Appendixes

Appendix A mm

Notation

A. 1 Principles

Variables and Parameters We use Greek symbols for unknown quantities, such as regression coefficients $(\boldsymbol{\beta})$, expected values (μ), disturbances (ϵ), and variances (σ^{2}), and Roman symbols for observed quantities, such as y and m for the dependent variable, while the symbols \mathbf{X} and \mathbf{Z} refer to covariates.

Parameters that are unknown, but are treated as known rather than estimated, appear in the following font: $a b c d e f$. Examples of these user-chosen parameters include the number of derivatives in a smoothing prior (\mathfrak{n}) and some hyperprior parameters (e.g., $\mathfrak{F}, \mathfrak{g}$).

Indices The indices $i, j=1, \ldots, N$ refer to generic cross sections. When the cross sections are countries, they may be labeled by the index $c=1, \ldots, C$; when they are age groups, or specific ages, they may be labeled by the index $a=1, \ldots, A$. Each cross section also varies over time, which is indexed as $t=1, \ldots, T$. Cross-sectional timeseries variables have the cross-sectional index (or indices) first and the time index last. For example, $m_{i t}$ denotes the value of the variable m in cross section i at time t, and similarly $m_{c a t}$ is the value of the variable m in country c and age group a at time t.

Cross section i contains k_{i} covariates. Therefore $\mathbf{Z}_{i t}$ is a $k_{i} \times 1$ vector of covariates and $\boldsymbol{\beta}_{i}$ is a $k_{i} \times 1$ vector of coefficients. Every vector or matrix with one or more dimensions equal to k_{i}, such as $\mathbf{Z}_{i t}$ or $\boldsymbol{\beta}_{i}$, will be in bold.

Dropping one index from a quantity with one or more indices implies taking the union over the dropped indices, possibly arranging the result in vector form. For example, if $m_{i t}$ is the observed value of the dependent variable in cross section i at time t, then m_{t} is an $N \times 1$ column vector whose j-th element is $m_{j t}$. We refer to the vector m_{t} as the cross-sectional profile at time t. If the cross sections i are age groups, we call the vector m_{t} the age profile at time t. Applying the same in reverse, we denote by m_{i} the $T \times 1$ column vector of the time series corresponding to cross section i. Iterating this rule results in denoting by m the totality of elements $m_{i t}$, and by $\boldsymbol{\beta}$ the totality of vectors $\boldsymbol{\beta}_{i}$. Similarly, \mathbf{Z}_{i} denotes the standard $T \times k_{i}$ data matrix for cross section i, with rows equal to the vector $\mathbf{Z}_{i t}$.

If \mathbf{X} is a vector, then $\operatorname{diag}[\mathbf{X}]$ is the diagonal matrix with \mathbf{X} on its diagonal. If W is a matrix, then $\operatorname{diag}(W)$ is the column vector whose elements are the diagonal elements of W.

Sums We use the following shorthand for summation whenever it does not create confusion:

$$
\sum_{t} \equiv \sum_{t=1}^{T}, \quad \sum_{i} \equiv \sum_{i=1}^{N}, \quad \sum_{c} \equiv \sum_{c=1}^{C}, \quad \sum_{a} \equiv \sum_{a=1}^{A}
$$

We also define the "summer" vector $\mathbf{1} \equiv(1,1, \ldots, 1)$ so that for matrix $X, X \mathbf{1}$ denotes the row sums.

216 • APPENDIX A

Norms For a matrix \mathbf{x}, we define the weighted Euclidean (or Mahalanobis) norm as $\|\mathbf{x}\|_{\Phi}^{2} \equiv \mathbf{x}^{\prime} \Phi \mathbf{x}$, with the standard Euclidean norm as a special case, so that $\|\mathbf{x}\|_{I}=\|\mathbf{x}\|$, with I as the identity matrix.

Functions We denote probability densities by capitalized symbols in calligraphic font. For example, the normal density with mean μ and standard deviation σ is $\mathcal{N}\left(\mu, \sigma^{2}\right)$. We denote generic probability densities by \mathcal{P}, and for ease of notation we distinguish one density from another only by their arguments. Therefore, for example, instead of writing $\mathcal{P}_{\mathbf{x}}(\mathbf{x})$ and $\mathcal{P}_{\mathbf{z}}(\mathbf{z})$ we simply write $\mathcal{P}(\mathbf{x})$ and $\mathcal{P}(\mathbf{z})$.

Sets Sets such as the real line \mathbb{R} and its subsets $(\mathbb{S} \subset \mathbb{R})$ or the natural numbers \mathbb{N} and the integers \mathbb{Z} are denoted with these capital blackboard fonts. We denote the null space of a matrix, operator, or functional as \mathfrak{N}.

A. 2 Glossary

a	index for age groups
A	number of age groups
$b_{i t}$	an exogenous weight for an observation at time t in cross section i
$\boldsymbol{\beta}_{i}$	vector of regression coefficients for cross section i
$\boldsymbol{\beta}_{k}^{\mathrm{WLS}} \equiv\left(\mathbf{X}_{k}^{\prime} \mathbf{X}_{k}\right)^{-1} \mathbf{X}_{k}^{\prime} y_{k}$	the vector of weighted least-squares estimates
c	index for country
C	number of countries
$d_{i t}$	the number of deaths in cross-sectional unit i occurring during time period t
$\delta_{i j}$	Kronecker's delta function, equal to 1 if $i=j$ and 0 otherwise
E[•]	the expected value operator
ϵ	an error term
$F(\mu)$	summary measures
η	an error term
i	index for a generic cross section (with examples being a for age, or c for country)
I	the identity matrix (generic)
$I_{d}, I_{d \times d}$	the $d \times d$ identity matrix
j	index for a generic cross section
k_{i}	the number of covariates in cross section i, and the dimension of all corresponding boldface quantities, such as $\boldsymbol{\beta}_{i}$ and $\mathbf{Z}_{i t}$
L	generic diagonal matrix
λ	mean of a Poisson event count (section 3.1.1)
$\ln (\cdot)$	the natural logarithm
$M_{i t}$	mortality rate for cross-sectional unit i at time $t: M_{i t} \equiv d_{i t} / p_{i t}$
$m_{i t}$	a generic symbol for the observed value of the dependent variable in cross section i at time t. When referring to an application, we use $m_{i t}=\ln \left(M_{i t}\right)$, the natural log of the mortality rate.
\bar{m}_{a}	mean log-mortality age profile, averaging over time, $\sum_{t=1}^{T} m_{a t} / T$

218 • APPENDIX A
$y_{i t} \equiv U_{i t} \sqrt{p_{i t}} m_{i t} \quad$ log-mortality rate $\left(m_{i t}\right)$ weighted by population ($p_{i t}$), when observed ($U_{i t}=1$) and 0 when missing
$\mathbf{Z}_{i t} \quad$ a k_{i}-dimensional vector of covariates, for cross-sectional unit i at time t. The vector of covariates usually includes the constant.
$\mathbf{Z}_{i} \quad$ the $k_{i} \times T_{i}$ data matrix for cross section i, whose rows are given by the vectors $\mathbf{Z}_{i t}$
\mathbb{Z}

