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Many of the most signi� cant events in international relations—wars, coups, revo-
lutions, massive economic depressions, economic shocks—are rare events. They
occur infrequently but are considered of great importance. In international relations,
as in other disciplines, rare events—that is, binary dependent variables characterized
by dozens to thousands of times fewer 1’s (events such as wars or coups) than 0’s
(nonevents)—have proven dif� cult to explain and predict. Though scholars have
made substantial efforts to quantify rare events, they have devoted less attention to
how these events are analyzed. We show that problems in explaining and predicting
rare events stem primarily from two sources: popular statistical procedures that
underestimate the probability of rare events and inef� cient data-collection strate-
gies. We analyze the issues involved, cite examples from the international relations
literature, and offer some solutions.

The � rst source of problems in rare-event analysis is researchers’ reliance on logit
coef� cients, which are biased in small samples (those with fewer than two hundred
observations), as the statistical literature well documents. Not as widely understood
is that the biases in probabilities can be substantively meaningful when sample sizes
are in the thousands and are always in the same direction: estimated event
probabilities are always too small. A separate, often overlooked problem is that the
almost universally used method of computing probabilities of events in logit
analysis is suboptimal in � nite samples of rare-events data, leading to errors in the
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same direction as biases in the coef� cients. Applied researchers almost never correct
for underestimated event probabilities, even though doing so is easy. These prob-
lems will be innocuous in some applications; in others, however, the error can be as
large as the reported estimated effects. We demonstrate how to correct for these
problems and provide software to make the computation straightforward.

A second and more important source of problems in analyzing rare events lies in
how data are collected. Given � xed resources, researchers must weigh the tradeoff
between gathering more observations and including better or additional variables.
The fear of collecting data sets with no events (and thus with no variation on Y) has
led researchers to choose very large data sets with few, and often poorly measured,
explanatory variables. This choice is reasonable given the perceived constraints, but
far more ef� cient strategies exist. Researchers can, for example, collect all (or all
available) 1’s and a small random sample of 0’s and not lose consistency or even
much ef� ciency relative to the full sample. This strategy drastically changes the
optimal tradeoff between collecting more observations and including better vari-
ables by enabling scholars to focus data-collection efforts where they matter most;
for example, later in the article we use all national dyads for each year since World
War II to generate a data set with 303,814 observations, of which only 0.3 percent,
or 1,042 dyads, were at war. Data sets of this size are not uncommon in international
relations, but they make data management dif� cult, statistical analyses time-
consuming, and data collection expensive.1 (Even the more common data sets
containing 5,000–10,000 observations are inconvenient to deal with if one has to
collect variables for all the cases.) Moreover, most dyads involve countries with
little relationship to each other (such as Burkina Faso and St. Lucia) much less with
some actual probability of going to war, and so there is a well-founded perception
that much of the data is “nearly irrelevant.”2 Indeed, the data may have very little
substantive content, which explains why we can forgo collecting most of these
observations without much loss of ef� ciency. In contrast, most existing approaches
in political science designed to cope with this problem, such as selecting dyads that
are “politically relevant,”3 are reasonable and practical approaches to a dif� cult
problem, but they necessarily reframe the question, alter the population to which we
are inferring, or require conditional analysis (such as only contiguous dyads or only
those involving a major power). Less careful uses of these types of data-selection
strategies, such as trying to make inferences to the set of all dyads, are biased. With
appropriate easy-to-apply corrections, nearly 300,000 observations with 0’s need
not be collected or could even be deleted with only a minor effect on substantive
conclusions.

1. Bennett and Stam analyze a data set with 684,000 dyad-years and have even developed sophisti-
cated software for managing the larger 1.2 million dyad data set they distribute. Bennett and Stam
1998a,b.

2. Maoz and Russett 1993, 627.
3. Maoz and Russett 1993.
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These procedures enable scholars who wish to add new variables to an existing
data-set to save about 99 percent of the non� xed costs in their data-collection
budgets or to reallocate data-collection efforts to generate a larger number of
informative and meaningful variables than would otherwise be possible.4 Interna-
tional relations scholars over the years have given extraordinary attention to issues
of measurement and have generated a large quantity of data. By selecting on the
dependent variable as we suggest, scholars can build on these efforts; compared with
traditional sampling methods the method we propose will increase the ef� ciency of
subsequent data collections by changing the optimal tradeoff in favor of fewer
observations and more sophisticated measures that more closely re� ect the desired
concepts.

This procedure of selecting on Y also addresses a long-standing controversy
in the literature on international con� ict. Qualitative scholars devote their efforts
where the action is (the con� icts) but draw criticism for introducing bias by
selecting on the dependent variable. In contrast, quantitative scholars are
criticized for spending time analyzing very crude measures on many observa-
tions that for the most part contain no relevant information.5 To a certain degree,
the intuition on both sides is correct: the substantive information in the data lies
much more with the 1’s than the 0’s, but researchers must be careful to avoid
selection bias. Fortunately, corrections are easily made, and so the goals of both
camps can be met.6

Logistic Regression: Model and Notation

In logistic regression, a single outcome variable, Y i (i 5 1, . . . , n), is coded 1 (for
war, for example) with probability pi, and 0 (for peace, for example), with
probability 1 2 pi. Then pi varies as a function of some explanatory variables, such
as Xi for democracy. The function is logistic rather than linear, which means that it
resembles an escalator (see Figure 1), and mathematically it is expressed as

p i 5
1

1 1 e2b02b1X1i .

4. The � xed costs involved in gearing up to collect data would be borne with either data-collection
strategy, and so selecting on the dependent variable as we suggest saves something less in research
dollars than the fraction of observations not collected.

5. See Bueno de Mesquita 1981; Geller and Singer 1998; Levy 1989; Rosenau 1976; and Vasquez
1993.

6. We have found no discussion in political science of the effects of � nite samples and rare events on
logistic regression or of most of the methods we discuss that allow selection on Y. There is a brief
discussion of one method of correcting selection on Y in asymptotic samples in Bueno de Mesquita and
Lalman 1992 (appendix) and in an unpublished paper they cite that has recently become available as
Achen 1999.
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Another way to de� ne the same model is to � rst imagine an unobserved
continuous variable that represents the propensity of a country to go to war, Y*i.
We cannot measure this variable directly like we can the presence of war, but it
exists and we have some indicators of it (for example, we know that Iran’s
propensity to go to war today is higher than Barbados’, even though we observe
both to be in an equivalent state when it comes to the absence of military
con� ict). Let us assume that Y*i follows a logistic distribution, which is a
bell-shaped distribution that looks so close to the normal that from a substantive
perspective the difference is trivial (mathematically, of course, there is a small
difference).

If we observe Y*i and want to know the effects of Xi, most political scientists
would simply run a regression with Y*i as the dependent variable. However, instead
of observing Y*i, we only observe whether this propensity is greater than some
threshold beyond which the country goes to war. For example, if Y*i . 0, we should
see a war Y i 5 1; otherwise, if Y*i , 0, we should observe peace Y 5 0. This
observation mechanism (see Figure 2) turns out to be the chief troublemaker in bias
induced by rare events.

FIGURE 1. Examples of logistic curves

696 International Organization



The coef� cients of b are estimated using maximum likelihood.7 As part of the
estimation process, we also get the standard error, which for the estimate of b1 is
approximately the square root of

V~b̂1! 5
1

S i51
n p i~1 2 pi!X i

2 .

In this equation the factor most affected by rare events is pi(1 2 pi), which we
now interpret. Note that pi(1 2 pi) reaches its maximum at pi 5 0.5 and
approaches 0 as pi gets close to 0 or 1. Most rare-events applications yield very
small estimates of pi for all observations. However, if the logit model has some
explanatory power, the estimate of pi among observations for which rare events are
observed (that is, for which Yi 5 1) will usually be larger than among observations
for which Yi 5 0; the estimate will also be closer to 0.5, because probabilities in
rare-event studies are normally very small.8 The result is that pi(1 2 pi) will
usually be larger for 1’s than for 0’s, and so its contribution to the variance (its

7. Which merely gives the values that maximize the likelihood of getting the data we actually observe;
see King 1989.

8. Beck, King, and Zeng 2001.

FIGURE 2. Logit observation mechanism
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inverse) will be smaller. In this situation, additional 1’s will be more informative
than additional 0’s.

Finally, we note that in logistic regression the quantity of interest is not the raw
b̂ output most computer programs provide but the more direct functions of the
probabilities. For example, absolute risk is the probability that an event occurs given
chosen values of the explanatory variables, Pr(Y 5 1 u X 5 x). The risk ratio is the
same probability relative to the probability of an event given some baseline values
of X, such as Pr(Y 5 1 u X 5 1)/Pr(Y 5 1 u X 5 0), the fractional increase in the risk.
This quantity is frequently reported in the popular media (for example, the
probability of developing some forms of cancer increases by 50 percent if one stops
exercising) and is common in many scholarly literatures. Also of considerable
interest is the � rst difference (or risk difference), the change in probability as a
function of a change in a covariate, such as Pr(Y 5 1 u X 5 1) 2 Pr(Y 5 1 u X 5
0). The � rst difference is usually most informative when measuring effects, whereas
the risk ratio tends to be easier to compare across applications or time periods.
Although scholars often argue about the relative merits of each,9 we suggest that
when convenient it is best to report both the risk ratio and � rst difference or to report
the two component absolute risks.

Advantages of Selecting on the Dependent Variable

We � rst distinguish among alternative data-collection strategies and show how to
adapt the logit model for each. We then build on the adapted models to allow
rare-event and � nite sample corrections. Political scientists understand that selecting
a sample of data using a rule correlated with Y causes bias, even after controlling for
X.10 Some scholars know that data containing sample-selection bias can be cor-
rected. What seems essentially unknown in the discipline is that correcting for
selection on a binary dependent variable is easily accomplished, requires no
assumptions, and can save enormous costs in data collection.

Random selection is desirable because the selection rule is known to be indepen-
dent of all other variables (as long as the sample size is large enough) and so cannot
cause bias. Similarly, exogenous strati� ed sampling, which allows Y to be randomly
selected within categories de� ned by X (such as in a random sample of democracies
and a random sample of nondemocracies), is desirable for the same reasons. The
usual statistical models are optimal under both sampling schemes. Indeed, in
epidemiology, random selection and exogenous strati� ed sampling are both known
as cohort studies (or cross-sectional studies, to distinguish them from panel studies).

When one of the values of Y is rare in the population, analysts can save
considerable resources in data collection by randomly selecting within categories of

9. See Breslow and Day 1980, chap. 2; and Manski 1999.
10. For example, King, Keohane, and Verba 1994.
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Y. This is known in econometrics as choice-based or endogenous strati�ed sampling
and in epidemiology as a case-control design.11 This sampling design is also useful
for choosing qualitative case studies.12 The strategy is to select on Y by collecting
observations (randomly or all those available) for which Y 5 1 (the “cases”) and a
random selection of observations for which Y 5 0 (the “controls”). This sampling
method is often supplemented with known or estimated prior knowledge of the
population fractions of the available information on 1’s (for example, a list of all
wars is often readily available even when explanatory variables measured at the
dyadic level are not).

Finally, case-cohort studies begin with some variables collected on a large cohort
and then a subsample using all the 1’s and a random selection of 0’s. The
case-cohort study is especially appropriate when an expensive variable is added to
an existing collection, such as the dyadic data discussed earlier and analyzed later.
Imagine measuring strategic misperception; for 300,000 dyads, this would be
impossible, but much could be learned from a small case-control design.

Many other hybrid data-collection strategies have also been tried and might be
useful in international relations. For example, Bruce Bueno de Mesquita and David
Lalman’s data-collection design is fairly close to a case-control study with “con-
taminated controls,” meaning that the “control” sample is taken from the whole
population rather than only from those observations for which Y 5 0.13 Although
we do not analyze hybrid designs in this article, our view is not that pure
case-control sampling is appropriate for all political science studies of rare events
(one could argue, for example, that additional ef� ciencies might be gained by
modifying a data-collection strategy to � t variables that are easier to collect within
regional or language clusters). Rather, we argue that scholars should consider a
much wider range of potential sampling strategies and associated statistical methods
than are now common. We focus here only on the leading alternative design, which
we believe has the potential for widespread use.

Data-collection designs that select on Y can be ef� cient but are valid only with the
appropriate statistical corrections. In the next section we discuss the method of prior
correction for estimation under choice-based sampling (we discuss other estimation
methods in our companion article). For the past twenty years econometricians have
made steady progress in generalizing and improving these methods. However,
David Hsieh, Charles Manski, and Daniel McFadden have shown that two of these
econometric methods are equivalent to prior correction for the logit model.14 We
recently explicated this result and showed that the best econometric estimator in this
tradition also reduces to the method of prior correction under the logit model.15 We
later summarize problems to avoid in designing choice-based samples.

11. Breslow 1996.
12. King, Keohane, and Verba 1994.
13. See Bueno de Mesquita and Lalman 1992; and Lancaster and Imbens 1996a.
14. Hsieh, Manski, and McFadden 1985.
15. King and Zeng forthcoming.
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Correcting a Case-control Analysis

Prior correction is the easiest method of correcting a logistic regression in a
case-control sampling design. The procedure is to run a logistic regression and
correct the estimates based on external information about the fraction of 1’s in the
population, t, and the observed fraction of 1’s in the sample (or sampling proba-
bility), y# . Knowledge of t can be derived from census data, a random sample from
the population measuring Y only, a case-cohort sample, or other sources. In studies
of international con� ict, we typically have a census of con� icts even if we are
analyzing only a small subset, and so t is generally known.16

In any of the sampling designs discussed earlier, the logit model slope coef� -
cients, b̂1, are statistically consistent estimates of b1, and so correction is unneces-
sary. That this result holds for case-control designs under the logit model seems
magical, and it is widely seen as such even by those steeped in the mathematics. The
result holds only in the popular logistic regression model, not in probit or linear
regression. Although the slope coef� cients are consistent even in the presence of
selection on Y, they are of little use alone: scholars are not typically interested in b1

but rather in functions of the probability that an event occurs, Pr(Yi 5 1 u b) 5 pi 5
1/(1 1 e2 b02Xib1), which requires good estimates of both b1 and b0.

17 Correcting
the constant term is easy; instead of the estimate produced by the computer, b̂0, use
the following:

b̂0 2 ln F S 1 2 t

t
D S y#

1 2 y# D G (1)

A key advantage of prior correction is its ease of use. Any statistical software that
can estimate logit coef� cients can be employed, and Equation (1) is easy to apply
to the intercept. If the functional form and explanatory variables are correct,
estimates are consistent and asymptotically ef� cient.

Problems to Avoid

Selecting on the dependent variable in the way we suggest has several pitfalls that
should be carefully avoided. First, prior correction is appropriate for sampling
designs that require independent random (or complete) selection of observations for
which Y i 5 1 and Y i 5 0. Both the case-control and case-cohort studies meet this
requirement. However, other endogenous designs, such as hybrid approaches and

16. For methods for the case where t is unknown, see King and Zeng 2000.
17. Epidemiologists and biostatisticians usually attribute prior correction to Prentice and Pyke 1979;

econometricians attribute the result to Manski and Lerman 1977, who in turn credit an unpublished
comment by Daniel McFadden. The result was well-known in the special case of all discrete covariates
and has been shown to apply to other multiplicative intercept models. See Bishop et al. 1975, 63; and
Hsieh, Manski, and McFadden 1985, 659.
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approaches that employ sampling in several stages using nonrandom selection,
require different statistical methods.

Second, when selecting on Y , care must be taken not to select on X differently for
the two samples. A classic example of this is selecting all people in the local hospital
with liver cancer (Yi 5 1) and selecting a random sample of the U.S. population
without liver cancer (Yi 5 0). The problem is not recognizing the implicit selection
on X; that is, the sample of cancer patients selects on Yi 5 1 and implicitly on the
inclination to seek health care, � nd the right medical specialist, have the right tests,
and so on. Since the Yi 5 0 sample does not similarly select on the same
explanatory variables, the data would induce selection bias. One solution in this
example might be to select the Yi 5 0 sample from those who received the same
liver cancer test but turned out not to have the disease. This design would yield valid
inferences, albeit only for the health-conscious population with liver cancer-like
symptoms. Another solution would be to measure and control for the omitted
variables.

Inadvertently selecting on X can be a serious problem in endogenous designs, just
as selecting on Y can bias inferences in exogenous designs. Moreover, although in
the social sciences random (or experimenter control over) assignment of the values
of the explanatory variables for each unit is occasionally possible in exogenous or
random sampling (and with a large n is generally desirable since it rules out omitted
variable bias), random assignment on X is impossible in endogenous sampling.
Fortunately, bias caused by selection on X is much easier to avoid in applications
such as international con� ict and related � elds, since a clearly designated census of
cases from which to draw a sample is normally available. Instead of relying on the
decisions of subjects about whether to come to a hospital and take a test, the
selection into the data set in our � eld can often be entirely determined by the
investigator.18

A third problem with intentionally selecting on Y is that valid exploratory data
analysis can be hazardous. In particular, one cannot use an explanatory variable as
a dependent variable in an auxiliary analysis without taking special precautions.19

Finally, the optimal tradeoff between collecting more observations and using
better or more explanatory variables depends on the application, and so decisions
will necessarily involve judgment calls and qualitative assessments. Fortunately, to
guide these decisions in � elds like international relations we can tap large bodies of
work on methods of quantitative measurement and qualitative studies that measure
hard-to-collect variables for a small number of cases (such as leaders’ perceptions).

We can also use formal statistical results to suggest procedures for determining
the optimal tradeoff between collecting more observations and using better vari-
ables. First, when 1’s and 0’s are equally easy to collect and an unlimited number
of each are available, an “equal-shares sampling design” (that is, y# 5 0.5) is

18. Holland and Rubin 1988.
19. Nagelkerke et al. 1995.
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optimal in a limited number of situations and close to optimal in many.20 This is a
useful fact, but in � elds like international relations, the number of observable 1’s
(such as wars) is strictly limited, so in most applications it is best to collect all
available 1’s or a large sample of them. The only real decision then is how many 0’s
to collect as well. If collecting 0’s is costless, we should collect as many as we can
get, since more data are always better. If collecting 0’s is not costless but not (much)
more expensive than collecting 1’s, we should collect more 0’s than 1’s. However,
since the marginal contribution to the explanatory variables’ information content for
each additional 0 starts to drop as the number of 0’s passes the number of 1’s, we
will not often want to collect more than (roughly) two to � ve times more 0’s than
1’s. In general, the optimal number of 0’s depends on how much more valuable the
explanatory variables become with the resources saved by collecting fewer obser-
vations.

Finally, a useful practice is to proceed sequentially. First, collect all the 1’s and
(say) an equal number of 0’s. If the standard errors and con� dence intervals are
narrow enough, stop; otherwise, continue to sample 0’s randomly and stop when the
con� dence intervals become suf� ciently small for the substantive purposes at hand.
For some samples, it might even be ef� cient to collect explanatory variables
sequentially as well, but this is not often the case.

Rare-event Corrections

In this section we discuss methods of computing probability estimates that correct
problems resulting from rare events or small samples (or both). Using these methods
is easy; instead of logit, you would use our ReLogit software. Instead of logit
coef� cients, you get bias-corrected coef� cients; instead of probabilities, you get
relative risks; and � rst differences computed on the basis of logit coef� cients result
in better estimates from relogit runs. The procedure is as easy to use as logit, and in
Stata it is virtually the same. When the results make a difference, our methods work
better than logit; when they do not, these methods give the same answer as logit.
There does not appear to be a cost to switching, although only in some data with
either rare events or small samples does it make much of a difference.

The usual method of estimating a probability is to run a logit, record the estimated
coef� cients b̂0 and b̂1, choose a value for the explanatory variable (or variables) X,
and plug these into the following equation:

p̂ 5
1

1 1 e2̂b02̂b1X
. (2)

20. See Cosslett 1981; and Imbens 1992.
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Unfortunately, two distinct problems in data with rare events or small samples affect
this method of computing probabilities. First, the coef� cient estimates are biased.
Second, even if you use our unbiased version of logit coef� cients, plugging these
into Equation (2) would still be an inferior estimator of the probability. The details
of our corrections to each problem are given in our companion paper. In this section,
we use simple relationships and graphs to provide some intuition into the problems
and corrections.

Parameter Estimation

We know from the statistical literature that logit slope and intercept estimates are
biased in � nite samples, and that less biased and more ef� cient methods are
available (unlike the sampling designs mentioned earlier, these corrections affect all
the coef� cients). This knowledge has apparently not made it into the applied
literatures partially because the statistical literature does not include studies showing
how rare events greatly magnify the biases. This omission has led to conclusions
that downplay the effects of bias; Robert L. Schaefer, for example, argues that
“sample sizes above 200 would yield an insigni� cant bias correction.”21

Finite-sample bias ampli� ed by rare events is occasionally discussed informally
in the pattern-recognition and classi� cation literatures,22 but it is largely unknown
in most applied literatures and to our knowledge has never been discussed in
political science. The issue is not normally considered in the literatures on case-
control studies in epidemiology or choice-based sampling in econometrics, though
these literatures reveal a practical wisdom given that their data-collection strategies
naturally produce samples where the proportion of 1’s is about half.

Our results show that, for rare-events data, the probability of war, Pr(Y 5 1), is
underestimated, and hence the probability of peace, Pr(Y 5 0), is overestimated. To
grasp this intuitively, consider a simpli� ed case with one explanatory variable, as
illustrated in Figure 3. First, we order the observations on Yi according to their
values on Xi (the horizontal dimension in Figure 3). If b1 . 0, and so the probability
of Yi 5 1 is positively related to the value of Xi, most of the 0’s will be to the left
and the 1’s will be to the right with little overlap. Since there were so many 0’s in
the example, we replaced them with a dashed line that represents the density of X
in the Y 5 0 group. The few 1’s in the data set appear as short vertical lines, and
the distribution from which they were drawn appears as a solid line that represents
the density of X in the Y 5 1 group. (As drawn, the distributions of X for 0’s and
1’s are normal, but that need not be the case.) Although the large number of 0’s
allows us to estimate the dashed density line using a histogram essentially without
error, any estimate of the solid density line for X when Y 5 1 from the mere � ve
data points will be very poor and, indeed, systematically biased toward tails that are

21. Schaefer 1983, 73.
22. Ripley 1996.
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too short. To conceptualize this, consider � nding a cutting point (value of X) that
maximally distinguishes the 0’s and 1’s, that is, by making the fewest mistakes (0’s
misplaced to the right of the cut point or 1’s to the left). This cutting point is related
to the logistic regression estimate of b and would probably be placed just to the left
of the vertical line farthest or second farthest to the left. Unfortunately, with many
more 0’s than 1’s, the maximum value of X in the Y 5 0 group, max(X u Y 5 0) (and
more generally the area in the right tail of the density of X in that group, P(X u Y 5
0), will be well estimated, but min(X u Y 5 1) (and the area in the left tail of
P(X u Y 5 1) will be poorly estimated. Indeed, min(X u Y 5 1) will be systematically
too far to the right. (This is general: for a � nite number of draws from any
distribution, the minimum in the sample is always greater than or equal to the
minimum in the population.) Since the cutting point is a function of these tails
(which roughly speaking is related to max(X u Y 5 0) 2 min(X u Y 5 1)), it will be
biased in the direction of favoring 0’s at the expense of 1’s, and so Pr(Y 5 1) will
be too small.

To explain what the rare-events correction is doing, we have derived a simple
expression in a special case. The bias term appears to affect the constant term
directly and the other coef� cients primarily as a consequence; therefore, we consider
the special case with a constant term and one explanatory variable and with b0

estimated and b1 5 1 � xed. For this case, we � nd that the estimated intercept is
larger on average than the true intercept by approximately (p# 2 0.5)/[np# (1 2 p# )],
where p# is the average of all the probabilities in the data. Since p# , 0.5 in
rare-events data, the numerator, and thus the entire expression, is negative. This
means b̂0 is too small, and consequently Pr(Y 5 1) is underestimated. The

FIGURE 3. How rare events bias logit coef� cients
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denominator is also informative, because it shows that as n (the number of
observations) gets large, the bias vanishes. Finally, the factor p# (1 2 p# ) in the
denominator gets smaller as events become rarer. Since this factor is in the
denominator, the entire equation for bias is ampli� ed with rarer events (that is, as p#

approaches 0).

Probability Calculations

If b̂ are all the coef� cients from the usual logistic regression, and we de� ne b̃ as the
bias-corrected version outlined earlier, we can compute a probability by plugging
this bias-corrected version into the same equation,

p̃ 5 Pr~Y 5 1 u b̃! 5
1

1 1 e2X0 b̃
.

It is true that p̃ is preferable to p̂, but p̃ is still not optimal because it ignores the
uncertainty in b̃.23 This uncertainty can be thought of as sampling error or as the fact
that b̃ is estimated rather than known. In many cases, ignoring estimation uncer-
tainty leaves the point estimate unaffected and changes only its standard error.
However, because of the nature of p as a quantity to be estimated, ignoring
uncertainty affects the point estimate, too.

Indeed, ignoring estimation uncertainty by plugging in an estimate of b generates
too small an estimated probability of a rare event (or in general an estimate too far
from 0.5). This can be understood intuitively by considering the underlying
continuous variable Y* that the basic model assumes to be logistic (that is, pretty
close to normal). In the model shown in Figure 4 the probability is the area to the
right of the threshold (the dark shaded area to the right of zero under the solid
curve), an area typically less than 0.5 in rare-events data. The problem is that
ignoring uncertainty about b leads to a distribution whose variance is too small and
thus (with rare events) has too little area to the right of the threshold. To see what
happens when adding in the uncertainty, imagine jiggling around the mean of the
logistic distribution, noted on Figure 4 as m 5 Xb̃, and averaging the blur of
distributions that results. Since IO is not yet capable of showing animated graphics,
we present only the result: In Figure 4 the additional variance is illustrated in the
change from the solid to the dashed density line; that is, the variance of the
distribution increases when we include the uncertainty in the estimate b̃. As a result
of this increased variance, the mean stays in the same position, but the area to the
right of the 0 threshold has increased (from the dark-shaded area marked Pr(Y 5
1 u b̃) to both shaded areas, marked Pr(Y 5 1)). This means that including
uncertainty makes the probability larger (closer to 0.5).

23. For example, King, Tomz, and Wittenberg forthcoming.
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Thus, both the change to unbiased logit coef� cients and the change to the
improved method of computing probabilities lead to an increase in the estimated
probability compared with the traditional methods based on logistic regression. The
effect is largest when events are rare or when the sample size is small, whether or
not events are rare.

When Does It Make a Difference in Practice?

In this section, we consider separately the corrections for selecting on Y and for rare
events, and we quantify when our recommended approaches make a material
difference.

Selecting on Y in Militarized Interstate Dispute Data

To demonstrate the advantages of case-control sampling we compiled a data set on
international con� ict with dyad-years as observations fairly typical of those in the

FIGURE 4. The effect of uncertainty on probabilities
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literature.24 The outcome variable is coded 1 if the dyad was engaged in a
“militarized interstate dispute,” and 0 otherwise. The explanatory variables include
those typically used in this � eld, including whether the pair of countries includes a
major power, are contiguous, are allies, and have similar foreign policy portfolios.
Also included are the balance of military power, the number of years since the last
dispute, and the nation in the dyad having the minimum and maximum degrees of
trade dependency and democracy.

Table 1 presents � ve analyses. The � rst column shows a traditional logistic
regression on all 303,814 observations. The next column shows prior correction
applied to data with 90 percent of the 0’s dropped, leaving only n 5 31,319
observations. In the last column 99 percent of the 0’s have been dropped, resulting
in only n 5 4,070 observations. For simplicity, and because of the large n, we
ignore the � nite sample and rare-events corrections for now.

The numerical results in the 90-percent column are fairly close to those in the full
sample, with standard errors that are only slightly higher. The analysis with 99
percent of the 0’s dropped is also reasonably close to the full sample, but as expected
the results are more variable. That the standard errors are slightly larger re� ects, and
predicts, this fact. Of the forty-four coef� cients in the four subsample columns, only
a few numbers vary enough to make much of a substantive difference in interpre-
tation (such as indicating changes in signi� cance or magnitude). Of course, since
deleting too many observations can decrease ef� ciency too much and make standard
errors unacceptably large, one must always consider the tradeoff between the
ef� ciency gained by including more observations and the resources saved by using
better variables. Collecting all dyads, as is now the universal practice, rarely
represents the optimal tradeoff, but the decision depends on the goals of the
particular application. Be aware that in interpreting Table 1, we expect some
variation across the rows due to random sampling. For example, if these columns
were analyses of independent random samples of the same size from the same
population, we would expect considerable variation across each row (with samples
of about 1,000, as is common, the 95-percent con� dence interval would be 66
percent).

The explanatory variables chosen for this application re� ect approximately the
state of the art in this � eld but predict international con� ict only very weakly. As
such, a key concern among researchers has been to � nd more meaningful and
reliable measures, but the sheer magnitude of the data-collection task effectively
dictates far simpler, more arbitrary measures. Using a case-control design, a
researcher with a � xed budget can measure much more sophisticated explanatory
variables. One way to think about the effort being saved or redirected would be to
imagine collecting data for all 303,814 observations but having seventy-� ve times
as many researchers available to collect it (303,814/4,070). (This calculation

24. We began with all dyad-years from 1946 to 1992 available in Tucker 1998; merged variables from
Bennett and Stam 1998a,b; and computed years since the last dispute using the program by Tucker 1999
and using measures of alliance portfolios in Signorino and Ritter 1999.
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exaggerates the savings for types of variables that are easier to measure in regional
or language clusters and for which an alternative method of selecting on Y might be
helpful.) Variables that were previously infeasible to include using quantitative
methods but might now be worth collecting include trade commodity data (since the
aggregate � gures do not distinguish between types of products and services),
measures of leaders’ perceptions based on survey data or historical work, more
meaningful measures of physical proximity between countries than contiguity, and
information on the process of strategic interaction as crises unfold.25 Collecting data
on each of these variables can be expensive; by reducing the number of observations
and thus the amount of data needed, we should be able to learn a great deal more
about international con� ict than was previously possible.

25. Signorino 1999.

TABLE 1. Estimating the same parameters without 99 percent of the data

Explanatory variables Full samplea
Prior correction

(90% of 0’s dropped)b
Prior correction

(99% of 0’s dropped)b

Contiguous 3.56 3.55 3.96
(0.09) (0.10) (0.12)

Allies 20.27 20.21 20.28
(0.09) (0.12) (0.15)

Foreign policy 0.23 0.45 0.38
(0.20) (0.24) (0.26)

Balance of power 1.00 0.96 1.13
(0.13) (0.15) (0.19)

Max. democracy 0.20 0.13 0.17
(0.06) (0.07) (0.08)

Min. democracy 20.18 20.07 20.06
(0.06) (0.07) (0.08)

Max. trade 0.05 0.05 0.05
(0.01) (0.01) (0.01)

Min. trade 20.07 20.07 20.08
(0.01) (0.01) (0.01)

Years since dispute 20.11 20.10 20.09
(0.01) (0.01) (0.01)

Major power 1.31 1.81 2.2
(0.09) (0.12) (0.14)

Constant 26.78 26.91 27.14
(0.23) (0.26) (0.30)

n 303,814 31,319 4,070

Note: Numbers in parentheses are standard errors.
aLogistic regression coef� cients based on a full sample.
bLogistic regression coef� cients after prior corrections on data with 90 and 99 percent of Yi 5 0

observations randomly dropped.
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The Effects of Rare-event and Small Sample Corrections

We now quantify the conditions under which our � nite sample and rare-events
corrections are large enough to counterbalance the extra effort involved in imple-
menting them. We focus here only on full cohort studies and leave for subsequent
sections the combination of case-control sampling and the small-sample or rare-
events corrections. Our method is to simulate arti� cial data sets from a world whose
characteristics we know (because we created it) and are similar to real-world data.
We then run our methods and the standard methods and see when the differences are
large enough to worry about.

We � rst generated n observations from a logistic regression model with a constant
and one explanatory variable, for � xed parameters b0 and b1 5 1. We set the sample
size to

n 5 $100, 200, 500, 1,000, 2,000, 3,000, 4,000, 5,000, 10,000, 20,000%

and the intercept to

b0 5 $27, 26, 25, 24, 23, 22, 21, 0%.

These values generate Y vectors with the percentages of 1’s equaling (100 3 y# )%
5 {0.15, 0.4, 1.1, 2.8, 6.9, 15.6, 30.4, 50}, respectively. We excluded
experiments with both very small percentages of 1’s and small sample sizes to avoid
generating Y vectors that are all 0’s. This mirrors the common practice of studying
rarer events in larger data sets. For each of these experiments, we computed the
maximum difference in probability by � rst taking the difference in estimates of
Pr(Y 5 1 u X 5 x) between the traditional logit model and our preferred “approx-
imate Bayesian” method, for each of thirty-one values of x, equally spaced between
25 and 5, and then selecting the maximum. We also computed one relative risk,
where we changed X from 21 to 1: Pr(Y 5 1 u X 5 1)/Pr(Y 5 1 u X 5 21). The
pair of X values, {21, 1}, de� nes a typical relative risk that might be computed in
examples like this, since it is at 61 standard deviation of the mean of X, but it is,
of course, neither the maximum nor the minimum difference in relative risk that
could be computed between the two methods.

Finally, for each Monte Carlo experiment, we computed the maximum absolute
risk and the relative risk averaged over 1,000 simulated data sets. We have repeated
this design with numerous other values of n, b0, and b1, and explanatory variables
in different numbers and drawn from different (including asymmetric and partially
discrete) densities. We also computed different absolute and relative risks. These
other experiments led to conclusions similar to those presented here.

We summarize the results in Figure 5; Figure 5a shows the maximum absolute
risk, and Figure 5b shows the relative risk. The horizontal axis in both � gures is the
percentage of 1’s in the sample, with data sets that have the rarest events at the left
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of the � gure. For visual clarity, the horizontal axis is on the original logit scale;
labeled percentages are (100 3 y# )%, but the tick marks appear at values of b0. In
Figure 5a, the vertical axis is the maximum difference in absolute risk estimated by
the two methods; for visual clarity, it is presented on the log scale. In Figure 5b, the
vertical axis is the absolute difference in relative risk, again on the log scale. One
line is given for each sample size.

Several conclusions are apparent from Figure 5. First, as can be seen by
comparing the lines within either panel, the smaller the sample size, the higher
the line, and thus the greater the effect of our method. Second, since each line
slopes downward, the rarer the events in a data set, the larger the effect of
switching methods. Clearly, sample size and rareness of events are exchangeable
in some way since both measure the quantity of information in the data.

FIGURE 5. Logit-Bayesian differences in (a) absolute risk and (b) relative risk as
a function of sample size and rareness of events
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We now examine the speci� c numerical values. To understand these numbers,
it is important to appreciate that what may seem like small values of the
probabilities can have overwhelming importance in substantive analyses of
genuine rare-events data. For example, if a collection of 300,000 dyads shows
a 0.001 increase in the probability of war, the � nding is catastrophically
important because it represents about three hundred additional wars and a
massive loss of human life. Relative risks are typically considered important in
rare-event studies if they are at least 10 –20 percent, but, of course, they can
range much higher and have no upper limit. In Scott Bennett and Allan Stam’s
extensive analysis of con� ict initiation and escalation in all dyads, for example,
a majority of the sixty-three relative risks they report have absolute values of
less than 25 percent.26

By these comparisons, the numerical values on the vertical axis of Figure 5a are
sizeable and of Figure 5b are very large. For a sample with 2.8 percent 1’s, the
difference in relative risk between the methods is about 128 percent for n 5 500.
This means that when the logit model estimate of a treatment effect (that is, a given
change in X) increases the risk of an event by 10 percent, for example, the estimate
in our suggested method will increase the risk by 128 percent on average. This is a
very substantial difference. Under the same circumstances, the difference between
the methods in relative risk is 63 percent for n 5 1,000, and 28 percent for n 5
2,000. For 1.1 percent 1’s, our preferred method differs from logit, on average, by
332 percent for n 5 500, 173 percent for n 5 1,000, and 78 percent for n 5
2,000. These differences are well above many of the estimated relative risks
reported in applied literatures.

For absolute risk, with 2.8 percent 1’s, the difference in the methods is about
3 percent for n 5 500, 2 percent for n 5 1,000, and 1 percent for n 5 2,000. With
1.1 percent 1’s, the difference between the logit and Bayesian methods in absolute
risk is about 4 percent for n 5 500, 3 percent for n 5 1,000, and 2 percent for n 5
2,000. These differences in absolute risk are larger than the reported effects for
many rare-events studies. The main exceptions are for those studies able to predict
rare events with high levels of accuracy (so that estimates of pi are large when Yi 5
1). Of course, Figure 5 reports the average differences in absolute and relative risk
between logit and our preferred method; the real effect in any one application can
be larger or smaller.

Figure 5 also demonstrates that no sample size is large enough to evade � nite
sample problems if the events are suf� ciently rare. For example, when n 5 20,000
and 0.15 percent of the sample are 1’s, the difference between the existing methods
and our improved methods is 1.8 percent in absolute risk and 53.5 percent in relative
risk.

26. Bennett and Stam 1998b, tab. 4. We translated their reported relative risk to our percentage
� gure—if r was their measure, ours is 100(r 2 1).
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Rare-event Corrections in Deterrence Outcomes

We illustrate our methods here by reanalyzing Paul Huth’s analysis of the deter-
minants of deterrence outcomes.27 We reproduced his probit analysis (from his
Table 1), reran the data with logit (which changed nothing important), and then
applied our techniques. Huth’s analysis predicts the probability of deterring an
aggressor as a function of the military balance of forces, the countries’ bargaining
behaviors, and their reputation earned in past deterrence episodes. The data include
� fty-eight observations and about 58 percent 1’s. Although this is not a rare-events
situation, recall that a small number of observations is equivalent, and according to
Figure 5 Huth’s case should be approximately equivalent in terms of the effects of
our method to a data set with n 5 1,000 and 2.4 percent 1’s, or n 5 2,000 and 1.2
percent 1’s.

For simplicity, we focus only on Huth’s � rst two substantive interpretations.28

Table 2 summarizes our reanalyses for the change in absolute risk (a � rst difference)
and relative risk resulting from a change in the immediate balance of military forces,
holding other variables constant at their means. For example, according to the
traditional logit approach, a change in the balance of forces from a 1:4 disadvantage
for the defender to equality increases the probability of deterrence success by 19.5
percentage points. In contrast, our approximate Bayesian approach gives a much
smaller effect of only 11.9 points. (Our approach reduces the effect, rather than
increasing it, because y# . 0.5.) Using traditional logit methods to measure relative
risk yields an estimate of 40.1 percent, but our method suggests a more modest
effect of only 23.2 percent. Similar reductions also occur when changing the balance
of military forces from equality to 3:1 for the defender, as in the second row of Table
2. Overall, our approach produces fairly large and substantively meaningful
changes.

27. Huth 1988.
28. Huth 1988, 437.

TABLE 2. Replication of “extended deterrence and the outbreak of war” from
Huth 1988

Change in balance of military forces First difference Relative risk

Logit Bayes Logit Bayes
1:4 to 1:1 19.5% 11.9% 40.1% 23.2%
1:1 to 3:1 26.9% 16.8% 39.6% 26.4%

Note: The “� rst difference” is the difference between two absolute risks as the balance of military
forces changes (as indicated in the � rst column) (n 5 58).
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Corrected Forecasts of State Failure

Finally, we include an analysis of data taken from the U.S. government’s State
Failure Task Force.29 We use all data for all European nations since the fall of the
Soviet Union (n 5 348). State failure includes the collapse of the authority of the
central government to impose law and order, such as occurs during civil war or
disruptive regime transitions. As in King and Zeng, the explanatory variables used
to explain state failure include the size of the military relative to the size of the total
population, population density, legislative effectiveness, democracy (coded into two
indicator variables representing autocracy, and partial and full democracy), trade
openness, and infant mortality.30 The fraction of state failures in the data is 1.15
percent.

Our previous results, and those of the State Failure Task Force, indicate that
infant mortality is a key indicator of state failure. The assumption is that keeping
infant mortality low tends to be an important goal of all governments. Countries that
are unable to meet this goal tend to be at greater risk of state failure, whether or not
they are democratic, have low military populations, have high trade openness, and
so on. We computed the relative risk of state failure from the usual logit model by
changing infant mortality from 30 percent of the world median to the world median
(or roughly one standard deviation below to one standard deviation above the infant
mortality rate for cases with state failure in Europe since 1990). This change,
holding other variables constant at their median, yields a relative risk of 33.4. Thus,
according to the usual logit model, a nation with infant mortality at 30 percent of the
world median level of infant mortality has 33.5 times higher probability of state
failure than a nation at the world median. When corrected, our more accurate point
estimate of relative risk drops to only 10.2. This estimate has smaller mean square
error and less bias. The 90-percent con� dence interval is wide but still lower than
the standard logit point estimate, ranging from 5.0 to 29.1.

Concluding Remarks

We have discussed how to make the best use of existing rare-events data and how
to improve data-collection efforts in the future. To improve existing rare-events
data, we offered the intuition behind easy-to-use methods for replacing logistic
regression technology to reduce bias and increase accuracy with little cost. To
improve future data-collection efforts, more essential from the perspective of
quantitative studies of international con� ict, we offered alternative strategies for
collecting data. These strategies will enable scholars to collect much more infor-
mative data on a far smaller sample of cases without losing much information
needed to make inferences to the entire population of nations or dyads globally.

29. Esty et al. 1998a,b.
30. Ibid.
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Analysts have spent considerable resources over the years amassing large and
impressive data collections regarding international con� ict, but qualitative research-
ers still rightly complain that these collections miss much of the substance of the
problem, code only simplistic variables, and contain relatively little information
despite their size. The methods we propose here enable researchers to code far better
variables without increasing their costs. Perhaps this will help to narrow the rift in
political science between quantitative and qualitative approaches to explaining
international con� ict.

When analysts use these alternative data-collection strategies, the population
fraction of events will still be rare, and the resulting samples will often be fairly
small. The methods we propose allow researchers to correct estimates in alternative
sampling designs and in rare-events data. The use of both types of corrections will
be synergistically more useful than either one alone.
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