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Abstract: To deter gerrymandering, many state constitutions require legislative districts to be “compact.” Yet, the law offers
few precise definitions other than “you know it when you see it,” which effectively implies a common understanding of the
concept. In contrast, academics have shown that compactness has multiple dimensions and have generated many conflict-
ing measures. We hypothesize that both are correct—that compactness is complex and multidimensional, but a common
understanding exists across people. We develop a survey to elicit this understanding, with high reliability (in data where the
standard paired comparisons approach fails). We create a statistical model that predicts, with high accuracy, solely from the
geometric features of the district, compactness evaluations by judges and public officials responsible for redistricting, among
others. We also offer compactness data from our validated measure for 17,896 state legislative and congressional districts,
as well as software to compute this measure from any district.

Verification Materials: The data and materials required to verify the computational reproducibility of the results, proce-
dures and analyses in this article are available on the American Journal of Political Science Dataverse within the Harvard
Dataverse Network, at Kaufman et al. (2021) at https://doi.org/10.7910/DVN/FA8FVF.

Compactness is treated in the law as an impor-
tant legal bulwark against gerrymandering. The
Apportionment Act of 1901, many court deci-

sions, and 18 state constitutions require compactness for
U.S. House districts, and 37 states require their legislative
districts to be compact (see j.mp/aRED). Compactness
is also required in federal law as one of the “traditional
redistricting principles,” which, when followed, can “de-
feat a claim that a district has been gerrymandered...” on
the basis of race (Shaw v. Reno, 509 U.S. 630, 647 (1993))
or political party (Davis v. Bandemer, 478 U.S. 173, 2815
(1986)).1

Compactness is also important for the academic
literature, where scholars seek to help the redistricting
and litigation processes, and also to study venerable po-
litical science questions such as the causes, consequences,
and normative implications of compact districts over
American history (e.g., Ansolabehere and Palmer 2016;
Ansolabehere and Snyder Jr 2012; Forgette and Platt
2005). Compactness intuitively refers to both how close
a legislative district’s boundaries are to its geographic
center and how “regular” in shape a district appears to
be. But upon deeper study, scholars have shown that
in fact compactness is a complicated multidimensional
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concept and have offered almost 100 measures of differ-
ent features of it (e.g., Niemi et al. 1990).2

Although many state constitutions explicitly require
compactness, the vast majority provide no definition or
measure for how to detect violations of the standard.
For example, the Constitution of Illinois says only “Leg-
islative Districts shall be compact.” The Constitution of
Hawaii requires that “Insofar as practicable, districts shall
be compact.” In Arizona, the Constitution orders that
“Districts shall be geographically compact and contigu-
ous to the extent practicable.”3

The federal courts have been similarly vague. They
have acknowledged both the multitude of possible
measures for compactness, and the fact that they often
produce different conclusions.4 Except in rare cases,
the courts have not provided guidance on particular
measures or seen the need for them. For example, Justice
Souter stated that “it is not necessary now to say exactly
how a district court would balance a good showing on
one of these indices against a poor showing on another,
for that sort of detail is best worked out case by case”
(Vieth v. Jubelirer, 541 U.S. 267 (2004); Souter dissent-
ing). And most famously, a Supreme Court opinion
indicated “One need not use Justice Stewart’s classic
definition of obscenity—‘I know it when I see it’—as

2The empirical claim sometimes implied in the law, that compact-
ness requirements constrain racial or partisan gerrymandering, is
the subject of an active research program (Altman and McDonald
2012; Barabas and Jerit 2004; Chen and Rodden 2013), and the role
of compactness in ensuring other important normative virtues—
such as better knowledge, communication, and trust between rep-
resentatives and citizens—is also contested (Cain 1984; Pildes and
Niemi 1993). But regardless of the outcome of these important
debates, the degree of compactness of legislative districts will al-
ways have an essential role in defining the nature of representation
and electoral competition in modern democracies, and an accurate
measurement is essential to each debate.

3Some states have passed laws highlighting certain features of com-
pactness that may help with intuition but neither precision nor
application. For example, Virginia Senate Joint Resolution 224
(1/14/2015, Article II, Section 6(5)) reads “Each legislative and
congressional district shall be composed of compact territory. Dis-
tricts shall not be oddly shaped or have irregular or contorted
boundaries, unless justified because the district adheres to polit-
ical subdivision lines. Fingers or tendrils extending from a district
core shall be avoided, as shall thin and elongated districts and dis-
tricts with multiple core populations connected by thin strips of
land or water....” Iowa (Iowa Code, Title II §42.4) and Michigan
(Congressional Redistricting Act 221 of 1999, Redistricting plan
guidelines) mention some precise measures but not how to use this
information.

4“Indeed,” writes Justice Souter, dissenting in Vieth v. Jubelirer, “al-
though compactness is at first blush the least likely of these [tradi-
tional redistricting] principles to yield precision, it can be mea-
sured quantitatively in terms of dispersion, perimeter, and pop-
ulation ratios, and the development of standards would thus be
possible.”

an ultimate standard for judging the constitutionality of
a gerrymander to recognize that dramatically irregular
shapes may have sufficient probative force to call for
an explanation” (Karcher v. Daggett, 462 U.S. 725, 755
(1983)). Here, the Court at once laments the absence of
a single quantitative standard while also implying that
the concept is clear enough that all reasonable observers
should understand it in the same objective way.

Consistently invoking the idea of “compactness”
without a clear definition or required measure suggests
two conclusions about the law. First, the law seems to im-
ply that “compactness” is a single, coherent, and agreed-
upon concept, discernable simply by examining a district
map. After all, how could the courts expect legislators to
draw districts that comply with “compactness” without a
shared understanding of what it means? And second, this
lack of precision in the law has given redistricters and
litigants battling over legislative maps in specific cases
wide latitude to choose measures of compactness and
reach opposing conclusions (Defendant-Intervenors’
Post-Trial Brief [at pp. 18], Bethune-Hill v. Va. State Bd.
of Elections, 141 F. Supp. 3d 505 (E.D. Va. 2015) (No.
3:14 Civ. 852), ECF No. 104; and Motion In Limine
Regarding Plaintiffs’ New Compactness Test [at pp. 4],
Vesilind v. Va. State Bd. of Elections, No. CL 15-3886 (Va.
Cir. Ct. 3/31/2017)). Even when litigants might agree
on the compactness of any one district by knowing it
when they see it, systematically judging the compact-
ness of many districts, or an entire redistricting plan,
cannot be accomplished by merely looking. As such, the
courts and policy makers tend to get very little benefit
from the decades of work on quantitative measures of
compactness offered by social scientists.

We attempt to span this divide between the seem-
ingly universal understanding of compactness proposed
in or needed for the application of the law, and the
theoretical complexity and multidimensionality revealed
in the social science literature. We do this by inferring,
measuring, and validating the single underlying dimen-
sion of compactness that practitioners may need to
apply the law, and we find that people of all types seem
to agree upon it. In other words, because compactness
in the law is, for all practical purposes, defined by the
judgment of human observers—including redistricters,
experts, consultants, lawyers, judges, public officials, and
ordinary citizens—the claim of an objective standard,
measured on a single dimension, can only be supported
if most educated people evaluated a district’s compact-
ness in the same way. We provide this objective measure
and show that these and other groups of observers all
view compactness in accordance with it. This new di-
mension is not the average (or principal component) of
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existing measures but a new quantitative construction
that accurately and reliably predicts human judgment.

In four sections, we proceed by conceptualizing,
measuring, validating, and interpreting our derived
dimension of compactness. Section “Conceptualizing”
inductively defines the underlying dimension by building
on the encyclopedia of existing diverse measures, adding
new ones that show how humans perceive objects like
district shapes, and providing intuition about the com-
monly perceived dimension we seek to measure. Section
“Measuring” then develops a way to measure this concept
by eliciting views of the compactness of specific districts
from respondents using a novel survey approach to rank
order districts according to their compactness. We are
forced to develop a new method because the standard
approach in the survey literature to a problem like this,
Thurstone’s paired comparisons, completely fails in our
application. The high levels of intercoder and intracoder
reliability produced by our alternative approach are con-
sistent with a unidimensionality hypothesis (and suggests
that our survey methodology may have other applica-
tions). This section then uses these results to build a sta-
tistical model that predicts with high accuracy how indi-
viduals rank districts, given only the the districts’ shapes.

Our results enable us to apply one of the most im-
portant principles of statistics—defining the quantity of
interest separately from the measure used to estimate
it—and, as a result, to provide evaluations that make
our approach vulnerable to being proven wrong. We do
this in the “Validating” section with cross-validation and
then extensive out-of-sample validations in samples of
public officials and judges from many jurisdictions, as
well as redistricting consultants and expert witnesses,
law professors, law students, graduate students, under-
graduates, ordinary citizens, and Mechanical Turk work-
ers. Application of this same principle also enables us to
provide the first uncertainty estimates for a measure of
compactness offered in the literature (see Supplementary
Appendix D). Section “Interpreting” then offers inter-
pretation of the resulting measure, and the section “Con-
cluding Remarks” concludes.

Conceptualizing

We now attempt to inductively characterize the concept
of compactness that most laws, constitutions, judicial
opinions, and participants in redistricting at least implic-
itly assume human observers intuitively understand.

As districting is “one area in which appearances do
matter” (Shaw v. Reno, 509 U.S. 630, 647, 1993), our

approach is to measure the absolute compactness of
the geometric shape of a district, separately from other
facts that can impact this measurement such as geog-
raphy or population. This is the most common basis
for a compactness definition, dating well before the fa-
mous “Gerry-Mander” cartoon (Tisdale 1812), but not
the only one possible. Absolute compactness, in turn,
may be constrained or influenced by fixed features of the
state geography, such as rivers, coastlines, or highways.
We measure the quantity that would be influenced by
these features, so that it measures the concept in the law
and can be useful for further research. If a researcher had
the alternative goal of defining and measuring relative
compactness, based on how close it is to a realistic ideal,
then our measure would be a key component in that cal-
culation. In addition to measuring absolute compactness
based on shape, our methods can also be used to mea-
sure compactness based on other criteria, such as popu-
lation dispersion (Fryer Jr and Holden 2011; Hofeller and
Grofman 1990; Niemi et al. 1990); see the section “Com-
pactness as Shape and Population Dispersion.”

We attempt to characterize the compactness of each
district separately. Although changing the boundaries of
one district obviously affects neighboring districts, sep-
arate measurement follows major redistricting litigation,
which typically evaluates the compactness of districts in-
dividually or in a small group rather than for an entire
state redistricting plan all at once (e.g., Shaw v. Reno, 509
U.S. 630 (1993), pp. 637, 647, 656). This strategy is espe-
cially useful for the most fine-grained scholarly research
on the causes and consequences of compactness.5

Section “Multiple Dimensions Underlying Existing
Measures” highlights empirical inconsistencies in exist-
ing shape-based measures to convey that the possible
conceptual definitions of compactness, underlying these
measures, are multidimensional. Then, section “Toward

5Aspects of the overall methodology we develop here can also be
applied to some other redistricting criteria, when additional data
are available (or to concepts unrelated to redistricting that you
only know when you see). These may include other characteris-
tics of districts such as size, population equality across districts,
where people live within a district (Fryer Jr and Holden 2011),
whether the district divides communities of interest or local po-
litical subdivisions, whether incumbents are paired or grouped in
the same district and so have to run against each other to keep
their jobs, what types of people are included in or excluded from
a district, and, as a result, partisan fairness, electoral responsive-
ness (Gelman and King 1994; Grofman and King 2007), and racial
fairness (King, Bruce, and Gelman 1996). Redistricting also in-
fluences more personalistic factors common in real redistricting
cases, such as whether a specific district includes features like a mil-
itary base (which can influence a candidate’s policy preferences)
or a prison (which counts under “equal population” requirements
but not votes), or even whether a candidate’s parents’ homes or
children’s schools are drawn out of his or her district.
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FIGURE 1 Four Districts from the Alabama State House in 2000

a Single Compactness Dimension” provides intuition
and tools to build toward a single concept of compact-
ness.

Multiple Dimensions Underlying Existing
Measures

Numerous specific compactness measures have been
proposed in the academic literature, each one fitting dif-
ferent qualitative conceptual definitions and intuitions
for certain geographical configurations and violating it
for others (Altman 1998; Niemi et al. 1990; Stoddart
1965; Young 1988). These measures are based on geo-
metric concepts such as perimeters, areas, vertices, and
centroids, often in comparison with some pure-form ge-
ometric object such as a circle, rectangle, polygon, or
convex hull. Each, however, focuses on a different dimen-
sion of what might be called compactness. Consider, for
example, the five most frequently used measures by aca-
demic researchers, and also by experts in redistricting lit-
igation: Length-Width Ratio, the ratio of the length to the
width of the minimum bounding rectangle (Harris 1964;
Timmerman, 100 N.Y.S. 57, 51 Misc. Rep. 192 (N.Y. Sup.
1906)); Convex Hull, the ratio of the area of the district to
the area of the minimum bounding convex hull; Reock,
the ratio of the area of the district to the area of a min-
imum bounding circle (Reock 1961); Polsby-Popper, the
ratio of the area of the district to the area of the circle with
the same perimeter as the district (Polsby and Popper
1991; Schwartzberg 1965); and (modified) Boyce-Clark,
the (normalized) mean absolute deviation in the radial
lines from the centroid of the district to its vertices (Boyce
and Clark 1964; Kaiser 1966; MacEachren 1985). For de-
tails on these and others, see Supplementary Appendix A.

Without a gold standard, we cannot determine any
measure’s formal statistical properties, its error rates,
or when it might fail. Although different measures are
sometimes correlated, choices among these are presently

made by qualitative judgment. Creative scholars have
managed to use existing measures productively in re-
search by combining multiple measures, adjusting or
weighting each for specific purposes, or making careful
qualitative decisions in specific cases (Ansolabehere and
Palmer 2016; Niemi et al. 1990).

We illustrate the issues with measuring compactness
by presenting Figure 1, four state house districts from
Alabama in 2000. Readers may wish to draw their own
conclusions about the relative compactness of these
districts, but we now provide in Table 1 an indication
of how the most popular five measures rank them (we
discuss X-Symmetry and significant corners in Section
“Toward a Single Compactness Dimension”). As can
be seen from the first five rows of Table 1, every one of
these measures gives a different rank order for the four
districts. We introduce two new compactness measures
in section “Toward a Single Compactness Dimension”
for a different purpose; these are given at the bottom
of Table 1 and also give unique rankings of the same
districts. This example is merely a proof of concept,
but finding such examples is easy: By random sam-
pling, we estimate that in our collection of 17,896 state

TABLE 1 Seven Unique Compactness Rankings
of the Same Four Districts: Five
Existing and Two New Metrics

Legislative Districts

AL 21 AL 9 AL 62 AL 1

Convex Hull 1 2 3 4
Reock 4 3 2 1
Polsby-Popper 2 3 1 4
Boyce-Clark 3 4 1 2
Length/Width 4 2 3 1
X-axis Symmetry 4 1 2 3
Significant Corners 3 1 2 4
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legislative and congressional districts (see Supplementary
Appendix B), there exist 162 trillion sets of four districts
such that every one of the seven measures provides a
unique rank order. Of course, there is a large number
from which to choose (this large number being about
0.15% of the total), but inconsistencies among the rank-
ings on fewer than seven measures is both commonplace
and is congruent with the long literature on this subject.

Toward a Single Compactness Dimension

We now provide intuition helpful in turning the multi-
ple types and dimensions of compactness illustrated in
section “Multiple Dimensions Underlying Existing Mea-
sures” into a single unidimensional concept underlying
common conceptions, but in the absence of political or
personal biases. We continue to proceed inductively, with
the “Measuring” section devoted to measuring this con-
cept. We do this in three ways, followed by a characteri-
zation of the dimension of interest.

First, our goal is to elicit views about compactness,
but without the biases psychologists have long demon-
strated skew human judgments in the direction of our
own political and other preferences. Although such un-
biased views may be the goal of lawyers advocating on
behalf of their clients, research has shown that subject
matter experts are as vulnerable to bias as nonexperts,
and more overconfident in the belief that they can avoid
it. The only reliable solution has been to remove even
the possibility of bias by instituting formal procedures
(such as double blind experiments; see Kahneman 2011).
We thus elicit views about compactness without reveal-
ing to respondents how their decisions in any one situa-
tion might benefit one political party or another. This is
a critical point: Because individual judges, advocates, re-
districters, and experts do not have access to the mental
processes in their own thinking that would enable them
to evaluate and avoid these biases (Wilson and Brekke
1994), they would also be unable to come to the same
judgment as our measure in the context of a real redis-
tricting contest by merely looking at a district shape.

Second, all existing compactness measures are ro-
tationally invariant, meaning that if we rotate a district,
say 45 degrees, a measure will have the same value.
Although this is a reasonable normative standard from
some perspectives—and we discuss below how to eas-
ily adjust our methods to impose this restriction if
desired—human beings (including judges) do not eval-
uate districts in this way. In fact, human perception is
famously sensitive to the rotation of objects: Even famil-
iar faces can become unrecognizable when viewed upside

down (e.g., Maurer, Le Grand, and Mondloch 2002). Our
own experimentation done in R Shiny (Kaufman 2020)
suggests that people view long thin district shapes located

on a diagonal ( ) as less compact than the same shape
located along the horizontal axis ( ).6 In contrast,
legislative districts always have a well-defined up (north)
and down (south), as displayed on every commonly used
map. Indeed, courts, redistricters, and judges virtually
always use this single standard orientation and do not
rotate districts when evaluating compactness; as a result,
their decisions are not rotationally invariant. In other
words, because the usual orientation of a district has
precedence in how humans interpret it, some of our
measures need to pick up on these features.7

Thus, primarily for illustration in this section, and
later as a measurable feature of district shape that can
be included (and if desired controlled) in our statistical
model, we define here a new compactness measure that
is not rotationally invariant. We do not intend this mea-
sure to substitute for other measures or to even be espe-
cially important on its own, but it will be useful to rep-
resent human perception. Thus, we define X-Symmetry
by dividing the overlapping area, between a district and
its reflection across the horizontal axis, by the area of
the original district. Shapes like circles and rectangles
have overlap regions equal to that of the original district
and so have X-Symmetry values of 1. A long thin dis-
trict stretched out from top left to bottom right, or one

like , have X-Symmetry values close to zero. This mea-
sure, applied to the four districts in Figure 1, gives unique
rankings for each; see the sixth row of Table 1.

Because we are attempting to quantify human per-
ception, we try to avoid imposing theoretical notions of
what compactness should be, what might be rational,
or what meets various mathematically “pure” standards
that implicate one normative preference or another (such
as rotational invariance). Finding the common objective
measure that exists in minds of districting authorities,
the courts, and others requires respecting how humans
think rather replacing it with alternative normative pref-
erences. Although the courts have never addressed the is-
sue, in all likelihood those who drafted compactness re-
quirements in legislative statues, judicial opinions, and
state constitutions, that imply that the concept is so sim-
ple that you know it when you see it, were not assuming
rotational invariance. However, if a rotational invariant

6This pattern may be related to the “horizontal-vertical illusion”
discovered in psychology (Prinzmetal and Gettleman 1993).

7We note as well that, because all modern political boundaries are
drawn with respect to cardinal directions, those directions are nec-
essarily considered in examining districts.
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FIGURE 2 The Underlying Compactness Dimension

Note: From most compact (a) to least compact (d) (all five of the most common compactness measures agree with this ordering). Districts
include, (a) Wyoming State House District 42, 2010; (b) Pennsylvania State House District 185, 2010; (c) Oklahoma Congressional District
1, 1950; (d) Louisiana State Senate District 3, 2010.

measure is desirable or at some point required, we can
easily impose it using a procedure analogous to what we
do for avoiding political bias. Thus, we would use all the
procedures described in this article except that we would
simply display districts at random rotational angles when
eliciting compactness evaluations.

Third, another feature of human perception is how
we define what constitutes a “significant” feature of a dis-
trict. If a roughly circular district has a ragged border,
which of the small border inlets and peninsulas count
as notable deviations from the circular shape? For ex-
ample, suppose we give a large number of people the
task of drawing from memory the shape of the conti-
nental United States. These drawings will all differ, but
they will likely all include some of the same features—
a roughly rectangular shape, a peninsula for Florida, a
larger one for New England, and perhaps a somewhat
rounded western ocean boarder. In other words, de-
spite the enormous number of specific small features and
vertices along the boarder to choose from, virtually all
Americans are likely to recall, thus judging as significant,
a small number of the same features.

To include this highly qualitative feature of human
perception, we consider algorithms computer scientists
design to list all of the “objects” in an image. There is no
correct answer, but it turns out that different people are
likely to give similar answers, and the automation goal
is to list the objects a human would identify. As we do
with X-Symmetry, we illustrate this idea quantitatively,
and give an example that will later become part of our
model. To do this, we turn the geometric district shape
into a set of pixels (i.e., changing from vector to raster
representation), apply a corner detection algorithm (Shi
and Tomasi 1993), and count the number of “significant”
corners. The more significant corners, the less compact
the district by this metric. The last row of Table 1 gives

the rankings of the four districts in Figure 1 according
to the number of significant corners. This measure also
gives the four districts a unique ordering.

Finally, we try to convey intuition about the un-
derlying dimension of compactness we will quantify in
the next section. We do this visually, by presenting in
Figure 2a set of districts that range from most (panel a) to
least (panel d) compact. We find that almost anyone fa-
miliar with the district-based nature of modern democ-
racy, and some sense of the word compactness, finds that
district (a) is more compact than (b), which is more com-
pact than (c), which is more compact than (d). The ques-
tion is how to quantify this notion, so that it works for
these four districts and all other geometric shapes, a topic
to which we now turn.

Measuring

We now develop a more explicit measure of the concept
of compactness to satisfy our requirements in the “ Con-
ceptualizing” section. The immediate quantitative goal of
the procedure is a continuous measure for each district,
between 1 and 100, that estimates the expected rank a
respondent would assign a district if embedded in a set
with 99 others. With this measure, we can rank order any
set of n districts, given only quantitative measures of their
geometric shapes.

To construct this measure, we first develop a method
of eliciting views about compactness directly from survey
respondents, something universally recognized as impor-
tant but rarely done in this literature except informally by
researchers (Angel and Parent 2011; Chou et al. 2014).
Supplementary Appendix A attempts this by applying
best current practices in survey research—using a mod-
ern version (David 1988) of Thurstone’s venerable paired
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comparisons (Thurstone 1927), a method that dates at
least to 1860 (Fechner 1966). Under this approach, we
pose a set of simple survey questions, each asking the re-
spondent to decide which of two districts is more com-
pact and, from the many answers, we construct the full
ranking. We explain the motivation behind this approach
and then demonstrate empirically that it utterly fails to
accomplish its goal for this application.

Given the failure of paired comparisons, we have no
choice but to develop a new approach. Thus, in the sec-
tion “How Ranking Outranks Paired Comparisons,” we
turn to the method that paired comparisons was origi-
nally designed to supplant—asking respondents to rank
many districts all at once. We show that, as we apply it,
this approach turns out to work extremely well in our
application (and may also work for many others too).
As we describe, the supposed advantages of paired com-
parisons turn out to be disadvantages and the disadvan-
tages of ranking turn out to be advantages. Section “A
Statistical Measurement Model” takes the resulting sur-
vey elicitation method as our outcome variable, and new
gold standard, and builds a statistical model to predict
it from geometric features of the districts. Details about
data used appear in Supplementary Appendix B.

How Ranking Outranks Paired
Comparisons

Why does the method of paired comparisons perform
so poorly? We propose four reasons, which together
leads us to a workable approach for our application, full
ranking—the method which paired comparisons origi-
nally supplanted.

First, although
(n

2

)
paired comparisons is vastly

smaller than n! rankings (see the start of Supplemen-
tary Appendix A), for some applications rankings make
be quicker. After all, how long would it take to carefully
and accurately rank 20 district shapes by their degree of
compactness (or 20 friends by their heights or 20 animals
by their friendliness)? A lot less than 2 quintillion sec-
onds. What the idea behind paired comparisons seems to
miss is that humans are excellent at pattern recognition
and seeing the big picture. Humans also intuitively ap-
ply time-saving heuristics that reduce the complexity of
tasks, such as in our application by grouping districts into
distinct types, and considering all members of the group
at once before analyzing members within the group.

Thus, in practice with full ranking, we have tried
to ensure that respondents are using their big picture
skills, such as by suggesting to them that they simplify
the task by working hierarchically, first grouping districts

into three coarse groups, and then producing groupings
within each group, and finally starting from the top and
checking and adjusting each district’s position within the
ranking; however, we found that heuristics and intuitions
are strong enough that dropping these instructions did
not degrade our full ranking approach. We also tried full
ranking with districts printed on paper and arrayed on a
long table, as well as via an online system we built that al-
lows districts to be dragged and dropped to their chosen
location; we find no evidence that the mode of adminis-
tration matters either (as with Blasius 2012).

Second, human respondents work better when mo-
tivated and engaged. Although paired comparisons suc-
cessfully avoid the risk of asking respondents questions
they do not understand, it is also an unavoidably boring
and tedious task, especially after the first few questions.
In contrast, ranking a large set of districts is more intel-
lectually challenging and engaging (Fabbris 2013). Our
own cognitive debriefing strongly supports the advan-
tages of ranking in this regard.8

Third, if it is possible for a survey respondent to
rank (say) 20 districts without much trouble, then we
can save considerable time by administering this one
engaging survey task rather than having to ask 190 te-
dious paired comparisons for each respondent. Ranking
would then save considerable time, expense, and respon-
dent fatigue (Ip, Kwan, and Chiu 2007). As a hint that
this might work, Krosnick (1999) (studying rating rather
than paired comparisons) finds that often “rankings give
higher quality data than ratings.”

And finally, the literature makes clear that compact-
ness is a multidimensional concept (Niemi et al. 1990).
Yet, we are trying to tap into a single unidimensional
concept of compactness that we hypothesize respon-
dents, if given the choice, would select and use. In this
light, the fact that Thurstone’s approach enables respon-
dents to make each paired comparison independently of
the others allows, and may even encourage, them to use
different dimensions for different comparisons. In other
words, although “roundness” may be the deciding factor
for compactness in one given pair of districts, length
versus width may be the relevant question in the next
pair, and so forth. This may then be what results in the
low levels of intercoder and intracoder reliability we have
documented. In contrast, ranking has the advantage of

8We also experimented with having two coders participate to-
gether in ranking each set of districts, on the theory that the so-
cial connections would make the task even more engaging. Our
results support this theory, in that respondents spent about 30%
more time together completing the task, but this engagement
was unnecessary because it did not increase inter- or intracoder
reliability.
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encouraging respondents to choose a single dimension
of compactness and to use it for all their decisions. With
paired comparisons, the only way to do this would be to
ask respondents to choose a single dimension explicitly
and to keep that dimension in their heads while they an-
swer 190 randomly ordered survey questions. Although
the goal of any survey question is to be clear enough
so respondents are answering the question intended
by the researcher (i.e., on the dimension of interest),
giving respondents multiple separate questions makes
this difficult to achieve.

To test our hypothesis that ranking will work bet-
ter than paired comparisons, we ask respondents to give
a full rank order for 100 separate legislative districts by
their degree of compactness.

To begin, we embed our 40 districts (which we used
in 20 pairs in the experiments in Figures 7 and 8) among
60 others and ask a new set of respondents to rank all
100. To compute a relative assessment of the two meth-
ods, we evaluated intercoder and intracoder reliability
of the implied paired comparisons of how these 20 pairs
were ordered by full ranking and compared them to reli-
ability from the actual paired comparisons. That is, from
full ranking, we record only which district in each pair
of 20 comparisons is ranked higher. Then, to compute
intracoder reliability, we waited 2 weeks, shuffled the
rank ordering, and asked the same respondents to rank
the same 100 districts, again only using the 20 designated
pairs among these. We then computed the percent agree-
ment over time in these implied paired comparisons
exactly as we did for the actual paired comparisons. The
results, which appear in the same two figures (salmon
colored histogram, at the right of each figure), are far
more clearly separated from the random placebo test and
have much higher levels of intracoder reliability than the
actual paired comparisons. For intercoder reliability, in
Figure 7, we have 75% agreement on average, and for in-
tracoder reliability, in Figure 8, we have 88% agreement
on average.

Now that we have a method that bests paired com-
parisons for measuring compactness with respect to
pairwise intracoder and intercoder reliability, we turn
to evaluating full ranking on its own terms. We begin
with intercoder reliability by correlating the ranks for
100 districts coded independently by (all possible) pairs
of respondents. We then present in Figure 3 one scat-
terplot representing the pair of coders with the median
correlation (ρ = 0.77 in the top left panel) as well as the
pair with a correlation in the first quartile (bottom left)
and in the third quartile (top right). In the bottom right
of the same figure (salmon colored), we also present a
density estimate (using a kernel truncated at the min-

imum and maximum observed correlations) of all the
correlations, along with a baseline density estimate of
correlations among randomly generated ranks. The
conclusion from this figure reveals high intercoder reli-
ability, clearly distinguishable from chance, and with no
systematic error patterns in any individual scatterplot.

We then repeat this process for intracoder reliabil-
ity by correlating the ranks for each respondent with the
same respondent, reranking the same districts, 2 weeks
later. Figure 4 shows these results in the same format
as Figure 3. As would be expected, our results here are
even stronger than for intercoder reliability. The median
correlation (top left) is ρ = 0.9, with not much spread
around the median (see salmon colored histogram in the
bottom right panel). None of the scatterplots show any
systematic patterns in deviations from the 45◦ line, and
all indicate high levels of intracoder reliability.

A Statistical Measurement Model

To construct our ultimate measure of compactness,
we begin with a set of districts and elicit the views of
respondents via our full ranking survey approach. In the
section “How Ranking Outranks Paired Comparisons,”
we describe this survey methodology. Supplementary
Appendix B gives details of how we recruited our survey
respondents, collected our set of districts, conducted our
experiments, and wrote and presented the ranking task
to respondents. We also discuss there the mechanism
for how we elicited ranking preferences, both in person
(sorting paper cards with districts printed) and online
(dragging and dropping district images).

Our data collection process results in six sets of 100
districts, each ranked by several individuals or pairs of
individuals working independently. We average away
random error by calculating the first principal com-
ponent of the rankings produced for each set of 100
districts, preserving the ranked scale. This first principal
component, a summary of human-derived compactness
rankings, forms the outcome variable in our statistical
model, using only information from the shape of districts
as predictors. To produce our predictor variables, we cal-
culate a set of geometric features including all seven
compactness indicators from Table 1 and the others de-
scribed mathematically in Supplementary Appendix A.

Finally, we train an ensemble of predictive methods
with these data, consisting of least squares, AdaBoosted
decision trees, support vector machines, and random
forests. Supplementary Appendix C gives the details of
these methods and of how we construct this ensemble
and its component parts.
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FIGURE 3 Intercoder Reliability for Full Ranking with
100 Districts

Note: Scatterplots are given for the median correlation (top left panel), first quartile (bottom
left), and third quartile (top right). A density plot of all correlations, along with a placebo-
based density plot appear at the bottom right. Density plots are truncated to reflect the
observed support.

All further details and code are available in our repli-
cation data file, which accompanies this article. In the
same way that logit or ordered probit take discrete out-
come variables and generates continuous predictors, our
training data consist of integers from 1 to 100, but our
ensemble model produces continuous outputs.

Compactness as Shape and Population
Dispersion

As described in the “Conceptualizing” section, the con-
cept of compactness in the law, most of the literature,
and our article is based on district shape alone. However,
other conceptualizations may be of interest for some pur-
poses, such as based on population, communities of in-
terest, not dividing political subdivisions, etc. For each
of these, all the methodological procedures we developed

in this article should be directly applicable. The measure
that results from the application of our procedures en-
tirely depends, of course, on the quantity of interest be-
ing estimated, and there is no guarantee that a measure of
compactness based on shape will be related to one based
on other criteria.

As one small proof-of-concept of the applicability
of our approach, we repeated our survey with district
shapes that also represented where in each district people
live (Ansolabehere and Palmer 2016; Niemi et al. 1990).
We ran this population distribution experiment with six
undergraduates from different universities on the same
set of 20 districts. Details of the experimental protocol
appear in our replication data set. Results indicate that
the median correlation between the

(6
2

) = 15 possible
pairs of rankings was a substantial 0.94, with a range of
0.12. This is comparable to the results we found using
shape alone.
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FIGURE 4 Intracoder Reliability for Full Ranking

Note: This figure follows the same heuristics as Figure 3.

Validating

Via cross-validation (in section “Cross-Validation”) and
out-of-sample prediction in diverse populations (in sec-
tion “Predictive Validation in Diverse Populations”),
we now evaluate our single, unidimensional compact-
ness measure, deterministically computed from a dis-
trict shape, and confirm our hypothesis that the theo-
retical concept we are measuring is the same one people
know when they see. The data for this section come from
diverse populations including participants directly in-
volved in decision making about legislative redistricting.

Cross-Validation

We evaluate our model here with cross-validation, where
each fold reserves one of our six sets of 100 districts. To
do this, we use six groups of survey respondents, poten-
tially making it harder for our model by mixing size of

group, mode of administration, and type of respondent:
(1) two pairs of undergraduates (the two within each pair
working together) and one pair of graduate students; (2)
one pair of undergraduates, one individual undergradu-
ate, and one pair of graduate students; (3) five individual
undergraduates, five pairs of undergraduates, and 16 Me-
chanical Turk workers; (4) five pairs and five individual
undergraduates; (5) eight undergraduates; (6) eight un-
dergraduates. (We found ex post that respondents gave
similar rankings regardless of whether they worked alone
or in pairs. Similarly, Mechanical Turk workers, under-
graduates, and graduate students gave similar rankings
on the same sets of districts.)

We then trained our model on groups 1–5 of respon-
dents taken together, and predicted the remaining “test
set” of respondents in group 6; we repeated this six times
in total, with each group taking its turn as the test set
and the remaining groups as the training set. The pre-
diction from this model uses all information from the
training set but only the district geometry (i.e., no survey
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FIGURE 5 Cross-Validation of Model Predictions

information) from the test set. Figure 5 evaluates the per-
formance of this procedure by providing six scatterplots
corresponding to each of our training set-based predic-
tions (horizontally) by the true test set values (vertically).
As is evident, these cross-validation results indicate very
high predictive accuracy. Correlations between predic-
tions and test set values range from 0.92 to 0.96, with no
noticeable systematic error patterns in any graph.

Predictive Validation in Diverse Populations

The statistical model in the section “A Statistical Mea-
surement Model” is designed to predict human judg-
ment about the compactness of any set of districts, given
only the geometric shapes of the districts. Our model can
make a prediction for any legislative district shape, in-
cluding new districts and those that do not appear in our
training set.

Our hypothesis is that any informed human being
will judge the compactness of a set of districts in almost
the same way, thus admitting to high levels of statistical
reliability. We now test this hypothesis by asking a wide
range of groups to evaluate the compactness of differ-
ent sets of legislative districts and comparing these eval-
uations to our predictions. Our main test comes from

96 sitting justices, judges, and public officials, all with
some responsibility for redistricting or deciding redis-
tricting cases. We also elicited the views of 102 others,
ranging from less to more involved in and knowledgeable
about redistricting, including Mechanical Turk workers,
who received small monetary payments, undergraduates,
some of whom received hourly wages, and others who
were not paid, including political science Ph.D. students,
law students, law faculty, redistricting consultants and
expert witnesses, and lawyers involved in legislative re-
districting cases.

We promised our respondents confidentiality, in-
cluding their responses and the fact of their participation.
This was most obviously a concern in recruiting judges
and justices, who decide redistricting cases, and other
public officials, who have decision-making authority in
or substantial influence on the process. It turned out to
be of no less a concern for some lawyers who try redis-
tricting cases, and some consultants and expert witnesses
who are held to account for their previous statements
and opinions. For these reasons, we are not able to
make these data available publicly, although we do make
available the software we designed to let respondents
sort districts online and all our specific experimental



544 AARON R. KAUFMAN, GARY KING, AND MAYYA KOMISARCHIK

FIGURE 6 Correlations between Model
Predictions and Survey Responses
from Nine Groups

Note: Density curves describe the distribution of correlation co-
efficients between our model’s predictions and the indicated
groups.

protocols. All these steps were approved by our university
Institutional Review Board. (We have also prepared and
field tested teaching exercises for American government
classes that use our districts, enable students do the
ranking exercise themselves, and compare them to our
predictions.)

In this experiment, we asked each respondent to rank
order 20 legislative districts, not included in our training
data, by their degree of compactness; we represent the
degree of predictive accuracy by a simple correlation with
our predictions. All respondents ranked the same 20 dis-
tricts. We portray our results in Figure 6 with a histogram
for each of nine categories of people. As a baseline, we
present a density estimate (in blue) of the percent
agreement among random rankings, which is of course
centered at zero, and the variance of which conveys un-
certainty given n = 20 districts. The (salmon-colored)
histogram is for Mechanical Turk workers. The remain-
ing histograms of correlations appear in white, with black
outlines. We do not distinguish among these for a fur-
ther level of confidentiality, but they all lead to the same
conclusion of very high levels of predictive accuracy.

We found no statistically significant differences be-
tween the size of the correlations among different groups
of respondents. The main predictor of the strength of
the correlations was the time spent on the task, with
longer times yielding higher correlations. This accounts
for the larger variance of Mechanical Turk workers, as

they are paid by the completed task regardless of how
long they spend.

Interpreting

Having conceptualized, measured, and validated our es-
timate of compactness, we now interpret the result. Of
course, we already have one interpretation—that we
know it when we see it. That is, our fully automated
quantification of the compactness of a district geogra-
phy reproduces how informed human observers evaluate
a never-before-seen district shape. Our model can do this
quickly for millions of potential districts in ways no hu-
man could ever do—and so it could be used in a court
case comparing entire legislative plans or in academic
research comparing many legislatures—but the quantity
being estimated by our model and by individual people
is the same.

Nevertheless, a reasonable question is whether we
can understand compactness via some simpler geometric
approach, analogous to any of the existing measures. The
common difficulty of explaining how we as humans (or
statistical models that approximate them) perform so-
phisticated tasks—recognizing a friend’s face, developing
a scientific hypothesis, judging compactness when we see
it, etc.—is known as “Polanyi’s paradox,” that “we know
more than we can tell” (Autor 2015; Polanyi 1966). We
have studied, in considerable detail, how to simplify our
measure and find that indeed the simplest way to know
what we see is merely to look or to use our measure.
A theoretically simpler version may even be an illusory
goal, because humans use such sophisticated combina-
tions of these mathematical simplifications rather than
any one. We analyze this point in four ways, and then
discuss whether other approaches to this question might
be possible.

First, we offer a direct answer from our extensive
qualitative analyses of the outputs of our approach along
with the features that are most predictive: Our mea-
sure of compactness favors districts that are squarish,
with minimal arms, pockets, islands, or jagged edges. (We
use “squarish” rather than “circle-like” because many
real districts are approximately square-shaped but almost
none resemble circles.) Importantly, no existing com-
pactness measure estimates a theoretical quantity that
can reasonably be described in this way.

Second, we offer illustrations of the nature of the
agreements and disagreements between our measure and
each of the seven existing measures we discussed in the
“Conceptualizing” section. For each existing measure, we
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TABLE 2 Illustrations of Agreements (in the First Two Columns) and Disagreements (in the Last
Two Columns) about the Degree of Compactness between Each of Seven Existing Measures
and Our Measure

Note: Each row represents a 2 × 2 table of our measure by an existing measure, with a dichotomized compactness summary, displaying
one example district in each cell arbitrarily chosen via alphabetical order.

construct a 2 × 2 cross-tabulation of example districts
that reflect agreements (compact and noncompact) and
disagreements (where the existing measure says non-
compact and ours compact, and the reverse). We array

horizontally the four cells of this 2 × 2 table for each
measure in a row in Table 2. To generate this table, we
define “compact” districts as having a predicted com-
pactness rank in the top 15 (of 100) and “noncompact”
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as 85 or lower. (If no district appears in a cell of the
cross-tabulation, we expand our definition from 15 and
85 to 20 and 80, etc.) Then, to avoid cherry picking, we
choose the first in alphabetical order among all districts
defined by each cell in each table.9

The results in Table 2 are striking. The agreements
appear in the first two columns: Column 1 includes seven
obviously compact districts, and column 2 includes seven
clearly noncompact districts. The last two columns re-
flect disagreements between our measure and an existing
one. The first of these (in the third column) are districts
that our measure indicates are noncompact and an ex-
isting measure says are compact. Most human observers
agree with our measure (by design) that these are in fact
highly noncompact districts. Similarly, the final column
includes districts judged as noncompact by an existing
measure, but compact by ours. This table clearly reveals
how each existing measure picks up important features
of the compactness of legislative districts and omits oth-
ers. The features each measure picks up or misses are
those widely discussed in the existing compactness lit-
erature as benefits or failures of each measure, because
in practice this theoretical literature is using the stan-
dard from which our measure was derived (you know it
when you see it) to judge their own measures. In contrast,
our measure seems to pick up all the features identified
throughout the literature as desirable, without obviously
missing any feature of a district shape generally seen as
important.

Third, do different measures generate different con-
clusions in practice? The answer here depends on in
which legislature the comparison is being made. For any
two measures, it is easy to draw a districting plan where
the measures change the rankings of compactness in
any arbitrary way. We could also be misled by stacking
up data across legislatures—and thus ignoring the bias
from heterogeneous treatment effects—in which case we
would see that our measure correlates quite weakly with
most measures but at about 0.9 for convex hull and
Polsby-Popper, and similarly high correlations for the
naive average of all measures. In fact, the only coherent
way to answer the question is to use real-world legisla-
tures, which is the context in which comparisons matter
and, as it turns out, where differences are significant. To
pick an extreme case from the current U.S. Congressional
map, Polsby-Popper correlates with our measure (i.e., the
measure any human observer would choose when evalu-

9We define alphabetical order according to a specific naming con-
vention. All districts receive an identifier which includes state, dis-
trict set (upper chamber, lower chamber or Congress), district
number, and year. For example, Alaska’s first congressional district
from 2010 is 01_CD_001_2010.

ating districts) at 0.95 in Indiana’s 1970 map but −0.37 in
its 1890 map. We thus study this question more systemat-
ically by analyzing the 778 legislatures from our data with
unique sets of district boundaries (i.e., for every available
state, legislative chamber, and year; e.g., Alabama State
Senate in 1962). Comparisons across measures in court
mostly depend on which district or plan ranks highest
and so we compute the percent of times, across data sets,
where each existing measure has the highest correlation
with our measure. The measure that winds up in the top
position most often is Convex Hull, but this occurs in
only 54.5% of the data sets – followed by the Polsby-
Popper in 31.0%, Grofman in 6.2%, Y-axis Symmetry
in 1.9%, Reock and X-axis Symmetry at 1.6% and 1.5%,
and Boyce-Clark at 0.6%; even measures such as the area
of the minimum bounding circle and the number of dis-
contiguous polygons correlate most highly sometimes. In
other words, any existing measure can come out on top
in approximating our measure depending on the partic-
ular features of the set of district shapes that make up the
legislature, and so none of these measures alone can be
used as a simpler replacement with our measure of what
people know when they see, without checking the rela-
tionship first (see Supplementary Appendix E).

Finally, the best practice in choosing predictive mod-
els, which we followed, involves finding the most parsi-
monious model that predicts accurately; as such, we are
by definition unable to find an even more parsimonious
model without giving up predictive accuracy. Thus, we
searched for a more parsimonious model that degraded
performance by only a small amount. Unfortunately, we
found no large discontinuity in the relationship between
parsimony and performance. A straightforward princi-
pal component analysis of the existing measures also does
not yield a simple solution.

In summary, this section demonstrates that none of
the existing measures, and no measure we could find, of-
fer a simple geometric representation for what humans
know when they see. To be clear, however, we have not
proved that creating such a measure is impossible. We
thus leave this as an open question and encourage future
researchers to seek such a simplifying geometric defini-
tion, if that turns out to be possible.

Concluding Remarks

We conclude that the measure derived here reflects the
underlying viewpoint held about the concept of com-
pactness by everyone from educated Americans to pub-
lic officials, judges, and justices. This measure appears to
confirm and reflect the single, universally recognizable
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standard implicit in legal compactness requirements of
state constitutions, federal and state legislation, and court
decisions. Although “we know more than we can tell”
about how humans perceive compactness, this measure
quantifies “what we know when we see.” The measure is
also visibly different (as per Table 2) from any existing
measure and, by design, much closer to how human be-
ings perceive compactness.

Approaches developed here for measuring an ill-
defined concept that you know only when you see may
also be applicable to other difficult-to-define concepts.
These include measurement by full ranking rather than
paired comparisons, which saves time and turns out, in
our application, to have much higher levels of intra-
and intercoder reliability; the incorporation in a model
rather than replacement of most existing measures and
approaches; and formalization into a statistical model of
an approach that predicts the views of a wide range of
different types of people.

The key aspect of our approach here is defining the
concept of interest separately from the measure used to
estimate it, so that our measure becomes vulnerable to
being proven wrong and, as a result, our approach can
improve over time. In this light, we encourage others
to take up this challenge and improve on the methods
we propose, and develop statistical methods that out-
perform ours; this may now be possible, as clear per-
formance standards now exist. New features measuring
compactness can also be included in our approach as ad-
ditional covariates in our statistical model, which may
well be improved.

We hope the large collection of compactness data we
make available with this article (for 17,896 state legisla-
tive and congressional districts) and software that makes
it easy to compute compactness on any new district en-
able future researchers to study a wide range of questions
related to this crucial concept (see Supplementary Ap-
pendix E). As well, we hope that having a single measure
of compactness that all agree on will begin to constrain
some aspects of unbridled advocacy during the redistrict-
ing process and subsequent litigation.

Appendix A: How Paired
Comparisons Fail

The method of paired comparisons has been touted
for more than a century and a half for its two key ad-
vantages. First, this approach puts fewer demands on
survey respondents than asking respondents to do a
full ranking. That is, to produce a ranking of n items
requires the choice among n! possible rankings, whereas
the same information can be elicited with only

(n
2

)
paired

comparisons. This is not trivial because n! � (n
2

)
; For

example, with n = 20, we have 20! = 2.4 × 1018, or 2
quintillion possible rankings, whereas

(20
2

) = 190 paired
comparisons is large but still manageable in a single
survey (and may even be reduced; see Mitliagkas et al.
2011). For these reasons, Converse and Presser (1986,
p. 28) comment on a historical example with only 13
items: “Tasks of this scope were soon seen as much too
difficult..., and in our own time, rank orders of this size
are all but invisible in the literature.” Thus, if full ranking
is used, the best practice has been “not to use lists longer
than three or four items” (Gideon 2012).

Second, Thurstone’s approach only requires simple
questions that are easy to understand, concrete, and spe-
cific. With it, we ask a respondent which among a pair
of legislative districts is more compact, and then repeat
this simple question multiple times with different pairs
of districts. Then, after eliciting information in this man-
ner, the researchers combine these binary decisions into
a ranked scale (using Guttman scaling or a more so-
phisticated approach accounting for measurement er-
ror; e.g., Mitliagkas et al. 2011). The method assumes
all respondents will use the same unidimensional scale
to make their choices for all their paired comparisons
(an issue we return to). The supposed advantage of this
approach is that respondents are asked only what they
know (a paired comparison) and researchers do what
they are better at, which is taking on the complicated
task of inferring the underlying full ranking from all the
elicited information.

To apply this method, we conducted multiple iter-
ated rounds of pre-testing and cognitive debriefing while
adjusting question wording and how the districts ap-
peared.10 But despite dozens of trials over many months,
testing numerous variations, and with a wide range of
research subjects, online and in person, our inter- and
intracoder reliability statistics were rarely much above
random chance. To see what we found, consider a simple
experiment with 40 respondents (in this case on Ama-
zon’s Mechanical Turk), each asked to choose the more
compact district from each of 20 pairs, producing a 20-
length binary decision vector. This survey enabled us to
compare the percent agreement among the 20 decisions
for each of

(40
2

) = 780 pairs of respondents. Figure 7
gives a histogram of these percent agreements (in blue,
marked “paired,” computed as a density estimate). For
comparison, we also generate a placebo test, under the
null hypothesis of no agreement, by randomly generating
780 pairs of 20-length vectors and computing from them

10All districts are visualized at maximally high resolution to ensure
that no features such as coastline are lost.
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FIGURE 7 Intercoder Reliability of
Thurstone’s Paired Comparisons,
Full Ranking, and a Random
Placebo Distribution

Note: Intercoder reliability presented using density estimation.

the percent agreement and plotting its histogram (white
with a black outline, marked “Random”). (We discuss
the “Ranking” figure in Section “Measuring.”)

As expected when comparing coin flips, the ran-
dom placebo percent agreement is centered at 50%. In
contrast, the paired comparison percent agreement his-
togram is shifted farther to the right than the placebo
histogram, but the mean only moves to 54%, leaving the
two distributions with considerable overlap. Put differ-
ently, the best we could do with the method of paired
comparisons, even before the step of turning paired de-
cisions into rank orders, is results with unacceptably low
levels of intercoder reliability.

We now rule out the possibility that these results
are due to different people having incompatible notions
of compactness by studying intracoder reliability. To do

FIGURE 8 Intracoder Reliability of
Thurstone’s Paired Comparisons,
Full Ranking, and a Random
Placebo Distribution

Note: Intracoder reliability presented using density estimation.

this, we waited 2 weeks, randomly shuffled the order of
the 20 paired comparison questions, and administered
the survey to the same people. (Of the 40 people, only
one mentioned, on postsurvey cognitive debriefing, that
“some” of the districts may have been the same as the first
week.)

These results appear in Figure 8 (also as a blue his-
togram marked “Paired”) and are more distinct from
the random placebo test (in white with a black out-
line marked “Random”) than with intercoder reliabil-
ity in Figure 7, as would be expected. The mean of the
paired comparison histogram is now at 65% agreement,
although the overlap with the random distribution is still
large. (We discuss the third histogram in the section ti-
tled “How Ranking Outranks Paired Comparisons.”)

We thus conclude that these standard, best practice
approaches are inadequate, at least for our application,
and turn to an alternative. See section “Measuring.”
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