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1 Introduction

Since Herron and Shotts (2003a; hereinafter HS), Adolph and King (2003; hereinafter AK),
and Herron and Shotts (2003b; hereinafter HS2), the four of us have iterated many more
times, learned a great deal, and arrived at a consensus on this issue. This paper describes our
joint recommendations for how to run second-stage ecological regressions, and provides
detailed analyses to back up our claims.

Our research applies to the problem of estimating how the unobserved parameters βb
i and

βw
i (e.g., the fraction of blacks and whites, respectively, who vote in precinct i) vary with

observed exogenous variables Zi (e.g., campaign spending in precinct i), using two other
observed variables, Xi (e.g., the proportion of people in the precinct who are black) and
Ti (e.g., the proportion of people who vote), and using King’s (1997) ecological inference
model (popularly known as EI).

We offer three main conclusions. First, the best approach is to use the extended EI
model for estimation (i.e., to include Zi in the model from the start and estimate all pa-
rameters jointly). Second, in most applications, the best way to use the extended model
is not to look at the coefficients on Zi in EI’s systematic component, as some have done,
but instead to condition on the precinct-level data in a way we describe later. Third, point
estimates from weighted least squares (WLS) second-stage regressions are useful because
they have substantively negligible bias in a diverse variety of situations (knowable in ad-
vance from the observed data), even if Zi is omitted from the first-stage ecological in-
ference and even when a second-stage analysis based on least squares (LS) would be
biased.
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Following AK and HS2, this paper does not study the consequences of a vector-valued
Zi or of statistical properties other than unbiasedness. We suspect our results may be more
general, but this must be studied.1

2 Running and Interpreting the Extended Model

Statistical inference can be based on a population or a superpopulation approach. The
different approaches identify different quantities to estimate and have different implications
for robustness to modeling assumptions. Because, in linear regression models, both lead
to the same least squares estimator, the distinction is not well known among political
scientists. However, for many other models, including the basic and extended EI models,
the differences can be very important (see AK, Section 6).

In the population approach to ecological inference, the parameters of interest are those
that characterize the districts as they exist for the elections under study, such as βb

i —the
fraction of blacks who voted in the election being analyzed. In judicial litigation concerning
redistricting and in many related political science studies, the parameters of interest are
those for the elections under study; therefore, the population approach is appropriate. In
other situations, the unobserved parameter βb

i is treated as merely a realization from some
higher level “superpopulation” parameters. For more general theories of politics, we might
hope to specify and estimate the parameters of a superpopulation model that give rise to
the population parameters as unobserved realizations, and which, in turn, give rise to the
observed data. The higher level of generalization involved in superpopulation models can
thus impose a cost to the analyst in terms of less robustness to model misspecification.
Because superpopulation parameters are in a sense farther from the data than population
parameters, increased model dependence (i.e., less robustness to model misspecification)
is a natural consequence. As a result, of course, “validating [superpopulation] models can
be difficult in practice” (Rao 1999, p. 16). Because almost the entire difficulty with making
ecological inferences is model specification, we are not optimistic about inferences on
superpopulation parameters in ecological inference, at least not with current technology
or without additional assumptions. But even if one prefers the superpopulation approach,
summarizing the results of the population approach, as we describe later, may still be the
best alternative.

In EI, the superpopulation approach would be to use the maximum likelihood (or maxi-
mum posterior) estimate of the coefficient on Zi in the systematic component for the mean
in the extended model (i.e., αb and αw in King 1997, Eq. 9.2). Our preferred population ap-
proach conditions on the data and so estimates a set of conditional densities, P(βb

i | Ti , Zi )
for i = 1, . . . n, which is the full summary of information about how βb

i varies with Zi .
Conditioning on the data is especially helpful in ecological inference because it changes an
unbounded estimation problem (as the maximum likelihood or posterior for α is an uncon-
strained maximization problem) into one that is strictly bounded within known bounds set
by the data.

As an illustration of how conditioning on the data (and thus the information in the
bounds) adds robustness to estimates derived from the extended EI model, we draw from

1We have also not studied the accuracy of standard errors, but the usual model-based standard errors, even when
they are accurate, would still be a relatively minor portion of the uncertainty in most applications of ecological
inference, most of which is the result of specification uncertainty.
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Fig. 1 The population approach: Conditional distributions of P(βb
i | Ti , Zi ) plotted vertically by

Zi horizontally. Simulations from the conditional densities are plotted in the left graph. Because the
most informative densities (i.e., with the narrowest bounds and smallest variance) are hardest to see
there (see the two labeled examples), we also represent in the right graph each density as a circle with
area inversely proportional to the variance.

the extended model setting the true αb = 1, with informative bounds.2 Then we run the
extended EI model, but with a highly inaccurate prior on αb of N (0, 0.01). Because we
are interested in α for the purpose of this illustration, this is a particularly extreme form of
model misspecification; effectively, we have stacked the deck against ourselves. The result
is a superpopulation parameter estimate of α̂b = 0.01 (with a standard error of 0.01) that
is far from the true value of αb = 1, and thus dramatically illustrates the nonrobustness of
the superpopulation approach, at least to this type of misspecification.

Fortunately, and in spite of the inappropriateness of the model, conditioning on the data
under the population approach yields a much better estimate, which we display as a graph of
simulations from the posterior estimates of βb

i plotted against Zi (Fig. 1). As a summary of
this plot, we have drawn a WLS regression line through these posterior distributions, which
in this example has a slope of 1.01 (with a standard error of 0.003), which is obviously very
close to the true value of 1.00 (weights for WLS were computed from the variance of each
conditional posterior). In other cases, in which the plot shows evidence of nonlinearity,
some other summary (or simply showing the plot itself) is a better approach. For some
purposes, we wish to pay attention to the estimation dependence across simulations in
different densities; this can be done by running WLS for each simulation separately, which
in this example increases the standard error but does not change the point estimate. (Note
that however one summarizes this set of conditional distributions, this procedure is not
EI-R because Zi is in the first-stage run; therefore, none of the issues with that approach,
discussed in subsequent sections, apply here.)

Almost all empirical analyses in political science, no matter what statistical model they
use (i.e., not only ecological inference), are based implicitly on a population approach
to making inferences. For example, researchers ask whether the 1996 and 2000 elections

2We set B̆
b
i = Zi + 0.44, B̆

w

i = 0.1Zi + 0.68, σ̆b = 0.005, σ̆w = 0.005, ρ̆ = 0, Z ∼ N (0, 0.0025) and
X ∼ Uniform(0.6, 1). As in all data sets generated for this paper, we drew n = 500 precincts consisting of 1000
individuals each.
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were racially polarized. Indeed, even if they are interested in whether there is racially
polarized voting in all elections (or all elections of a certain type), summaries of the
set of estimates from the population approach applied to each election in one’s data set
can be a better way to make superpopulation inferences. If our results given in this sec-
tion are general, the population approach also has the advantage of being substantially
more robust to misspecification, and we recommend it when interpreting the extended EI
model.

For other examples of the distinction between population and superpopulation ap-
proaches, see Korn and Graubard’s (1998) work on variance estimation under complex
sampling. For applications in political science, see Gelman and King (1994) and King et al.
(2002).

3 Understanding When Second-Stage Regressions Have Substantively
Negligible Bias

In this section, we show the precise conditions under which weighted least squares provides
estimates with negligible bias in second-stage regressions (we call this procedure EI-W, in
contrast to EI-R, which was the focus of HS and HS2).3 The basic intuition is that because
Zi is omitted from the first stage EI run, the only information in the second stage with which
to estimate the effect of Zi comes from the bounds. Because these bounds are known, we
have a chance to ascertain when they are sufficiently informative to provide approximately
unbiased estimates.

We begin by showing that each of the components of HS2’s bias decomposition (the
true δ parameters) are almost linear functions of the observable mean bound width and the
variance of the bound width across precincts. We do this by simulating a wide variety of data
sets, computing the δ parameters in each, and regressing these on the mean and variance
of the bound width. Table 1 presents the average R2 values from these regressions, all of
which are very high.4

Figure 2 summarizes the results in the rest of the section. We begin by using precinct-
level turnout and census data from 385 elections from the last five election cycles in five
diverse states (Arizona, Georgia, Maryland, Ohio, and Texas).5 For each election, we plot
the average width of the bounds across precincts (horizontally) by the standard deviation
of the bound width (vertically) twice, once for the bounds on βb

i (as triangles) and once
for βw

i (as circles). The means and standard deviations of bound widths in these data sets
display a clear parabolic relationship, resembling the relationship between the mean and
standard deviation of a binomial density (and for the same reason: when the mean bound
width approaches 0 or 1, the variance must be smaller). We summarize the results via
loess-generated 95% confidence intervals.

3We use the standard errors of βb
i to compute weights for the regression of βb

i on Zi . See Lewis (2000) for an
alternative approach that is also worth considering.

4Each row in Table 1 refers to a family of 17 scenarios across which data sets are generated from the same
parameters but with varied bounds created by varying the distribution of X . For all scenarios in all 12 families,
B̆

b
i = Zi + 0.44, B̆

w

i = Zi +0.68, and ρ̆ = 0. For each row, σ̆b , σ̆w , and Zi ∼ (µZ , σ 2
Z ), are set as indicated. For

each scenario, we averaged results across 100 simulated data sets. For each scenario in each row, we regressed
the error in EI estimates (β̂b

i − βb
i ) on a constant term and the true βb

i and βw
i , as in HS2, yielding coefficients δ1

and δ2. Then, for each family of scenarios, we regressed the different values of δ1 and δ2 separately on the mean
black and white bound width and the variance of the black and white bound widths. The R2 for each of these
regressions, denoted R2

δ1
and R2

δ2
, is reported in the table.

5These elections include a variety of State House, State Senate, U.S. House, U.S. Senate, and statewide races.
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Table 1 For a given second-stage covariate and first-stage
variance, second-stage error is a nearly deterministic

function of the bounds

σ̆b = σ̆w σZ µZ R2
δ1

R2
δ2

0.05 0.1 0 .98 .98
0.05 0.1 0.5 .93 .89
0.05 0.5 0 .99 .99
0.05 0.5 0.5 .94 .93
0.1 0.1 0 .99 .99
0.1 0.1 0.5 .99 .99
0.1 0.5 0 .99 .99
0.1 0.5 0.5 .99 .99
0.3 0.1 0 .99 .99
0.3 0.1 0.5 .99 .99
0.3 0.5 0 .99 .96
0.3 0.5 0.5 .99 .95

The circles and triangles in Fig. 2 merely summarize data. To this, we have also added
a shaded region in which our analyses (to be discussed below) indicate that EI-W is sub-
stantially biased and so should not be used. Outside roughly this shaded region, we find
that EI-W has negligible bias, even when EI-R, a second-stage least-squares regression,
is strongly biased. Intuitively, small mean bound widths reduce bias by providing more

Fig. 2 Mean and standard deviation of the bounds of βb
i (triangles) and βw

i (circles) for state elections
in Arizona, Georgia, Maryland, Ohio, and Texas. The line was fit with loess (span = 0.5). When data
fall within the shaded region, second-stage weighted least squares analyses should not be performed.
Dependence between the the two bounds in each election as a result of the tomography line is
not shown. The term approximately unbiased in this figure is defined with precision by Figs. 3
and 4.
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information about the precinct-level parameters, whereas large standard deviations of the
bound widths induce a larger correlation between the weights and the βi ’s, providing more
leverage for the weighted least squares procedure (in EI-W) to reduce the bias (see also AK).

We now present two analyses and corresponding figures to support the shaded region in
Fig. 2. Figure 3 gives a set of difficult cases, with differing means and standard deviations

Fig. 3 Bias in EI-R and EI-W second-stage analyses as a function of the mean and standard deviation
of the bound width (drawn with loess, span = 0.95). Note how EI-W eliminates much of the bias as
compared to EI-R.



P1: LOP

Oj005-06 December 24, 2002 10:41

92 Christopher Adolph et al.

Fig. 4 Bias in EI-R and EI-W second-stage analyses as a function of αb and αw . EI-W eliminates
most attenuation and augmentation bias in the cases considered.

of the bound width, in which EI-R should fail badly. Case A (the upper panel in the figure)
is an example of attenuation bias as indicated in HS and HS2 under EI-R. Data for Case
B were generated to fit the ideas in HS2 corresponding to augmentation bias.6 For each
scenario, we consider a wide range of 167 sets of bounds that evenly cover the space of
possible bound widths as summarized by their means and standard deviations. For each of
these subscenarios, we generate 100 data sets from the extended-EI model, and run EI-R
and EI-W. We use the average error and bounds properties for each scenario to produce
contour plots of the absolute error in second-stage estimates. The contour lines shown are
loess regressions on these simulation results. For clarity and to focus on those cases likely to
occur in practical research, we show only those parts of the contour lines for which the mean
and standard deviation of the bounds fall inside the 95% confidence region from Fig. 2.

The results in Fig. 3 support HS2’s claim regarding bias in EI-R (displayed via dashed
contour lines). The figure also supports AK’s claim (elaborating King 1997, pp. 289–
290) that EI-W (solid contours) is substantially less biased than EI-R for both cases, and
has particularly small bias for values of mean and standard deviation of bound widths
corresponding to the unshaded region in Fig. 2.

Figure 3 examines simulations for different types of bounds and two fixed values for αb

and αw. We reverse this setup in Fig. 4 and keep the bounds fixed, and instead we choose a
wide range of values for αb and αw.7 In the left panel, the bounds are moderately wide, as in
AK’s Fig. 2 (X ∼ Uniform(0.2, 1)). In the right panel, the bounds are “mixed,” as in AK’s
Fig. 3 (X ∼ 1

2 Uniform(0, 0.2) + 1
2 Uniform(0.8, 1)). The results in both plots are given for

EI-W (as circles) and EI-R (as plus signs).

6In each case, we set B̆
b
i = ᾰb Zi + 0.44, B̆

w

i = ᾰw Zi + 0.68, σ̆b = 0.05, σ̆w = 0.05, and ρ̆ = 0, and draw
Z ∼ N (0, 0.01), as in AK Figs. 2 and 3. However, unlike AK, we consider cases in which ᾰb �= ᾰw . In Case A,
we set ᾰb = 1, ᾰw = 0.1, which should produce severe attenuation bias in second-stage LS estimates of the
relationship between β̂b

i and Zi . In Case B, ᾰb = 0.1, ᾰw = 1, which should produce severe augmentation bias.
7We begin with the scenarios in AK’s Figs. 2 and 3. That is, we set B̆

b
i = ᾰb Zi + 0.44, B̆

w

i = ᾰw Zi + 0.68,
σ̆b = 0.05, σ̆w = 0.05, and ρ̆ = 0 and draw Z ∼ N (0, 0.01). However, unlike AK, we allow the values of ᾰb and
ᾰw to range widely, considering every combination of α’s which can be made from the following list: −1, −0.8,
−0.5, −0.3, −0.2, −0.1, −0.05, 0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1, for a total of 225 different scenarios. For each
scenario, we generated 100 data sets from the extended-EI model, ran EI-R and EI-W, and averaged the results
for each.
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Fig. 5 Diagnostics for extended EI or second-stage ecological regressions.

The results for EI-R match the theory derived in HS2 well, displaying attenuation and
augmentation biases just where they are expected. What Fig. 4 adds are EI-W results for
the same data sets. Unlike the EI-R results, the EI-W results all appear on or near the 45◦

line, indicating trivially small levels of bias.

4 Graphically Summarizing Bound Information

Finally, we offer a diagnostic for use in either second-stage analyses or EI extended
model runs. We consider two situations and portray them in Fig. 5. For the top row of
plots, we generated data so the bounds would be very informative.8 The top left graph
in Fig. 5 plots Zi horizontally and a vertical line representing the 100% bounds on βb

i
vertically.

In the case of narrow bounds, just plotting the bounds ofβb
i vertically against Zi highlights

all information in the data, as in the top-left figure. Going a step further, we compute
100% confidence intervals around the second-stage regression line, using only the first-
stage bounds and the standard assumptions of linear regression, but none of the EI model’s
assumptions. No logically possible set of βb

i ’s could produce a regression line that lies

8That is, X ∼ Uniform(0.9, 1), B̆
b
i = Zi + 0.44, B̆

w

i = 0.68, σ̆b = 0.05, σ̆w = 0.05, ρ̆ = 0, Z ∼ N (0, 0.01),
and notably, the relationship between βb

i and Zi is locally linear.
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outside these 100% confidence intervals.9 The top-right figure shows another way to present
the same information: plot each β̂b

i scaled in inverse proportion to the width of the bounds,
so that circles representing precincts with narrow bounds have larger area than wide bounds
cases. This fixes the same graphical illusion in the same way as in Fig. 1.

The bottom row of plots displays data generated with some narrow and some wide
bounds (e.g., X ∼ 1

4 Uniform(0, 0.05)+ 3
4 Uniform(0.8, 1)). This plot is particularly difficult

to read because the uninformative wide bounds obscure the informative narrow bounds
and the second-stage 100% confidence intervals are likely to be too wide to serve any pur-
pose for these observations (without more model-dependent inferences). However, the sec-
ond style of scatterplot, with points inversely proportional to bound width, does serve as
a useful diagnostic in such cases (e.g., to assess the possibility of nonlinearity) before
proceeding to EI-W or extended EI. For example, a different scatterplot might show the
tightly bound cases to be nonlinear in Z , which would require modifying extended EI
or EI-W.

5 Concluding Remarks

We recommend using the extended EI model when possible. When running the extended EI
model is infeasible because of insufficient time and computational power, or is otherwise
inconvenient, we also provide a method of ascertaining when point estimates from WLS
second-stage regressions have negligible bias or none at all.
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