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Appendix C Y

Improper Normal Priors

Most of the prior densities considered in this book are improper. The fact that they are
improper has no negative consequences because our likelihood and therefore our posterior
distribution is always proper. What is relevant is the reason they are improper. Roughly
speaking, the reason is that we have only partial prior knowledge: that is, we know
certain things but are ignorant about others. This implies that our prior density is flat over
unbounded subsets of its support, which causes it to fail to be integrable.

C.1 Definitions

In this section, we describe the mathematical tools needed to deal with the kinds of
improper prior densities we use. These densities have the following form:

P(x ; θ ) ∝ exp

(
−1

2
θx ′ Dx

)
, x ∈ Rd , (C.1)

where θ > 0 and D is a symmetric, d × d positive semidefinite matrix with rank(D) =
r < d, and nullity(D) = n = d − r . The obvious way to see why this density is improper
is to notice that its covariance, which would be calculated by taking the inverse of
the matrix D, does not exist because D does not have full rank. We now develop a
richer understanding of improperness through a geometric interpretation. The key to
understanding and manipulating improper densities of the form C.1 is noting that, because
D is symmetric, it can be diagonalized. That is, every such D can be uniquely decomposed
in the following (see appendix B.2.2, page 231):

D = RL R′, (C.2)

where R is an orthogonal matrix (so that R−1 = R′ and det(R) = 1) and L is diagonal.
This implies that we can always put ourselves in a reference system where the density in
equation C.1 is the product of one dimensional densities. In fact, if we make the change of
variables x = Rz, the preceding density can be written as a function of z:

P(z; θ ) ∝ exp

(
−1

2
θ z′Lz

)
=

d∏
i=1

exp

(
−1

2
θ�i z

2
i

)
, (C.3)

where �i are the diagonal elements of L . This observation suggests that everything we need
to know about improper densities of the type C.1 can be learned analyzing the simpler
densities like that in equation C.3. For this reason we next analyze in detail a simple but
highly informative example in three dimensions.
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C.2 An Intuitive Special Case

Here we take θ = 1 and consider a diagonal matrix D:

D ≡

1 0 0

0 1 0
0 0 0


 .

This matrix is positive semidefinite, between its eigenvalues, which coincide with the
elements on the diagonal, are greater than or equal to zero. The rank of this matrix is 2,
and its nullity is 1 = 3 − 2. The range of D is the (x1, x2) plane: range(D) ≡ {(x1, x2, 0) ∈
R

3}, while its null space is the x3-axis: N(D) ≡ {(0, 0, x3) ∈ R3}. Because the matrix
is symmetric, its range coincides with the orthogonal complement of its null space:
range(D) =N(D)⊥. In the following we refer to the null space of D and its orthogonal
complement as N and N⊥.

The density corresponding to this matrix is

P(x1, x2, x3) ∝ exp

(
−1

2
(x2

1 + x2
2 )

)
(C.4)

and is not integrable, because we have

∫
R3

exp

(
−1

2
(x2

1 + x2
2 )

)
=

∫
R

dx1 exp

(
−1

2
x2

1

)∫
R

dx2 exp

(
−1

2
x2

2

) ∫
R

dx3 = +∞.

This density has two important features:

1. It does not carry any information about the probability of the realization of
values of x3: it is ignorant with respect to x3. More formally, we have:

P(x1, x2, x3) = P(x1, x2, x ′
3) , ∀x3, x ′

3 ∈ R.

The fact that the density is uniform in the direction of x3 is what causes the
density not to be integrable. The key observation here is that the direction
along which the density is uniform coincides with the null spaceN.

2. Because the density C.4 does not depend on x3, we can always set x3 to 0
(or any other value) in its argument and look at it as a density over R2

rather than R3. In this case, the density is informative and proper:

∫
R2

dx1dx2P(x1, x2, 0) < +∞. (C.5)

The set of points in R3 of the form (x1, x2, 0) is N⊥, the orthogonal
complement of the null space.

We conclude from this simple analysis that the support of the density C.4, that is, R3, can
be decomposed in two orthogonal parts: one is the null space N, over which the density is
flat and which represents our ignorance; and the other is N⊥, the orthogonal complement
of N, over which the density is proper and carries information.
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More formally, every vector x ∈ R3 can be decomposed as follows:

x = (x1, x2, x3) = (x1, x2, 0) + (0, 0, x3) = P⊥x + P◦x,

where P⊥ is the projector onto N⊥, and P◦ = I − P⊥ is the projector onto the null space
N. In our case, we have

P⊥ ≡

1 0 0

0 1 0
0 0 0


 .

Using this notation, we can summarize what we have learned so far as:

P(P◦x) = is uniform on N P(P⊥x) = P(x) is proper on N⊥.

We conclude from these observations that while expected values of functions of x cannot
be computed under the density C.4, because x as a random variable is ill defined, expected
values of functions of P⊥x are well defined, as long as we remember that, in order to
compute them, we must restrict the support of the density to N⊥. For example, while
the covariance matrix of x does not exist, the covariance matrix of P⊥x is well defined,
because it is the covariance matrix of the density P(x1, x2) ∝ exp

(− 1
2 (x2

1 + x2
2 )

)
, which is

the identity.

C.3 The General Case

We now move to the general case, where the null space is a generic subspace of Rd . As
we have seen, meaningful expectations can be computed if we restrict the support of P
to N⊥. The only difficulty here is that computing integrals over the subspace N⊥ is a bit
more complicated. As an exercise, and in order to convince ourselves that the density C.1
is indeed well defined on N⊥, we compute its integral and show that it is finite. Therefore,
we want to compute the quantity:

K =
∫
N⊥

dx exp

(
−1

2
θx ′ Dx

)
.

In the following, we denote by r the rank of D, and by n = d − r the dimensionality of its
null space. We adopt the convention that the eigenvalues of D, that is, the diagonal elements
of L in equation C.2, are sorted in descending order, so that �1 ≥ �2 ≥ . . . �r > �r+1 =
�r+2 = · · · = �r+n = 0. We start by substituting equation C.2 in the preceding equation:

K =
∫
N⊥

dx exp

(
−1

2
θ (R′x)′L R′x

)
.

This expression suggests that we perform the change of variable R′x = y, which makes
the integrand a product of independent terms. The Jacobian of this transformation is one
since R is a rotation matrix. The only thing left to do is to figure out how the domain of
integration, N⊥, changes under this transformation. Remember that N⊥ is the subspace
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of vectors which are orthogonal to the null space, that is, such that P◦x = 0. Because
P◦ = I − P⊥, we have

N⊥ = {x ∈ Rd | x = P⊥x}.

This can be rewritten in terms of the variable y as

N⊥ = {y ∈ Rd | Ry = P⊥ Ry} = {y ∈ Rd | y = R′ P⊥ Ry}.

In order to understand the form R′ P⊥ Ry, denote by ri the columns of R. As shown in
section B.2.2, the first r columns form a basis for range(D) =N⊥, and the last n columns
form a basis forN. Denoting by yi the components of y, we have

Ry =
d∑

i=1

yiri , ⇒ P⊥ Ry =
d∑

i=1

yi P⊥ri =
r∑

i=1

yiri ,

where we have used the fact that P⊥ri = ri if ri ∈N⊥ and P⊥ri = 0 if ri ∈N. Therefore,

R′ P⊥ Ry =
r∑

i=1

yi R′ri =
r∑

i=1

yi ei = (y1, y2, . . . , yr , 0, . . . , 0),

where ei is the vector (0, . . . , 0, 1, 0, . . . 0), with the 1 in the i-th place, and we have used
the fact that the columns of R are mutually orthogonal. We conclude that the only vectors
y such that y = R′ P⊥ Ry are those whose last n components are zero, and therefore:

N⊥ = {y ∈ Rd | yr+1 = yr+2 = · · · = yr+n = 0}.

This last expression implies that when we integrate over the variable y, we should keep
the values of the last n components of y fixed at 0, while the first r components of y
are unconstrained. Because integrating over a variable held constant is equivalent to not
integrating over that variable, we summarize this finding as

∫
N⊥

dx =
∫
Rd

dy
d∏

i=r+1

δ(yi ), x = Ry, (C.6)

where δ(yi ) stands for the probability density (as a function of yi ) with unit mass at the
origin. Now we complete our change of variables, and rewrite

K =
∫
Rd

dy
d∏

i=r+1

δ(yi ) exp

(
−1

2
θy′Ly

)
.

The exponent in this expression does not depend on yr+1, . . . , yr+n , and so simplifies to

K =
∫
Rr

dy1 . . . dyr exp

(
−1

2
θ

r∑
i=1

�i y2
i

)
=

r∏
i=1

[∫
R

dyi exp

(
−1

2
θ�i y2

i

)]
.
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From the Gaussian integral identity in equation B.28, we have

∫
R

dyi exp

(
−1

2
θ�i y2

i

)
=

(
2π

θ�i

) 1
2

.

Putting everything together, we obtain

K =
(

2π

θ

) r
2 1√∏r

i=1 �i

.

Defining the quantity:

det D⊥ ≡
r∏

i=1

�i ,

we can finally rewrite the preceding expression as the following identity:

∫
N⊥

dx exp

(
−1

2
θx ′ Dx

)
=

(
2π

θ

) r
2 1√

det D⊥
. (C.7)

Notice the complete analogy between this expression and the identity in equation B.28.
The preceding number can be thought of as the normalization constant for the density C.1
restricted to N⊥, which we present here for completeness:

P(x ; θ ) =
(

θ

2π

) r
2 √

det D⊥ exp

(
−1

2
θx ′ Dx

)
, x ∈ Rd , x ∈N⊥. (C.8)

Using a similar technique, we can now compute the expected values of several quantities of
interest. In the following, we denote by E⊥[·] the expected value with respect to the density
C.8. It is possible to show that the covariance matrix is

E⊥[xx ′] = 1

θ
D+, (C.9)

where D+ is the pseudo-inverse of D, as defined in section B.2.5 (page 235). Using this
result, we can easily see that

E⊥[x ′ Dx] = r

θ
. (C.10)

This last result can also be derived by first computing the distribution of the quantity
H = x ′ Dx and then computing its expected value. The quantity H , which in general is
interpreted as a smoothness functional, has the following distribution:

P(H ) = K H
r
2 −1e− 1

2 θ H . (C.11)

In the notation of chapter 9, we would write H ∼ G(r, θ ).
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C.4 Drawing Random Samples

Here we consider the problem of sampling from the improper normal density of equation
C.1. We have seen in the previous sections that this density is not proper, but it becomes
proper if we restrict its argument to the r -dimensional subspace N⊥, that is, the portion
of Rd on which the prior is informative. This restriction means that we should think
of the argument x of the density as a linear combination of r independent elements N⊥.
We know from results about the eigenvectors-eigenvalue decomposition (section B.2.2,
page 231) that a basis for N⊥ is given by the first r columns of R (where D = RL R′),
which we collect as columns of a d × r matrix R⊥. Therefore, the restriction of the domain
of the improper density P(x ; θ ) is simply expressed as x = R⊥z, z ∈ Rr . The role of
the matrix R⊥ here is simply to take Rr and rotate it to obtain N⊥. We notice that this
transformation is invertible (z = R′

⊥x) and that, because it is a rotation, its Jacobian is 1.
Therefore, the density of the variable z is

P(z; θ ) ∝ exp

(
−1

2
θ (R⊥z)′ DR⊥z

)
= exp

(
−1

2
θ z′ R′

⊥ DR⊥z

)
.

This probability density is now well defined, and therefore all we have to do in order to
sample from the improper normal of equation C.1 is the following:

x = R⊥z , z ∼N
(

0,
1

θ

(
R′

⊥ DR⊥
)−1

)
. (C.12)

The covariance of the variable z in the preceding expression is unnecessarily complicated
and can be greatly simplified. To this end, it suffices to remember that, from equation B.19,
the matrix D can be written as D = R⊥�R′

⊥, where � is the r × r diagonal matrix whose
diagonal elements are the nonzero eigenvalues of D. Substituting this formula in equation
C.12, and remembering that R′

⊥ R⊥ = I , we arrive at the following simple formula:

x = R⊥z , z ∼N
(

0,
1

θ
�−1

)
. (C.13)


