is negative with a wide variance over the range. The specific val-

ues we use are σβ, σω, σtk, σi,∼ Exponential(0.2) , ν ∼ Γ(3, 0.5) and Midterm Penalty

∼ Normal(−0.5, 0.2).

In Figure 5, we show the prior and posterior histograms for the coefficient on our

predictor of the “normal” vote. This figure shows that our weakly informative prior is

diffuse, while the coefficient posterior is tightly estimated around its mean, confirming

that our model estimates are mostly a function of the data rather than priors. We have

also found that small changes in the priors have little substantive consequences for our

estimates.

Statistical results would likely be less robust to the choice of these parameters in leg-

islators smaller than the US House. In applications with small legislatures, researchers
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Figure 5: Posterior vs. Prior Densities

should carefully consider the impacts of both prior specification and sampler behavior to

guarantee statistically valid inferences from the HMC chains.

5 Model Specification

The unit of analysis for fitted models is district i in election year t, with the Democratic

proportion of the vote as the outcome variable. For all calibration computations and esti-

mates of descriptive quantities, we use the same specification with the same priors and the

same computational details. For all analyses, we drop years ending in 2, when nearly all

districts are usually redrawn. We drop districts that are redrawn mid-cycle and elections

where a top-two primary resulted in two candidates from the same party. We calibrated

the model decade-by-decade, dropping one election year at a time. We then forecast the

dropped year from the remaining data. That is, we looped through every decade and fit

the model 28 times, dropping one year at a time. All calibrations and probability of defeat

were computed in this fashion. We tried alternative estimation routines, such as using
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the previous decade to estimate empirical priors and gradually including more data as we

forecast further into the decade. These strategies always yielded similar results, while

being more prior-reliant and more computationally demanding.

For descriptive statistics such as concentration, partisan bias, coefficient estimates on

lagged vote, and marginal incumbency advantage, we also estimated a full in-sample

model where the data were fit to all four years of available data per decade. In both

the leave-one-election-out and in-sample models, we report a forecast integrating over the

temporal uncertainty induced by the national trend. We integrate over the fundamental

uncertainty assumed by our functional form.

To compute the probability of incumbent defeat, we run a counterfactual forecast on

the leave-one-election-out estimates that assumes every incumbent at time t−1 runs again

at time t and compute the integral over [0, 50). If the incumbent loses their primary, we

treat their probability of defeat as 100%.

We report all variables and how each is coded in Table 1. For variables whose coeffi-

cients are estimated at the decade level, we mark a check under Decade in the table. For

variables whose coefficients we estimate as an annual deviation, we check Annual. Coef-

ficients for the midterm penalty, lagged uncontested, and involuntary retirements require

multiple years of data and are estimable at the decade level, and thus possible under our

LogisTiCC modeling framework, but not under the normal approach run one election at a

time. The coefficient for the midterm penalty is only identified for multiple years of data

with at least one midterm and one presidential election. Voluntary retirements and lagged

uncontested do not have enough data at the annual level to reliably estimate coefficients,

so we estimate them only at the decade level. The incumbency and retirement variables

are mutually exclusive and would be collinear if we included voluntary Democratic re-

tirements, which we drop as the base variable. The national trend and local uniqueness

are random intercepts for year and congressional district, respectively.
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Table 1: Definition of Variables and Coding

Variable Coding Decade Annual
Lagged
Democratic
Vote

Lag of Democratic Vote. N/A for redistricted districts
(including all districts in the first year after redistricting.) ✓ ✓

Incumbent
Republican

1 if the incumbent is Republican and elects
to run in the current election.
0 otherwise

✓ ✓

Incumbent
Democrat

1 if the incumbent is Democrat and elects to run in the
current election. 0 otherwise ✓ ✓

Voluntarily
Republican
Retirement

1 if the incumbent voluntarily chooses not to run
and is a Republican. (Retires, runs for higher office).
0 otherwise

✓ ✓

Involuntary
Retirement

1 if the incumbent dies in office, resigns
due to health reasons, is expelled,
is convicted, resigns due to scandal, wins
higher office before completing their term,
loses their primary election,
or is appointed to another office. 0 otherwise

✓

South
1 if a district is in the former Confederacy.
0 otherwise. ✓

Uncontested
1 if the district only has a Democrat running
for office. -1 if the district only has
a Republican running. 0 otherwise

✓ ✓

Lagged
Uncontested Lag of the Uncontested Indicator ✓

Midterm
Penalty

1 if the incumbent is a Democrat and in
the president’s party during a midterm.
-1 if the incumbent is a Republican and in
the president’s party during a midterm. 0 otherwise

✓

National
Trend Intercept for each year ✓

Local
Uniqueness Intercept for each district ✓
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6 Probability of Defeat for Individual Incumbents

We now supplement Figure 7 with Figure 6, to provide further information about indi-

vidual incumbents’ probability of defeat. We plot this probability for individual districts

(vertically) by the lag for the same districts (horizontally). We do this on the logit scale

for graphic clarity, with axis labels on the probability scale for interpretability, and colors

for each of the four groups, following the color scheme from Figure 6 in the paper. Each

dot is one district with election years included where the lag is possible within a single

redistricting decade.
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Figure 6: Probability of Incumbent Defeat by its Lag (logit Scale)

The overall pattern of the four categories is replicated in this figure: The higher prob-

ability of defeat for in party incumbents can be seen by the gold dots being closer to the

top right in the figure. We can also see that relatively few districts at the lower left have

small probabilities of defeat for both elections. But most remarkably is the wide scatter,

indicating high unpredictability for individual incumbents. For example, conditional on a

lagged probability of 20% for in party incumbents during the midterm, the probability of

defeat in the next election can range from under 1 percent to over 85%. This means what

may feel safe at one point in time can be dangerous at another.
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