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Appendix B Y

Mathematical Refresher

This appendix presents mathematical concepts we use in developing our main arguments
in the text of this book. This appendix can be read in the order in which it appears, or as
a reference. Items are ordered so that simpler concepts appear earlier and, except where
noted, each concept introduced does not depend on anything appearing after it.

B.1 Real Analysis

A vector space (section B.1.1) is a set over which one can define a meaningful notion of
a “sum” between two elements, and “multiplication of an element by a scalar.” For our
applications, we impose additional structure on a vector space, and thus use normed spaces
(section B.1.3), which require also the notion of “length,” and scalar product and Euclidean
spaces (section B.1.4), which add the notion of “projection.” We introduce the notion of a
vector space here only for its role as a basic building block for these other spaces, and we
do not use it by itself. We will see that the structure associated with a scalar product or
Euclidean space is “more restrictive” than the one associated with a normed space, in the
sense that with each Euclidean space we can associate in a natural way a normed space, but
the opposite is in general not true.

Another useful construction is the metric space (section B.1.2), which is a set over
which we can define a notion of “distance” between two elements. One does not need the
notion of sum between two elements in order to define the distance, and so a metric space
is not necessarily a vector space. However, many vector spaces can be endowed with the
structure of a metric space. In particular, with every scalar product, Euclidean, and normed
spaces, we can always associate a metric space in a natural way.

B.1.1 Vector Space

Let X be a set where each element is defined as a vector, and where the following two
operations are defined:

1. Addition: To every pair of vectors x, y ∈ X corresponds an element
x + y ∈ X such that the commutative and associative properties hold

x + y = y + x and x + (y + z) = (x + y) + z , ∀z ∈ X.

In addition, X contains a unique vector, denoted by 0 (called the zero
vector), such that x + 0 = x ,∀x ∈ X . Moreover, to each x ∈ X
corresponds a unique vector −x such that x + (−x) = 0.
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2. Multiplication by a Scalar: To every a ∈ R and x ∈ X corresponds a
vector ax such that

1x = x and a(bx) = (ab)x , ∀b ∈ R.

In addition, the following distributive properties hold:

a(x + y) = ax + ay and (a + b)x = ax + bx , ∀a, b ∈ R ∀x, y ∈ X.

In this book if we refer to a set X as “the space X ,” we always mean “the vector
space X .”

Example 1 The set Rn , n = 1, 2, . . . is a vector space with respect to the familiar
operations of addition between two vectors and multiplication by a scalar. �

Example 2 The set C[a, b] of continuous functions over the interval [a, b] is a vector
space. Any continuous function on [a, b] is a vector belonging to this vector space. The
operations of addition and scalar multiplication correspond to the usual operations of
addition between two functions and multiplication of a function by a scalar. �

Example 3 The two-dimensional unit sphere S2 ≡ {(x1, x2, x3) ∈ R3 | x2
1 + x2

2 + x2
3 = 1}

is not a vector space with respect to the usual operations of addition between vectors and
multiplication of a vector by a scalar. For example, the sum of two vectors on the sphere is
a vector which lies off of it. �

B.1.2 Metric Space

A metric space is a pair (X, d), where X is a set and d : X × X → [0,+∞), is a function,
called distance or metric with the following properties:

1. Positiveness: d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.
2. Symmetry: d(x, y) = d(y, x).
3. Triangle Inequality: d(x, y) + d(y, z) ≥ d(x, z).

A semidistance is a distance except that d(x, y) = 0 does not imply that x = y.

Example 1 (Rn, d), where d(x, y) = √
(x − y)′(x − y), is a metric space. This distance is

known as the Euclidean distance. �

Example 2 (R, d), where d(x, y) = |x−y|
1+|x−y| , is a metric space. �

Example 3 (C[0, 1], d), where d( f, g) = maxx∈[0,1] | f (x) − g(x)|, f, g ∈ C[0, 1], is a
metric space. �

The set X of a metric space (X, d) does not have to be a vector space, as we see in the
following:

Example 4 (Sn, d), where Sn is the n-dimensional sphere and d(x, y) is the geodesic
distance between two points (i.e., the distance measured along the shortest path), is a metric
space. This metric space is not a vector space because there is no notion of a zero vector or
addition on a sphere. �
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B.1.3 Normed Space

A vector space X is called a normed space if it is equipped with a norm ‖ · ‖. The norm is
a function ‖ · ‖ : X → [0,+∞) with the following properties:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.
2. ‖ax‖ = |a|‖x‖ for all a ∈ R.
3. ‖x + y‖ ≤ ‖x‖+‖y‖ for all x, y ∈ X (triangle inequality).

If condition (1) is replaced with the weaker condition that ‖x‖ ≥ 0, then ‖x‖ is called a
seminorm. The only difference between a seminorm and a norm is that for a semi-norm it
is possible that ‖x‖ = 0 without x being the zero vector.

A normed space is often denoted by the pair (X, ‖ · ‖), because the same vector space
X can be endowed with different norms. Every normed space (X, ‖ · ‖) can be made into
a metric space (X, d) by defining the distance d(x, y) ≡ ‖x − y‖. We often refer to this
distance as the distance induced by the norm ‖ · ‖.

Example 1 Denote a normed space as (Rn, ‖ · ‖A), where A is a strictly positive definite
symmetric matrix (see B.2.3, page 234), and we have defined:

‖x‖A ≡ (
x ′ Ax

) 1
2 ,

which is known as the Mahalanobis norm. When A = I , this norm is called the Euclidean
norm and is simply denoted by ‖x‖. �

Example 2 The pair (Rn, ‖ · ‖p), where ‖x‖p = (
∑n

i=1 x p
i )1/p and p ≥ 1, is a normed

space. This normed space is often denoted by L p(Rn), and the norm ‖ · ‖p is often referred
to as the L p norm. �

Example 3 The set (C[a, b], ‖ · ‖L2 ), with the norm defined as

‖x‖L2 ≡
(∫ b

a
dx f (x)2

) 1
2

,

is a normed space, which is usually denoted by L2[a, b]. �

Example 4 The set (C[a, b], ‖ · ‖W 1
2
), with the seminorm defined as

‖x‖W 1
2
≡

(∫ b

a
dx

(
d f (x)

dx

)2
) 1

2

,

is a seminormed space, which is usually denoted by W 1
2 [a, b]. In fact, ‖x‖W 1

2
is a seminorm,

rather than a norm, because there are functions that are not zero (like f (x) = a, for all
a ∈ R) but whose norm is zero. �
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B.1.4 Scalar Product Space

A vector space (or normed space) is called a scalar product space (or sometimes “inner
product space”) if, with each ordered pair of vectors x and y, we can associate a positive
number (x, y), called the scalar, or inner, product of x and y, such that the following
properties hold:

1. (x, y) = (y, x), for all x, y ∈ X ,
2. (x + y, z) = (x, z) + (y, z), for all x, y, z ∈ X ,
3. (ax, y) = a(x, y) for all x, y ∈ X , a ∈ R.
4. (x, x) ≥ 0 and (x, x) = 0 only if x = 0.

If property (4) is replaced by (x, x) ≥ 0, the result is a semiscalar, or semi-inner, product
space. Because we can define different scalar products on the same vector space X , it is
convenient to think of a scalar product space as a pair (X, (·, ·)). To every scalar product
space (X, (·, ·)), we can associate in a natural way a normed space (X, ‖ · ‖) by defining the
norm ‖x‖ = √

(x, x). We refer to this norm as the norm induced by the scalar product (·, ·).
Therefore, any scalar product space can be a normed space. The opposite of this proposition
is not true in general, but it is true if the norm has the following property:

‖x + y‖2 +‖x − y‖2 = 2(‖x‖2 +‖y‖2) , ∀x, y ∈ X.

When this is the case then it is possible to show that one can define a meaningful scalar
product by setting (x, y) ≡ 1

4 (‖x + y‖2 −‖x − y‖2).

Example 1 Let A be any strictly positive definite n × n symmetric matrix. The set Rn

with the inner product

(x, y) ≡ x ′ Ay, ∀x, y ∈ Rn

is a scalar product space. The norm induced by this scalar product is ‖x‖2 = x ′ Ax (see
“Normed Spaces,” page 221). A Euclidean space is a scalar product space where A = I ,
and the norm induced by the scalar product in the Euclidean space is the Euclidean
norm. �

Example 2 Let C[a, b] be the set of continuous functions on the interval [a, b]. We can
make this set an inner product space by defining the following inner product between any
two functions f, g ∈ C[a, b]:

( f, g) ≡
∫ b

a
dx f (x)g(x). �

Example 3 Let C1[a, b] be the set of continuous and differentiable functions on the
interval [a, b]. We can make this set an inner product space by defining the following inner
product between any two functions f, g ∈ C[a, b]:

( f, g) ≡
∫ b

a
dx f (x)g(x) +

∫ b

a
dx

d f (x)

dx

dg(x)

dx
. �
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Example 4 Let C1[a, b] be the set of continuous and differentiable functions on the
interval [a, b]. We can make this set a semi-inner product space by defining the following
semi-inner product between any two functions f, g ∈ C[a, b]:

( f, g) ≡
∫ b

a
dx

d f (x)

dx

dg(x)

dx
. �

This semi-inner product naturally defines a semi norm ‖ f ‖ ≡ √
( f, f ), which

coincides with the semi norm defined in example 4 under the “Normed Space” heading
(B.1.3, page 221).

Example 5 Let M p,q be the set of p × q matrices. This is a vector space that becomes an
inner product space if endowed with the Frobenius inner product between any two of its
elements A and B, which is defined as follows:

(A, B) ≡ tr(AB ′).

The norm associated to this inner product is called the Frobenius norm. Given a generic
matrix A, its Frobenius norm can be easily computed as follows:

‖A‖2 = tr(AA′) =
p∑

i=1

q∑
j=1

A2
i j .

Therefore, the square of the Frobenius norm of a matrix is the sum of the squares of its
elements. The Frobenius norm can be used to define the distance between two matrices A
and B by setting d(A, B) ≡ ‖A − B‖. If the matrix B is an approximation of the matrix A,
the Frobenius distance between A and B is a natural measure of the approximation error,
because it coincides with the error given by a least-squares criterion. �

B.1.5 Functions, Mappings, and Operators

Let X and Y be two sets. A rule that associates each element x ∈ X with a unique element
y ∈ Y is called a mapping from X into Y and is written as y = f (x). The element y is
called the image of x under the mapping f . The set X is the domain of the map f . The set
of elements y ∈ Y such that y = f (x) for some x ∈ X is called the range of f and is often
denoted by f (X ). By definition, f (X ) ⊂ Y (which, in words, means that the set f (X ) is a
subset of the set Y ).

When f (X ) = Y , we say that f maps X onto Y . If f maps X onto Y and, to every
element y ∈ Y we can associate a unique element x ∈ X such that f (x) = y, then we say
that f is invertible. In this case, we denote the element x ∈ X , which corresponds to y ∈ Y
by x = f −1(y), and the mapping f −1 from Y to X is called the inverse of f .

Other words instead of “mapping” are sometimes used, depending on the properties of
X and/or Y . For example, when Y is the set of real numbers we also refer to f as a real
function on X . Mappings are also called operators, although this word is usually reserved
for cases in which neither X nor Y is the set of real numbers.
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B.1.6 Functional

A functional is a real-valued function defined on a vector space X . When X ⊂ Rd , this
coincides with the definition of a real function on X .

Example 1 Let X be a normed space. The norm ‖x‖ is a functional over X . �

Example 2 Let C[a, b] be the set of continuous functions on the interval [a, b], and let
x0 ∈ [a, b]. Then, for f ∈ C[a, b], we can define the functional F[ f ] ≡ f (x0). �

Example 3 Let C1[a, b] be the set of functions whose first derivative is continuous on
[a, b]. Then, for f ∈ C1[a, b], we can define the functional

F[ f ] ≡
∫ b

a
dx

(
d f (x)

dx

)2

as one simple measure of the smoothness of the function f . �

B.1.7 Span

Let x1, . . . , xl ∈ Rd be l vectors in Rd . The span of these vectors is a linear space defined
by all the possible linear combinations of these vectors:

X ≡
{

x ∈ Rd | x =
l∑

i=1

ci xi , ci ∈ R , i = 1, . . . , l

}
.

We also say that the vectors x1, . . . , xl ∈ Rd span the space X , or that X is spanned by the
vectors x1, . . . , xl ∈ Rd .

B.1.8 Basis and Dimension

A basis for a vector space X is a set of vectors x1, . . . , xd that are linearly independent and
that span X . If the vectors x1, . . . , xd form a basis for X then every vector x ∈ X can be
uniquely written as

x = c1x1 + c2x2 + · · · + cd xd , ci ∈ R, i = 1, . . . , d.

If a vector space X has a basis with d elements, then the number d is known as the
dimension of the vector space and denoted by dim(X ). We then say that the vector space X
is d-dimensional, or has dimension d, and write dim(X ) = d.

A vector space may have many different bases, but they must all have the same
dimension. The number of elements of a basis can be infinite: in this case, we refer to
the vector space as an infinite dimensional vector space.

Example The vectors x1 = (1, 0, 0), x2 = (0, 1, 0), and x3 = (0, 0, 1) form a basis for R3.
The vectors y1 = (2, 1, 5), y2 = (3, 3, 2), and y3 = (0,−1, 6) also form a basis for R3.
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The vectors y1 = (2, 1, 5), y2 = (3, 3, 2), and y3 = (4, 2, 10) do not form a basis for R3,
because they are not linearly independent (y3 = 2y1) and therefore do not span R3. �

B.1.9 Orthonormality

Let x1, . . . , xl ∈ Rd be l vectors in Rd . We say that these vectors are orthonormal if they
are mutually orthogonal and of length 1:

x ′
i x j = δi j , i, j = 1, . . . , p,

where, as always, δi j = 1 if i = j and 0 otherwise. If a set of orthonormal vectors forms a
basis for a vector space X , we refer to them as an orthonormal basis.

Example 1 The vectors x1 = (1, 0, 0) and x2 = (0, 1, 0) are orthonormal. However, they
do not form an orthonormal basis for R3, because they do not span R3 and therefore they
are not a basis. �

Example 2 The vectors x1 = 1√
2
(1, 1) and x2 = 1√

2
(1,−1) are orthonormal and form an

orthonormal basis for R2. �

B.1.10 Subspace

A set Y ⊂ X (which should be read as “Y , which is a subset of the set X”) is a subspace of
the vector space X if Y itself is a vector space, with respect to the same operations.

Example 1 The set R2 is a subspace of R4, because R2 ⊂ R4 and both R2 and R4 are
vector spaces. �

Example 2 Let a ∈ R3 be a fixed column vector, and let V be the set V ≡ {x ∈ R3 | a′

x = 0}. For any two elements x, y ∈ V , we have x + y ∈ V , and, as such, the set V is
a subspace of R3. It is easy to see that V is a two-dimensional plane going through the
origin. �

Example 3 Let a ∈ R3 be a fixed column vector and let V be the set V ≡ {x ∈ R3 | a′

x = 1}. For any two elements x, y ∈ V we have x + y �∈ V . As such, the set V is not a
subspace of R3. It is easy to see that V is a two-dimensional plane that does not go through
the origin. �

Example 4 Let C[a, b] be the set of continuous functions on the interval [a, b].
Polynomials of degree n are continuous functions, and the sum of two polynomials of
degree n is also a polynomial of degree n. The set �n of polynomials of degree n, n > 0, is
a subspace of C[a, b]. �

Example 5 Let M p,q be the set of p × q matrices, and let M p,q
r , with r ≤ min(p, q), be

the set of elements of M p,q with rank r . While M p,q is a vector space (of dimension pq),
the subset M p,q

r of M p,q is not a subspace of M p,q , because the sum of two matrices of
rank r does not necessarily have rank r . �
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B.1.11 Orthogonal Complement

Subspaces ofRd (and of some infinite-dimensional spaces) enjoy some particular properties
of great usefulness in linear algebra. Let Y be an n dimensional subspace of Rd , with
n < d, and let us endow Rd with the Euclidean scalar product. Then we can define the
orthogonal complement of Y in Rd , and denote it by Y⊥, as the set of all vectors in Rd that
are orthogonal to every element y ∈ Y :

Y⊥ = {x ∈ Rd | x ′y = 0 ∀y ∈ Y }.

The set Y⊥ is a subspace of Rd and has dimension r = d − n. An important result is the
following: if X is an inner product space and Y ⊂ X is a subspace of X , then every element
x of X has a unique representation as the sum of an element x◦ of Y and an element x⊥ of
Y⊥. In other words, the following representation is unique:

∀x ∈ X : x = x◦ + x⊥, x◦ ∈ Y, x⊥ ∈ Y⊥.

The preceding statement is often summarized by writing: X = Y ⊕ Y⊥, where the symbol
⊕ is defined in section B.1.12. The vectors x◦ and x⊥ are called the projections of x onto
Y and Y⊥, respectively. Given a vector x ∈ X and a subspace Y , we can always find the
projection of x onto Y using the projection operator defined in section B.1.13 (page 227).

B.1.12 Direct Sum

Let X be a vector space and let Y, Z ⊂ X be subspaces of X . We say that X is the direct
sum of Y and Z and write X = Y ⊕ Z if every x ∈ X can be written in a unique way as

x = y + z, y ∈ Y, z ∈ Z .

If X = Y ⊕ Z , then we say that Y and Z are complementary subspaces. It is important
to note that if Y and Z are complementary subspaces, then Y ∩ Z = 0. The notion of a
direct sum applies to generic vector spaces, and no inner product structure is required.
When X is an inner product space, the subspaces Y and Z are orthogonal complements
(see section B.1.11). �
Example 1 Let X = R3, Y = {x ∈ X | x = (a, b, 0) , a, b ∈ R}, and Z = {x ∈ X | x =
(c, c, c) , c ∈ R}. The subspace Y is the two-dimensional (x1, x2) plane, and the subspace
Z is the diagonal of the positive orthant (i.e., the line at a 45◦ angle with all the coordinate
axis). Then Y and Z are complementary subspaces, and X = Y ⊕ Z . This is equivalent to
saying that that every vector in R3 can be uniquely written as the sum of a vector in the
two-dimensional plane and a vector “slanted” at 45◦ with respect to all the axis. �
Example 2 Let X = R3, Y = {x ∈ X | x = (a, b, 0) , a, b ∈ R}, and Z = {x ∈ X | x =
(0, c, d) , c, d ∈ R}. The subspace Y is the two-dimensional (x1, x2) plane, and the subspace
Z is the two-dimensional (x2 − x3) plane. Although it is true that every x ∈ X can be written
as the sum of an element of Y and an element of Z , this representation is clearly not unique,
and therefore X is not the direct sum of Y and Z , and Y and Z are not complementary
subspaces (in fact, Y ∩ Z = {x ∈ X | x = (0, b, 0) , b ∈ R} �= {0}). �
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B.1.13 Projection Operators

Definition and Properties Let X be a vector space, and let P : X → X be a linear
operator that maps X into itself. The operator P is called a projection operator, or a
projector if P(Px) = Px ,∀x ∈ X (in short: P2 = P). In all the cases in which we use
projectors in this book, the vector space X is Rd , and therefore we can think of a projector
P simply as an d × d matrix such that P2 = P . In addition, where projectors are involved,
we always assume that Rd is endowed with the usual Euclidean inner product. Projectors
are very useful whenever we are given a vector x ∈ X and are interested in picking the
part of X that lies in a subspace Y (i.e., which is “explained” by Y ). In order to see the
connection between projectors and subspaces, remember that if Y is a subspace of an inner
product vector space X , then X = Y ⊕ Y⊥, that is, any vector x ∈ X can be uniquely written
as x = x◦ + x⊥, with x◦ ∈ Y and x⊥ ∈ Y⊥. This means that there is a well-defined map P◦
that associates with the vector x ∈ X , the vector x◦ ∈ Y , so that x◦ = P◦x . This map is
clearly linear, and because x◦ ∈ Y , it satisfies the identity P◦(P◦x) = P◦x◦ = x◦. Therefore
P2

◦ = P◦, and P◦ is a projector, which is often referred to as the projector of X onto Y .
We also say that x◦ is the projection of x onto Y .

Example 1 Let X = R3 and let Y be the (x1, x2) plane, that is, Y = {x ∈ X | x =
(a, b, 0) , a, b ∈ R}. Because Y is a subspace of X , X = Y ⊕ Y⊥. The orthogonal comple-
ment Y⊥ of Y is the vertical axis: Y⊥ = {x ∈ X | x = (0, 0, c) , c ∈ R}. In words: any vector
x = (a, b, c) can be written as x = (a, b, 0) + (0, 0, c), and the vectors (a, b, 0) and (0, 0, c)
are orthogonal. Therefore, the projection x◦ of x = (a, b, c) onto Y is x◦ = (a, b, 0), and it
is easily verified that the projector P◦ of X onto Y has the form:

P◦ =

1 0 0

0 1 0
0 0 0


. �

If Y is a subspace of X , with its associated projector P◦, its orthogonal complement is
also a subspace, and it has a corresponding projector that we define as P⊥, with the property
that if x = x◦ + x⊥, then x⊥ = P⊥x . Therefore, the two projectors P◦ and P⊥ are related:

P◦ + P⊥ = I.

Writing this relationship as P⊥ = I − P◦ makes clear that P⊥ should be interpreted as the
“residual making matrix” with respect to Y . In fact x◦ is the component of x “explained”
by Y , and the residual is x⊥ = x − x◦ = P⊥x . Because the residual x⊥ is orthogonal to x◦,
it also follows that the two projectors P◦ and P⊥ have the property that P◦ P⊥ = P⊥ P◦ = 0.
We summarize the properties of these projectors as

P◦ P◦ = P◦, P⊥ P⊥ = P⊥, P◦ + P⊥ = I, P◦ P⊥ = P⊥ P◦ = 0.

Constructing Projectors Assume that X = Rd and Y is an n-dimensional subspace of
X . Let {u1, . . . , un ∈ X} be a basis for Y , that is, a set of n vectors that span Y (they do
not have to be orthonormal). This means that any vector in Y can be written as a linear
combination of the vectors u1, . . . , un . Our goal is to find a unique decomposition of an
arbitrary vector x as x◦ + x⊥, with x◦ ∈ Y and x⊥ ∈ Y⊥. Because x◦ ∈ Y , then it can be
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written as x◦ = ∑n
i=1 ai ui for some coefficients ai . Therefore, our goal is to find, for every

x ∈ X , coefficients ai such that the following two conditions are satisfied:

x =
n∑

i=1

ai ui + x⊥, x ′
⊥

n∑
i=1

ai ui = 0, (B.1)

where the last condition ensures that x⊥ and x◦ are orthogonal. If we define an
n-dimensional vector a = (a1, . . . , an) and the n × d matrix U with the vectors u1, . . . , un

on its columns, the preceding expression can be rewritten as

x = Ua + x⊥, x ′
⊥Ua = 0. (B.2)

Substituting x⊥ = x − Ua in the preceding orthogonality condition, we conclude that the
vector of coefficients a must satisfy

(x − Ua)′Ua = 0, ⇒ a′(U ′x − U ′Ua) = 0.

Because we know that the decomposition of equation B.1 is unique, the solution of
the preceding equation is obtained by setting U ′x − U ′Ua to 0, so that we obtain a =
(U ′U )−1U ′x . Therefore, x◦ = Ua = U (U ′U )−1U ′x . This implies that the projector P◦ of
X on the subspace Y is the following matrix:

P◦ = U (U ′U )−1U ′. (B.3)

Therefore, all we need in order to construct the projector P◦ onto an arbitrary subspace Y
of X is a basis for the subspace Y . If the basis for Y is orthonormal then U ′U = I , and the
formula above simplifies to

P◦ = UU ′. (B.4)

The derivation of P◦ has an obvious interpretation in linear regression theory. In fact,
equation B.2 can be seen as a linear specification for the vector of observations x , in which
a is the vector of unknown regression coefficients, U is the matrix of covariates, and x⊥
is a residual disturbance. The condition x ′

⊥Ua = 0 expresses the well-known fact that the
residuals and the fitted values (Ua) are mutually orthogonal, and the residual making matrix
I − U (U ′U )−1U ′ is immediately identified with P⊥. Equation B.3 is often called the “hat
matrix.”

The connection with linear regression helps to explain an important property of
projection operators, and one of the reasons for which they are so useful in practice: the
projection of x on the subspace Y is the vector of Y , which has minimum distance from x .
This follows from the observation that the vector of coefficients a, which we have derived
previously, is also the vector that minimizes the least-squares error ‖x − Ua‖2, which is
exactly the Euclidean distance between x and a generic element Ua of Y . In other words,
if we have a vector space X and a subspace Y , and we want to approximate a vector x ∈ X
with an element of Y , the solution of this problem is simply P◦x , where P◦ is the projector
of X on Y and can be computed using equation B.3.
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Example 2 Let X = R3, let w ∈ X be a given vector of norm 1, and let Y = {x ∈
X | w′x = 0}. Y is a two-dimensional subspace, and more precisely a two-dimensional
“slanted” plane going through the origin. Because Y is constructed as the set of points that
are orthogonal to the vector w, the orthogonal complement Y⊥ of Y is simply the set of
vectors that are multiples of w, that is, a line through the origin. Let x be a generic point
in X : we wish to find the closest point to x on the plane Y . From what we have seen
previously, this point is simply P◦x , where P◦ is the projector of X onto Y . In order to find
P◦, we need a basis for Y , which is not readily available. However, we have a basis for Y⊥,
which is given by w. Therefore, we can find the projector P⊥ of X on Y⊥ and obtain P◦ as
I − P⊥. Applying formula B.4, we have P⊥ = ww′, and therefore:

P◦ = I −ww′. �

B.2 Linear Algebra

B.2.1 Range, Null Space, Rank, and Nullity

In order to understand the properties of a matrix, it is important to understand the effect
it has when it acts on a vector. Crucial to this understanding are two subspaces associated
with a matrix: its range and its null space, which we now describe. Let A be a q × d matrix,
and let x be a d-dimensional column vector. The first question we ask is, What happens
(i.e., what kind of vectors do we obtain) when we operate with A on x? To answer this
question, we need to study the range of A, that is, the set of all the vectors y ∈ Rq that can
be written as y = Ax for some x ∈ Rd . Formally, we have

range(A) ≡ {y ∈ Rq | y = Ax, for some x ∈ Rd}. (B.5)

Because the expression Ax can be read as “a linear combination of the columns of A with
coefficients given by the components of x ,” we can also define the range of A as the vector
space spanned by the columns of A. For this reason, the range of A is often referred to
as the column space of A. Denoting by a1, . . . ad ∈ Rq the columns of A, this definition is
formalized as follows:

range(A) ≡ {y ∈ Rq | y =
d∑

i=1

xi ai , for some xi ∈ R, i = 1, . . . , d}. (B.6)

Let us assume that q ≥ d: this definition makes clear that in this case the range of A is a
vector space whose dimensionality r is at most d. The reason for which we say “at most”
d, rather than equal to d, is that the columns of A may not be linearly independent, and
therefore they may not span Rd . Let us assume instead that q < d: then, since the d vectors
ai are q-dimensional, they can span at most a q-dimensional space. Therefore, by defining
the rank of A as the dimensionality r of range(A), and denoting it by rank(A), we conclude
that

rank(A) ≤ min(q, d).

When rank(A) = min(q, d), we say that the matrix A has full rank; otherwise, we say that
it is rank deficient.
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To summarize: the matrix A takes Rd and maps into a subspace of Rq whose
dimensionality is rank(A) and is at most d. A fundamental result of linear algebra, which
we do not prove here but that we will use later, is the following:

rank(A) = rank(A′). (B.7)

We now present four examples that exhaust all the possibilities for the values of the rank of
a matrix.

Example 1: q ≥ d, full rank Consider the following matrix A:

A ≡

1 0

0 1
1 1


. (B.8)

The rank of A is 2, because the two columns of A are linearly independent. Because
2 = min(3, 2), the matrix has full rank. The range of A is a two-dimensional subspace
of R3, that is, a slanted plane going through the origin. Every point on the slanted plane is
the image of at least one point x ∈ R2 (see section B.1.5 , page 223, for the definition of
image). Vectors in R3 that are not in the range of A, that is, do not lie on the slanted plane,
are not the image of any point in R2. �

Example 2: q ≥ d, rank deficient Consider the following matrix A:

A ≡

1 2

1 2
1 2


. (B.9)

The rank of A is 1, because the second column is a multiple of the first. Because
1 < min(3, 2), the matrix is rank deficient. The range of A is a one-dimensional subspace
of R3, that is, the set of vectors x that are multiples of the vector (1, 1, 1). This subspace is
therefore the diagonal of the positive orthant. Every point on the diagonal is the image of
at least a point x ∈ R2. Vectors in R3 that are not in the range of A, that is, do not lie on the
diagonal of the positive orthant, are not the image of any point in R2. �

Example 3: q < d, full rank Consider the following matrix A:

A ≡
(

1 0 1
0 1 1

)
. (B.10)

The rank of A is 2, because the third column of A is the sum of the first 2. Because the
columns are two-dimensional vectors the rank is as high as it can be and the matrix has full
rank (2 = min(2, 3)). The range of A is the entire space R2: every two-dimensional vector
y is the image of at least one point x under A. �

Example 4: q < d, rank deficient Consider the following matrix A:

A ≡
(

1 2 3
1 2 3

)
. (B.11)
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The rank of A is 1, because the second and third columns of A are both multiples of the
first. Because 1 < min(2, 3) the matrix is rank deficient. The range of A is not the entire
space R2, but a one-dimensional subspace, which is easily identified with the diagonal of
the positive quadrant: only points on the diagonal are images of points in R3 under A. �

The range of a matrix is important because it allows us identify those vectors for which
the matrix equation Ax = y has at least one solution. Clearly, if y is not in the range of A,
then there is no solution, and if y is in the range of A, there is at least one solution. The
reason for which there may be more than one solution is that there may be vectors x◦ such
that Ax◦ = 0. In this case, if we have Ax = y, then we also have A(x + x◦) = y. The set of
vectors x ∈ Rd such that Ax = 0 is called the null space of the matrix A, and it is denoted
by N(A) (or justN if no confusion arises). Formally, we have

N(A) ≡ {x ∈ Rd | Ax = 0}. (B.12)

By rewriting the condition Ax = 0 as
∑d

i=1 xi ai = 0, we see that if the columns of A are
linearly independent, then N(A) = {0}, and we say that the null space is trivial. In fact, if
the columns of A are linearly independent, the only numbers xi such that

∑d
i=1 xi ai = 0

are zeros (if the xi were not 0, one could express one of the ai as a linear combination of
the others). Therefore, if A has full rank, its null space is trivial, and if a solution to Ax = y
exists, it is unique. When A is rank deficient, we can expect a nontrivial null space: in this
case the equation Ax = y has an infinite set of solutions, which differ by an element of the
null space of A (if x1 and x2 are solutions, then A(x1 − x2) = 0 and x1 − x2 ∈N(A)).

We will also need to know “how big” is the set of solutions making up the null space.
To do this, we note that Ax = 0 implies that x is orthogonal to every row of A, or every
column of A′, or any linear combination of columns of A′. This is equivalent to saying
that x is orthogonal to the span of the columns of A′, which in turn is the same as saying
that x is orthogonal to the range(A′) (because range(A′) is the span of the columns of A′).
This sequence of reasoning leads us to the key result that the null space of a matrix is the
orthogonal complement of the range of its transpose:

N(A) = range(A′)⊥. (B.13)

This result is important because it allows us to compute the dimensionality of the null
space of A, which is called the nullity of A and denoted by nullity(A) ≡ dim(N). In fact,
because the range of A′ is a subspace of Rd of dimension rank(A′), we know that its
orthogonal complement must have dimension dim(range(A′)⊥) = d − rank(A). Therefore,
we conclude with the fundamental decomposition:

nullity(A) = d − rank(A), (B.14)

where throughout d is the number of columns of A. As anticipated previously, then, the
nullity of a matrix is zero (and the null space is trivial) only if the matrix has full rank.

The results of this section can be summarized as follows: the range of A allows us to
characterize the vectors y for which the linear equation Ax = y has a solution. The null
space of A allows us to characterize whether this solution is unique, and in the case it is
not, the whole set of solutions.
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Example 1 (continued): q ≥ d, full rank We have considered the matrix A:

A ≡

1 0

0 1
1 1


 . (B.15)

We have already seen that the rank of A is 2 = min(3, 2), so that the matrix has full rank.
Therefore its null space is trivial and every point in the range of A (the slanted plane) is the
image of only one point in R2: the map between R2 and the slanted plane is one-to-one and
therefore invertible. In fact, if y ∈ range(A), we can solve Ax = y with the usual formula:

x = (A′ A)−1 A′y. (B.16)

Notice that this shows that if A has full rank then A′ A must be invertible. �

Example 2 (continued): q ≥ d, rank deficient We have considered the following
matrix A:

A ≡

1 2

1 2
1 2


. (B.17)

We have already seen that A is rank deficient, because its rank is 1. As a consequence, its
null space is not trivial: from equation B.14 we have that nullity(A) = 2 − rank(A) = 1, so
N(A) is one-dimensional. We now define N(A) explicitly. From equation B.13, we know
that it is the orthogonal complement of the range of A′:

A′ ≡
(

1 1 1
2 2 2

)
.

This expression confirms the fact that the rank of A and A′ are the same, because only 1
of the three column vectors of A′ is linearly independent of the others. The range of A′

is therefore given by the multiples of the vector (1, 2). Its orthogonal complement, that is,
N(A), is easily seen to be the set of vectors that are multiples of the vector (−2, 1) (since
(−2, 1)(1, 2)′ = 0). Therefore, every point in R2 is mapped into a point on the diagonal
of the positive quadrant (range(A)), but all the points of the form x +α(−2, 1), for any
α ∈ R, that lie on a straight line through x are mapped into the same point on the diagonal.
Therefore, the solution to the linear equation Ax = y, when it exists, is not unique, and
equation B.16 does not hold anymore. This implies that when A is rank deficient, the
matrix A′ A must be not invertible. As we will see in section B.2.5, in this case we can
still give a meaning to the problem of solving Ax = y, but equation B.16 must be replaced
by something else. �

B.2.2 Eigenvalues and Eigenvectors for Symmetric Matrices

Symmetric matrices and their eigenvectors and eigenvalues play a special role in this book,
so we list here some of their properties.
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Let A be a d × d symmetric matrix. If we can find a non-null vector v ∈ Rd and a
number � such that

Av = �v,

then we say that v is an eigenvector of A with eigenvalue �. Notice that if v is an eigenvector
with eigenvalue �, then kv, with k ∈ R, is also an eigenvector with eigenvalue �. We
eliminate this trivial redundancy by using the convention that eigenvectors always have
length 1, so that ‖v‖ = 1 unless otherwise specified.

An important property of symmetric d × d matrices is that they always have exactly
d mutually orthogonal eigenvectors v1, . . . vd . We denote by �1, . . . �d the corresponding
eigenvalues.

Let R be a d × d matrix with the eigenvectors of A, v1, . . . vd , as its columns. By
virtue of the orthogonality of the eigenvectors and the convention that they have length
one, it follows that R is an orthogonal matrix, so that R′ = R−1. Let L be the diagonal
matrix with the eigenvalues �1, . . . , �d on the diagonal. One can prove that the matrix A
can always be written as

A = RL R′. (B.18)

Equation B.18, the eigenvalue/eigenvector decomposition, tells us everything we may need
to know about the matrix A. If the eigenvalues are all strictly positive then the matrix is
invertible, and the inverse is simply:

A−1 = RL−1 R′,

where L−1 is a diagonal matrix with the reciprocals of the eigenvalues (1/�1, . . . , 1/�d ) on
the diagonal.

The rank r of A is the number of nonzero eigenvalues, and the nullity n of A is the
number of zero eigenvalues. The eigenvectors corresponding to the nonzero eigenvalues,
that is, the first r columns of R, span the range of A, while the eigenvectors corresponding
to the zero eigenvalues (the last n columns of R) span the null space of A.

When A does not have full rank, the decomposition B.18 can be written in a simplified
form, often useful for computational purposes. Let us write the matrix L in block form:

L =
(

� 0
0 0

)
, � = diag[(�1, . . . �r )].

Let us also write R as R = (R⊥ R◦), where R⊥ is a d × r matrix whose columns are the
first r eigenvectors (a basis forN⊥), and R◦ is a d × n matrix whose columns are the last n
eigenvectors (a basis for N). Then we have the following identity:

A = RL R′ = (R⊥ R◦)

(
� 0
0 0

)(
R′

⊥
R′

◦

)
= R⊥�R′

⊥. (B.19)
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B.2.3 Definiteness

Let A be an n × n symmetric matrix. If we have

x ′ Ax > 0, ∀x ∈ Rn , x �= 0,

then we say that A is positive definite. If this condition is substituted with the weaker
condition

x ′ Ax ≥ 0, ∀x ∈ Rn,

then we say that A is positive semidefinite. The only difference between positive definite
and positive semidefinite matrices is that for a positive semidefinite matrix A the fact
that x ′ Ax = 0 does not imply x = 0. Similar definitions for negative definite and negative
semidefinite matrices are obtained by switching the sign in the preceding inequalities.

If a matrix A is positive definite, then the quantity x ′ Ax is a norm, while if A is positive
semidefinite, then x ′ Ax is a seminorm.

It can be shown that A is positive definite if and only if its eigenvalues are all strictly
positive, where we use the word “strictly” to emphasize the fact that they cannot be equal
to 0. Similarly, A is positive semidefinite if and only if its eigenvalues are either positive or
equal to zero.

Example 1 Let A be an n × d matrix of full rank. Then the d × d matrix C = A′ A is
positive definite. This is seen by noticing that x ′Cx = x ′ A′ Ax = (Ax)′ Ax = ‖Ax‖2 > 0.
The strict inequality is a consequence of the fact that Ax = 0 implies x = 0, because A has
full rank. If A has rank smaller than d, then C is positive semidefinite. �

B.2.4 Singular Values Decomposition

For symmetric matrices the eigenvalue-eigenvector decomposition tells us everything we
need to know about a matrix. The analog of this decomposition for generic, rectangular
matrices is the singular values decomposition (SVD). SVD is one the most useful and
common tools of linear algebra, and it has been known for more than a century (Beltrami,
1873; Jordan, 1874; see Stewart, 1992, for its history). Here we give the basics facts, needed
in this book, and refer the reader to a linear algebra book (e.g., Strang, 1988) for a full
explanation.

Definition

Let A be a q × d matrix, with q ≥ d (if q < d we can look at the transpose of A). It is
possible to show that one can always write A as follows:

A = U W V ′, (B.20)

where U is an q × d matrix whose columns are mutually orthonormal (U ′U = Id ), W is
a d × d diagonal matrix with positive or zero values, and V ′ is a d × d orthogonal matrix
(V ′V = V ′V = Id ). The diagonal elements of W , denoted by w1, . . . wd , are called the
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singular values of the matrix A. The decomposition B.20 is known as the singular values
decomposition, and it is unique, up to a permutation of the columns of U and V and of
the corresponding singular values. Here we consider the general case in which n singular
values are 0, with n ≥ 0, and denote by r the number of nonzero singular values, so that
r + n = d and

w1 ≥ w2 ≥ . . . wr ≥ wr+1 = wr+2 . . . wr+n = 0.

The singular values play here the role played by the eigenvalues in the eigenvalue-
eigenvector decomposition of symmetric matrices: the rank of A is equal to r , the number of
nonzero singular values, and therefore the nullity of A is n, which is the number of singular
values equal to zero. We now list some useful properties of the SVD decomposition. To this
end, we define u1, . . . ud as the column vectors of U and v1, . . . vd as the column vectors
of V .

• Rank(A) = r .
• Nullity(A) = n.
• The vectors u1, . . . ur (first r columns of U ) form a basis for the range of A.
• The vectors vr+1, . . . vd (last n columns of V ) form a basis for the null space

of A.
• The following relationships hold:

Avi = wi ui , A′ui = wivi , i = 1, . . . d.

• If the matrix A is square, then it is invertible if and only if the singular values
are all strictly positive. In this case one can easily verify that the inverse of A
is given by:

A−1 = V W −1U ′.

For Approximation

We now show how to use SVD to approximate a matrix A as a linear combination of
“simpler” matrices, and how to bound the corresponding approximation error. If we use
this notation, equation B.20 can be rewritten as

A =
r∑

i=1

wi uiv
′
i ≡

r∑
i=1

wi ai , (B.21)

where we have defined the q × d matrices ai = uiv
′
i , which are all of rank 1 (the fact that ai

has rank 1 follows from its SVD). Equation B.21 is a powerful result: it says that any matrix
A of rank r can be written as a linear combination of r matrices of rank 1. Because of the
orthonormality properties of U and V , the matrices ai are mutually orthonormal under the
Frobenius inner product (see examples in appendix B.1.4, page 222). In particular, they
all have the same “size,” where the size is measured by their Frobenius norm, which is
equal to 1.
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Therefore, if some singular values are much bigger than the others, then the corre-
sponding terms in the expansion B.21 will dominate the others. This suggests that a good
approximation to the matrix A can be obtained by retaining, in equation B.21, only the
largest singular values. To quantify this observation, define Ãk as the approximation of A
obtained by retaining only the k (k < r ) largest singular values in equation B.21:

Ãk ≡
k∑

i=1

wi ai .

We quantify the approximation error as ‖A − Ãk‖2, where ‖ · ‖ is the Frobenius norm (see
appendix B.1.4, page 222). However, this definition of error is not always useful because
it depends on the scale of matrix A. Therefore, we introduce a relative measure of error,
defined as

�Ek ≡ ‖A − Ãk‖2

‖A‖2
.

Substituting the expansion B.21 in the preceding equation, we obtain

�Ek = ‖∑d
i=k+1 wi ai‖2

‖∑d
i=1 wi ai‖2

=
∑d

i=k+1

∑d
j=k+1 wiw j (ai , a j )∑d

i=1

∑d
i= j wiw j (ai , a j )

=
∑d

i=k+1 w2
i∑d

i=1 w2
i

, (B.22)

where we have used the definition of the Frobenius norm ‖ · ‖ in terms of Frobenius inner
product (·, ·) (‖A‖2 = (A, A)) and the orthonormality of the matrices ai under the Frobenius
inner product ((ai , a j ) = δi j ). Equation B.22 is a very useful result: it allows us to estimate
precisely the error we make approximating a matrix A of rank r by a linear combinations of
k matrices of rank 1 only in terms of the singular values of A: the faster the decay rate of the
singular values, the better the approximation using a small number of terms. The relative
error �Ek is usually referred to as “the percentage of the variance linearly accounted for by
the first k singular values.” The term “variance” here refers to the square of the Frobenius
norm of A. The reason for this terminology is that in some applications the rows of A
are realizations of a random d-dimensional variable with zero mean, and therefore the
Frobenius norm of A (squared) is proportional to the variance of this random variable.

B.2.5 Generalized Inverse

Let A be a d × d matrix. In this section, we consider the problem of finding a solution
to the linear system Ax = y. We do not consider the more general problem in which A is
rectangular to keep notation simple.

When A has full rank the solution to this problem is obviously unique and given by
x = A−1 y. When A is rank deficient, with rank(A) = r , r < d, two things happen:

1. The range of A is an r -dimensional subspace of Rd , and therefore the
linear system Ax = y has a solution only if y ∈ range(A).

2. The null space of A is a subspace of Rd with dimensionality n = d − r (see
equation B.14, page 231). Therefore, when y ∈ range(A) and a solution
exist, it is not unique. In fact, if x is a solution, then x + x◦, where
x◦ ∈N(A), is also a solution.
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Here we assume that y ∈ range(A) (otherwise an exact solution does not exist), and focus
on the problem of having an infinite number of solutions. Even if all these solutions are
equivalent, in the sense that they differ from each other for an element of N(A), which is
“invisible” to A, it is important to have a consistent criterion to pick a particular one, which
we can consider as “representative.” In order to choose a criterion, we reason as follows.

BecauseN(A) is a subspace ofRd , we writeRd =N(A) ⊕N(A)⊥ (see sections B.1.10
and B.1.11 on subspaces and orthogonal complements). Let x be such that Ax = y, and let
us decompose it as x = x◦ + x⊥, with x◦ ∈N(A) and x⊥ ∈N(A)⊥. Because x is a solution
of Ax = y, by adding or subtracting any element of N(A), we obtain another solution, and
v x◦ ∈N(A), therefore x − x◦ = x⊥ is also a solution. Therefore, there is always a well-
defined solution that lies in N(A)⊥, that is, a solution whose projection on the null space
of A is zero. We take this as the “representative” solution. We will see later how this is
equivalent to choosing the solution of minimum norm.

To summarize, we wish to find, among all the possible vectors x such that Ax = y,
the one such x◦ = P◦x = 0. This problem is solved easily by using the SVD of A. First,
we notice that the condition P◦x = 0 can be written as P⊥x = x , because P◦ + P⊥ = I .
Therefore, we substitute P⊥x for x in Ax = y and obtain AP⊥x = y. Now let us use the
SVD of A and write A = U W V ′, where U and V are orthogonal d × d matrices. The
equation AP⊥x = y becomes

U W V ′ P⊥x = y,⇒ W V ′ P⊥x = U ′y. (B.23)

By the properties of the SVD, the matrix W is diagonal, and because rank(a) = r ,
nullity(A) = n, and d = r + n, it has the following structure:

W ≡
(

w 0r×n

0n×r 0n×n

)
,

where w is an r × r diagonal matrix with the first r nonzero singular values on the diagonal.
Because our goal is to “isolate” P⊥x in equation B.23, ideally we would multiply both sides
of B.23 by the inverse of W . The inverse of W does not exist, but we can define something
that resembles it and see whether that it is enough. We define the matrix W + here, which
we list together with the one useful identity it satisfies:

W + ≡
(

w−1 0r×n

0n×r 0n×n

)
, W +W =

(
Ir×r 0r×n

0n×r 0n×n

)
.

Now we premultiply both sides of equation B.23 by W + and obtain

(
Ir×r 0r×n

0n×r 0n×n

)
V ′ P⊥x = W +U ′y.

Now we remember that from SVD the matrix V is orthogonal and has the form V =
(V⊥ V◦), where V◦ is a basis for N(A) and V⊥ is a basis for N(A)⊥. Premultiplying both
sides of the preceding equation by V we obtain

V

(
Ir×r 0r×n

0n×r 0n×n

)
V ′ P⊥x = (V⊥ V0)

(
Ir×r 0r×n

0n×r 0n×n

) (
V ′

⊥
V ′

◦

)
P⊥x .
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As a final step, we remember that because the columns of V⊥ form an orthonormal basis
for N(A)⊥, the projector P⊥ on N(A) is simply P⊥ = V⊥V ′

⊥. Therefore,

V⊥V ′
⊥ P⊥x = P⊥ P⊥x = P⊥x = V W +U ′y.

Because we started with the assumption P⊥x = x , the solution to our problem is finally:

x = V W +U ′y ≡ A+y, (B.24)

where the matrix A+ = V W +U ′ is the so-called generalized inverse of A. Notice that
in applying this definition the generalized inverse inverse of W is W +, which justifies
our notation. To summarize: among the infinite number of solutions of Ax = y, with y ∈
range(A), the solution computed using the generalized inverse is the one whose projection
on the null space of A is zero.

In many books, the generalized inverse is defined in the same way, but it is derived
according to a different criterion: among all the solutions of Ax = y, the solution computed
using the generalized inverse is the one with minimum norm. We now show that these
two criteria are equivalent. The set of all solutions can be obtained by adding to a known
solution (e.g., x∗ = A+y) arbitrary points in N(A), which can always be written as P◦z,
for arbitrary z ∈ Rd . Therefore, the set of solutions is the set of vectors that can be written
as x = x∗ + P◦z, with z varying in Rd . Let us find the vector of this form with minimum
norm:

min
z

‖x∗ + P◦z‖2 = min
z

[2(P◦z)′x∗ + (P◦z)′(P◦z)].

We notice that (P◦z)′x∗ = z′ P ′
◦x∗ = z′ P◦x∗ = 0, where we have used the fact that P ′

◦ = P◦
and P◦x∗ = 0 by definition of x∗. Therefore,

min
z

‖x∗ + P◦z‖2 = min
z

(P◦z)′(P◦z).

The minimum is attained for any z such that P◦z = 0, and its value is ‖x∗‖2. Therefore the
solution whose projection in the null space of A is 0 and the solution of minimum norm
coincide.

B.2.6 Quadratic Form Identity

Let b1, . . . , bN ∈ Rd be a collection of N vectors in Rd . For any N × N symmetric matrix
s and for any d × d symmetric matrix �, the following identity holds:

1

2

N∑
i, j=1

si j (bi − b j )
′�(bi − b j ) =

N∑
i, j=1

Wi j b
′
i�b j , (B.25)
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where

W ≡ s+ − s, s+ ≡ diag[s+
i ], s+

i ≡
N∑

j=1

si j . (B.26)

Because the rows of the matrix W sum to 0 (W 1 = 0), W is not full rank. If the elements of
s are all positive, the matrix W is positive semidefinite, but the reverse does not generally
hold. The values of the expression in equation B.25 do not depend on the diagonal elements
of s. Therefore, for all expressions of the form in equation B.25, we assume sii = 0,∀i .
Under this assumption, given any matrix W such that W 1 = 0, we can always find a matrix
s such that W ≡ s+ − s: it is sufficient to take s = diag(W ) − W .

A particular case of equation B.25 that appears often in the book is when d = 1 and
� = 1. We restate it as follows. Let u ≡ (u1, . . . , uN )′ be a column vector, then

1

2

N∑
i, j=1

si j (ui − u j )
2 =

N∑
i, j=1

Wi j ui u j = u′W u. (B.27)

B.3 Probability Densities

B.3.1 The Normal Distribution

Let D be a strictly positive definite d × d matrix and θ > 0. We say that a d-dimensional
random variable x has normal distribution with mean x̄ and covariance D−1, and write
x ∼N (x̄, D−1), if its probability density is

P(x) =
(

θ

2π

) d
2 √

det D exp

(
−1

2
θ (x − x̄)′ D(x − x̄)

)
.

Because a density must integrate to 1, we have the multidimensional saussian integral:

∫
Rd

dx exp

(
−1

2
θx ′ Dx

)
=

(
2π

θ

) d
2 1√

det D
. (B.28)

B.3.2 The Gamma Distribution

We say that a random variable x with values on the positive real axis has a Gamma density,
with a ,b > 0, if its probability density is

P(x) = 1

	(a )
ba xa−1e−bx . (B.29)

We also write the preceding equation as

x ∼ G(a ,b). (B.30)
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The mean and variance of the Gamma(a ,b) density are as follows:

E[x] = a

b
, V[x] = a

b2
. (B.31)

B.3.3 The Log-Normal Distribution

We say that a random variable x with values on the positive real axis has a log-normal
density with parameters ν and �, and write x ∼ logN (ν, �2), if its probability density is

P(x) = 1√
2π�x

exp

[
−1

2

(
log x − ν

�

)2
]

. (B.32)

The log-normal density has the property that

x ∼ logN (ν, �2) ⇐⇒ log x ∼N (ν, �2).

The mean and variance of the log-normal density are as follows:

E[x] = eν+ �2

2 , V[x] = e2(ν+�2) − e2ν+�2
. (B.33)

It is often useful to be able to express ν and � as functions of the mean and the variance.
This is done as:

�2 = log

(
1 + V[x]

E[x]2

)
, ν = log

(
E[x]2√

V[x] + E[x]2

)
. (B.34)


