Appendixes

March 6, 2008 Time: 03:03pm appendixa.tex

Appendix A

Notation

A.1 Principles

Variables and Parameters We use Greek symbols for *unknown quantities*, such as regression coefficients (β), expected values (μ), disturbances (ϵ), and variances (σ^2), and Roman symbols for *observed quantities*, such as *y* and *m* for the dependent variable, while the symbols **X** and **Z** refer to covariates.

Parameters that are *unknown*, but are treated as known rather than estimated, appear in the following font: abcdef. Examples of these user-chosen parameters include the number of derivatives in a smoothing prior (n) and some hyperprior parameters (e.g., f, g).

Indices The indices i, j = 1, ..., N refer to generic cross sections. When the cross sections are countries, they may be labeled by the index c = 1, ..., C; when they are age groups, or specific ages, they may be labeled by the index a = 1, ..., A. Each cross section also varies over time, which is indexed as t = 1, ..., T. Cross-sectional timeseries variables have the cross-sectional index (or indices) first and the time index last. For example, m_{it} denotes the value of the variable m in cross section i at time t, and similarly m_{cat} is the value of the variable m in country c and age group a at time t.

Cross section *i* contains k_i covariates. Therefore \mathbf{Z}_{it} is a $k_i \times 1$ vector of covariates and $\boldsymbol{\beta}_i$ is a $k_i \times 1$ vector of coefficients. Every vector or matrix with one or more dimensions equal to k_i , such as \mathbf{Z}_{it} or $\boldsymbol{\beta}_i$, will be in **bold**.

Dropping one index from a quantity with one or more indices implies taking the union over the dropped indices, possibly arranging the result in vector form. For example, if m_{it} is the observed value of the dependent variable in cross section *i* at time *t*, then m_t is an $N \times 1$ column vector whose *j*-th element is m_{jt} . We refer to the vector m_t as the *cross-sectional profile* at time *t*. If the cross sections *i* are age groups, we call the vector m_t the *age profile* at time *t*. Applying the same in reverse, we denote by m_i the $T \times 1$ column vector of the time series corresponding to cross section *i*. Iterating this rule results in denoting by *m* the totality of elements m_{it} , and by β the totality of vectors β_i . Similarly, \mathbf{Z}_i denotes the standard $T \times k_i$ data matrix for cross section *i*, with rows equal to the vector \mathbf{Z}_{it} .

If **X** is a vector, then diag[**X**] is the diagonal matrix with **X** on its diagonal. If W is a matrix, then diag(W) is the column vector whose elements are the diagonal elements of W.

Sums We use the following shorthand for summation whenever it does not create confusion:

$$\sum_{t} \equiv \sum_{t=1}^{T} , \qquad \sum_{i} \equiv \sum_{i=1}^{N} , \qquad \sum_{c} \equiv \sum_{c=1}^{C} , \qquad \sum_{a} \equiv \sum_{a=1}^{A} .$$

We also define the "summer" vector $\mathbf{1} \equiv (1, 1, ..., 1)$ so that for matrix X, X1 denotes the row sums.

216 · APPENDIX A

Norms For a matrix **x**, we define the weighted Euclidean (or Mahalanobis) norm as $\|\mathbf{x}\|_{\Phi}^2 \equiv \mathbf{x}' \Phi \mathbf{x}$, with the standard Euclidean norm as a special case, so that $\|\mathbf{x}\|_I = \|\mathbf{x}\|$, with *I* as the identity matrix.

Functions We denote probability densities by capitalized symbols in calligraphic font. For example, the normal density with mean μ and standard deviation σ is $\mathcal{N}(\mu, \sigma^2)$. We denote generic probability densities by \mathcal{P} , and for ease of notation we distinguish one density from another only by their arguments. Therefore, for example, instead of writing $\mathcal{P}_{\mathbf{x}}(\mathbf{x})$ and $\mathcal{P}_{\mathbf{z}}(\mathbf{z})$ we simply write $\mathcal{P}(\mathbf{x})$ and $\mathcal{P}(\mathbf{z})$.

Sets Sets such as the real line \mathbb{R} and its subsets ($\mathbb{S} \subset \mathbb{R}$) or the natural numbers \mathbb{N} and the integers \mathbb{Z} are denoted with these capital blackboard fonts. We denote the *null space* of a matrix, operator, or functional as \mathfrak{N} .

A.2 Glossary

a	index for age groups
Α	number of age groups
b _{it}	an exogenous weight for an observation at time t in cross
	section <i>i</i>
$\boldsymbol{\beta}_i$	vector of regression coefficients for cross section <i>i</i>
$\boldsymbol{\beta}_{k}^{\text{WLS}} \equiv (\mathbf{X}_{k}^{\prime}\mathbf{X}_{k})^{-1}\mathbf{X}_{k}^{\prime}\mathbf{y}_{k}$	the vector of weighted least-squares estimates
С К К К К К К К К К К К К К К К К К К К	index for country
С	number of countries
d_{it}	the number of deaths in cross-sectional unit <i>i</i> occurring
	during time period t
δ_{ii}	Kronecker's delta function, equal to 1 if $i = j$ and 0 otherwise
$E[\cdot]$	the expected value operator
ϵ	an error term
$F(\mu)$	summary measures
η	an error term
i	index for a generic cross section (with examples being a for
	age, or <i>c</i> for country)
Ι	the identity matrix (generic)
$I_d, I_{d imes d}$	the $d \times d$ identity matrix
j	index for a generic cross section
k_i	the number of covariates in cross section i , and the dimension
	of all corresponding boldface quantities, such as β_i and \mathbf{Z}_{it}
L	generic diagonal matrix
λ	mean of a Poisson event count (section 3.1.1)
$\ln(\cdot)$	the natural logarithm
M_{it}	mortality rate for cross-sectional unit <i>i</i> at time <i>t</i> : $M_{it} \equiv d_{it}/p_{it}$
m_{it}	a generic symbol for the observed value of the dependent
	variable in cross section i at time t . When referring to an
	application, we use $m_{it} = \ln(M_{it})$, the natural log of the
	mortality rate.
\bar{m}_a	mean log-mortality age profile, averaging over time,
	$\sum_{t=1}^{T} m_{at}/T$

NOTATION \cdot 217

ñ	matrix of mean-centered logged mortality rates, with elements
	$\bar{m}_{at} \equiv m_{at} - \frac{1}{T} \sum_{t} m_{at}$
μ_{it}	expected value of the dependent variable in cross section i at time t
Ν	number of cross-sectional units
\mathbb{N}	the set of natural numbers
n	generic order of the derivative of the smoothness functional
N	the null space of an operator or a functional
\mathfrak{N}_{\perp}	the orthogonal complement of the null space $\mathfrak N$
ν	an error term
$O_{q \times d}$	a $q \times d$ matrix of zeros
<i>p</i> _{it}	population (number of people) in cross-sectional unit i at the start of time period t
\mathcal{P}	probability densities. The same \mathcal{P} may refer to two different densities, with the meaning clarified from their arguments.
0	generic correlation matrix of the data
R	the set of real numbers
S _{ij}	the weight describing how similar cross-sectional unit i is to cross-sectional unit i . This
	"similarity measure" s_{ij} is large when the two units are similar, except that, for convenience but
	without loss of generality, we set $s_{ii} = 0$.
$s_i^+ \equiv \sum_i s_{ii}$	If s_{ii} is zero or one for all <i>i</i> and <i>j</i> , s_i^+ is known as the <i>degree</i> of <i>i</i> and
<i>i</i> <u> </u>	is interpreted as the number of <i>i</i> 's neighbors (or the number of edges
	connected to vertex <i>i</i>).
Σ	an unknown covariance matrix
t	a generic time period (usually a year)
Т	total number of time periods (length of time series, when they all have the same length)
Ti	number of observations for cross section <i>i</i> (if $T_i = T_i$, $\forall i, i = 1,,$
ı	N then we set $T_i = T$)
θ	drift parameter in the Lee-Carter model. We reuse this symbol for the
-	smoothing parameter in our approach.
Uit	a missingness indicator equal to 0 if the dependent variable is missing
	in cross section <i>i</i> at time <i>t</i> , and 1 if observed
V	generic orthogonal matrix
V[·]	the variance
W	a symmetric matrix constructed from the similarity matrix s. See
	appendix B 2.6 (page 237)
$\mathbf{X}_{ii} = U_{iii} \sqrt{h_{ii}} \mathbf{Z}_{iii}$	the explanatory variable vector $(\mathbf{X}_{i,i})$ weighted by the exogenous
	weights b_{i} when observed $(U_{i} = 1)$ and 0 when missing
٤	an error ferm
י ר	the projection of the vector r on some subspace
л ₀	the projection of the vector x on the orthogonal complement of some
~ <u>+</u>	subspace

218 · APPENDIX A

$y_{it} \equiv U_{it} \sqrt{p_{it}} m_{it}$	log-mortality rate (m_{it}) weighted by population (p_{it}) , when observed
·	$(U_{it} = 1)$ and 0 when missing
\mathbf{Z}_{it}	a k_i -dimensional vector of covariates, for cross-sectional unit i at
	time t. The vector of covariates usually includes the constant.
\mathbf{Z}_i	the $k_i \times T_i$ data matrix for cross section <i>i</i> , whose rows are given by the
	vectors \mathbf{Z}_{it}
\mathbb{Z}	the set of integers