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Appendix E .

Smoothness over Graphs

This appendix defines the mathematical notion of smoothness over geographic areas using
concepts from graph theory. The ideas here have relatively few practical uses in the book,
but they do convey the essential unity of the priors we offer, defined across any type
of underlying variable. For priors defined over discretized continuous variables, we use
analogous ideas to reduce the task of specifying the (non)spatial contiguity matrix to
the choice of a single number (the order of the derivative in the smoothing functional).
Unfortunately, a parallel reduction of effort is not possible for geographic space, although
similar ideas apply.

We begin by denoting by G the set of cross-sectional indices. When cross sections
vary by age, or similar variables, the set G is a discrete or continuous set endowed with
a natural metric, and it is easy to formalize the notion of smoothness using derivatives or
their discretized versions. When the cross-sectional indices are labels like country, familiar
calculus does not help to define a notion of smoothness, but graph theory does.

In fact, when we have a number of cross sections that we want to pool (partially), it
is natural to represent each of them as a point on the two-dimensional plane and join by a
line segment points corresponding to cross sections that we consider “neighbors” of each
other. This construction is called a graph, where we call the points vertices and the line
segments edges of the graph. We denote the vertices and edges by V and E, respectively.
Both vertices and edges are numbered using increasing positive integers: any numbering
scheme is allowed, as long as it is used consistently. If i and j are two vertices connected
by the edge e, we assign to e a weight w(e) = s;;, which represents our notion of how close

the two cross sections are. The quantity p(i, j) = \/;r is called the length of the edge e,
1

and it is thought of as the distance between cross sections i and j. In the simplest case s,
which is called the adjacency matrix of the graph, is a matrix of zeros and ones, where
the ones denote country pairs that are considered as neighbors. If no edge exists between i
and j, we set s;; = 0. Vertex i could be connected to itself (in which case we would have a
loop), so that we could have s;; # 0; we will see later that for our purposes the value of s;;
is irrelevant, so we arbitrarily set s;; = 0. The number of edges connected to the vertex i is
called the degree of i, and we denote it by sl.+ =) jSij (in other words, s;“ is the sum of
the elements of the i-th row of s, which is the number of neighbors).

If we have a function f defined over the graph, thatis, f : V — R, it is possible
to introduce the notion of a gradient. This is done by introducing the oriented incidence
matrix Q, which is a #V x #E matrix whose rows and columns are indexed by the indices
for V and E. To define Q, we first need to orient the graph, that is we assign a direction
to each edge, so that edge e will point from some vertex i (the initial vertex) to some other
vertex j (the terminal vertex). The orientation is arbitrary for our purposes, as long as it
is fixed once for all. The matrix Q is built by setting entry Q. to /w(e) if i is the initial
vertex of e, to —y/w(e) if i is the terminal vertex of e, and O otherwise.

For example, if the first of row of Q is (0, 0, 1, 0, —2), then vertex 1 is the terminal
vertex of edge 5, which has a weight w(5) = 4, and the initial vertex of edge 3, which has
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a weight w(3) = 1. Notice that because each edge must have one initial and one terminal
point, the columns of Q have even numbers of nonzero elements, and must sum up to 0.
Now that we have the matrix Q, we define a meaningful differential operator. At any
given vertex, we think of the edges connected to that point as abstract “directions” from
which one can leave that vertex. Therefore, given a function defined over V, it makes sense
to characterize its local variation in terms of how much the function changes along each
direction, that is, to assign to the edge e running from vertex i to vertex j the quantity:

JG) = f@)
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which obviously resembles a derivative. The matrix Q allows us to group all the quantities

of this type in one single vector, which we think of as the gradient of the function f. In

fact, denote by f the vector (f); = f(i) Vi € V, and suppose e is the edge that runs from

i to j; then, by construction:
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Therefore, we think of Q' f as the gradient of f, and as Q' as the gradient operator.
A measure of the smoothness of a function f defined over V is therefore obviously
the quantity || Q' f||>. The definition of smoothness we give in chapter 4 is operationally
equivalent to this. A simple result of graph theory shows, however, that we need not
compute the matrix Q' of the gradient in order to compute ||Q’ f||%. In fact, the gradient
operator is strictly connected to another important operator defined over the graph, that is,
the Laplacian, defined more simply in terms of the adjacency matrix s:

W=st—s,
where the following relationship is well known:
wW=00"

A general smoothness functional for a function f defined over the graph therefore has
the following form:
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which can alternatively be written as
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