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Although not widely known until much later, Al Gore received 202 more votes than George W. Bush on election day in Florida.
George W. Bush is president because he overcame his election day deficit with overseas absentee ballots that arrived and were counted
after election day. In the final official tally, Bush received 537 more votes than Gore.These numbers are taken from the official results
released by the Florida Secretary of State’s office and so do not reflect overvotes, undervotes, unsuccessful litigation, butterfly ballot
problems, recounts that might have been allowed but were not, or any other hypothetical divergence between voter preferences and
counted votes. After the election, the New York Times conducted a six-month investigation and found that 680 of the overseas
absentee ballots were illegally counted, and almost no one has publicly disagreed with their assessment. In this article, we describe
the statistical procedures we developed and implemented for the Times to ascertain whether disqualifying these 680 ballots would
have changed the outcome of the election. These include adding formal Bayesian model averaging procedures to models of ecolog-
ical inference. We present a variety of new empirical results that delineate the precise conditions under which Al Gore would have
been elected president and offer new evidence of the striking effectiveness of the Republican effort to prevent local election officials
from applying election law equally to all Florida citizens.

Introduction

M any aspects of the 2000 presidential election were the
subject of considerable media interest, litigation, and
academic analysis during the uncertain month that fol-

lowed the voting. But one aspect of the election, Florida’s over-
seas absentee ballots, received little attention and was the object
of no legal action. Yet it determined the outcome: if only the
votes cast on election day were counted, Al Gore would have
beat George W. Bush by 202 votes and become president.
According to official results from the State of Florida, it took
the overseas absentee ballots for Bush to outdistance Gore,
which he did in the end by 537 votes (see table 1). The extent
to which the law was followed in this small but consequential
part of the story escaped scrutiny for some time. After the
election was certified, however, the New York Times conducted

a six-month investigation, during which it retrieved the enve-
lopes in which the ballots were mailed and searched for viola-
tions of the law.1 In one of the longest sets of articles ever
published by the Times, the news organization concluded that
680 of the overseas absentee ballots that had been counted by
Florida counties unambiguously violated one or more aspects
of Florida election law and, by any reasonable interpretation of
the law, should have been discarded. Indeed, after the Times
story appeared, commentators and partisans from both sides
accepted these factual claims.2

In comparison with other features of the election that have
been studied, this problem was not caused by old machines or
the inattention of local election officials. It also does not rely
on somehow inferring the intent of the voters. Rather, accord-
ing to the Times, the overseas ballot problem was due to bla-
tantly illegal actions on the part of local election officials,
encouraged by Republicans, that had not been previously
noticed. The Times argued that these local officials were influ-
enced by the deliberate political strategies employed by the
Bush campaign and by comparative neglect from the Demo-
crats.3 The Times concluded that “under intense pressure from
the Republicans, Florida officials accepted hundreds of over-
seas absentee ballots that failed to comply with the state laws.”4

Were these 680 inappropriately counted ballots enough to have
thrown the election to the wrong candidate? The Times hired
us to find out. Our conclusions were presented as part of the
story5 and our methods were briefly described in a sidebar.6

In this article, we discuss in detail the methods we developed
for this project. The case calls for ecological inference: we observe
the number of bad ballots found in each Florida county and
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the number of ballots cast and counted for each candidate.
From these variables and other auxiliary information we try to
infer the total number of bad ballots cast for each candidate
and determine whether this is enough to offset Bush’s official
537 vote margin.

Since the partisan atmosphere surrounding public discourse
on this issue was so highly charged, we knew that our work
would be subject to more than the usual academic and public
scrutiny and sought methods that would be least vulnerable to
partisan criticism. We therefore used three separate approaches:
Inference (1) with no statistical assumptions, (2) with a suc-
cession of single models that any partisan might have consid-
ered, and, finally, (3) with Bayesian model averaging, which
enabled us to average over all of these single models, using
weights based on the relative probability that each model is
correct, as estimated from the data. So that others can use
these methods to analyze similar problems, we have included
all new methods introduced here in the program EI: A Pro-
gram for Ecological Inference.

We estimate the probability that Gore would have won the
election if the law had been followed in this instance. This
probability is small, but we show that with mathematical cer-
tainty it is greater than zero. Secondly, although our results
suggest that it is unlikely that illegal overseas absentee ballots
alone changed the election outcome, we show that Bush’s mar-
gin of victory would likely have been much narrower if those
flawed ballots had not been counted. This supports the argu-
ment made by the Times that the flawed ballots favored Bush
much more than Gore. We also present a variety of results that
did not appear in the Times article, including the probability
that Gore would have won under various hypothetical scenar-
ios, such as if Florida Secretary of State Katherine Harris had
accepted Palm Beach County’s recount, which was submitted
two hours late. In some plausible scenarios, the probability
that Gore would have won is nearly 100 percent. Finally, and
perhaps most interesting, we present evidence that the propen-
sity of local election officials to violate the law and accept bad
ballots was substantially greater in counties where Bush strat-
egists believed there was more absentee ballot support for their
candidate and tried to convince election officials to accept bad
ballots. This is consistent with the Times’ thesis and evidence
that local election officials yielded to the will of Republican
lobbyists.

Invalid Overseas
Absentee Ballots
in Florida
On July 15, 2001, the New York
Times published “How Bush
Took Florida: Mining the Over-
seas Absentee Vote.” The Times
reporters described the details of
the Bush campaign effort to
secure victory by pressuring
selected local election officials to
count invalid overseas absentee
ballots in Florida. In particular,

Republicans focused on military ballots and counties where
Bush had his strongest voting base. For example, in counties
such as Escambia and Santa Rosa, Bush lawyers argued that
every vote cast by Americans in uniform should be counted,
regardless of the letter of the law. In Democratic counties,
Bush’s lawyers argued exactly the opposite—that local election
officials must follow the letter of the law and disqualify any
ballot not meeting the rules.

According to the Times, this unequal pressure led to unequal
treatment by local officials of overseas voters. That partisans
would pursue their interests creatively, relentlessly, and even
inconsistently in different places is neither a novel claim nor
remotely illegal. That local election officials would respond to
this pressure by treating voters unequally is, however, a more
serious claim. The Times’ view—“the result was unequal treat-
ment of ballots with the same flaws”—contradicts statements
by Katherine Harris that the rules were applied uniformly.7 It
also would seem to violate the Equal Protection Clause of the
U.S. Constitution, which was part of the stated grounds under
which the United States Supreme Court in Bush v. Gore stopped
the manual recounts.

The 680 ballots that the Times judged as flawed fell into one
or more of the following categories:8 344 ballots had late,
illegible, or missing postmarks (postmarks must indicate that
the ballot was cast on or before election day);9 183 ballots had
U.S. postmarks (overseas absentee ballots must bear foreign
postmarks); 169 ballots were received from voters who were
not registered, who had failed to sign the envelope, or who had
not requested a ballot; 96 ballots lacked the required signature
or address of a witness; 19 voters cast two ballots, both of
which were counted; and 5 ballots were received after the
November 17 deadline but were counted anyway. If we knew
for which candidate the illegal ballots were cast, we would
immediately know their effect on the election. However, the
secret ballot makes this impossible in most cases. In this instance,
voter anonymity was maintained by separating the envelope,
with all the information above, from the ballot contained therein
after the ballot was counted. Thus we only have access to these
envelopes, the names of the counties in which they were
counted, and county-level data on the number of bad ballots
and the number of ballots cast for Gore and Bush.

Table 2 illustrates the estimation problem at the state level.
The question marks indicate the unknown quantities to be

Table 1
Official results of the 2000 presidential election in Florida

Gore Bush Margin

Ballots cast/received by Nov. 7 2,911,417 2,911,215 Gore leads by 202
Late overseas absentee ballotsa 836 1,575 Bush leads by 739
Total 2,912,253 2,912,790 Bush leads by 537

Source: Office of the Secretary of State, Florida.
aBallots counted from November 7 to 26, 2000.
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estimated. The table illustrates that while we know the aggre-
gate number of invalid and valid ballots, as well as the total
number of votes each candidate obtained from overseas absen-
tee voters, we do not know their composition, which is the
goal of the analysis. Analogous contingency tables exist for all
67 Florida counties, and the same ecological inference prob-
lem exists in each. We received three other kinds of data for
each county. First, from voter registration records, we have
individual-level data about overseas absentee voters, including
their sex, race, party registration, and whether they were mil-
itary personnel or civilians. Second, for comparative purposes,
we have data available for election day voters in the 67 coun-
ties. Finally, the Times provided us indicator variables for four
regions in Florida and some other measures. We use this extra
information to improve our ecological inferences.

Ecological Inference for Flawed Ballots
Table 3 presents our notation. For each county i ~i 5 1 , . . . ,
67!, we denote the proportion of invalid ballots among all
overseas absentee ballots as Xi and the total number of over-
seas absentee ballots which were counted as Ni . We let Gore’s
proportion of the vote be Ti . To simplify presentation, we
combine the votes for Bush and the other minor candidates
as Bush votes.10 While each of these quantities is observed,
we denote unobserved quantities with Greek letters: bi

bad and
bi

good represent the proportions of invalid and valid ballots,
respectively, cast for Gore.

Although bi
bad and bi

good are used for estimation, our ulti-
mate quantity of interest is Bush’s margin after dropping the
invalid absentee ballots. To define this quantity, first define the
statewide fraction of bad ballots that went to Gore (b bad) as
the weighted average of the individual county quantities:11

Bush’s margin 5 official margin

2 [Bush’s bad ballots 2 Gore’s bad ballots]

5 537 2 @~1 2 b bad )680 2 b bad680]

5 1360b bad 2 143. (1)

Once we estimate this quantity, we can also estimate the prob-
ability of Gore’s victory, Pr(Bush’s margin , 0).12

Analysis without statistical assumptions
The parameters in table 3 follow an accounting identity,

Ti 5 bi
bad Xi 1 bi

good~1 2 Xi !, (2)

that is generated by the aggregation process, and therefore
always holds exactly with no stochastic term. It also implies a
deterministic linear relationship between the two unknown
parameters,13

bi
good 5

Ti

1 2 Xi
2

Xi

1 2 Xi
bi

bad , (3)

that traces out what King calls a tomography line.14 In addi-
tion, before we observe Xi and Ti in any county, we also know
that bi

bad and bi
good are each between 0 and 1. Once we

observe Xi and Ti , we can narrow the bounds further by pro-
jecting the line in equation (3) to the two axes. Thus, without
any statistical assumptions, we can derive the upper and lower
bounds of bi

good and bi
bad for each county i, which in turn

imply the bounds for our quantity of interest, Bush’s margin
after dropping the flawed overseas absentee ballots.

Table 4 shows how the analysis of bounds can be very pow-
erful in some situations. For example, Escambia is one of the
counties where many invalid ballots were found. At the same
time, this county is one of Bush’s strongholds. Seventy-six per-
cent of the county’s 208 overseas absentee ballots, or 154 votes,
went to Bush, with Gore receiving 47 and 7 more cast for
other candidates. Later, 102 of these ballots were deemed inva-
lid. Because Bush had 154 total votes, it is possible that all 102
of the invalid ballots were cast for him. This produces the
lower bound on the number of valid Bush votes, namely 52.
The upper bound occurs when Gore and other candidates get
assigned the maximum number of invalid ballots. Since Gore
had 47 votes and other candidates received 7, the maximum
number of invalid ballots that can be assigned to them is 54,
leaving 48 invalid votes for Bush. Hence the maximum num-
ber of valid votes for Bush is his official count of 154 minus
48, or 106. Finally, Baker County illustrates why the secret
ballot is sometimes not really secret. Only one absentee ballot
was cast there, and it was also found to be invalid. Therefore,
we know from the total tally of absentee ballots in this county—
one vote for Bush—that this person voted for Bush, and that
his or her ballot was invalid but included in the official count.15

From these county-level bounds, we derive aggregate bounds
for the total number of invalid ballots for each candidate at the
state level. The result shows that at least 8 percent, or 128
votes out of the 1,575 absentee ballots cast for Bush, should

Table 2
Ecological inference problem in Florida

Gore Bush Others Total

Invalid ballots ?a ? ? 680
Valid ballots ? ? ? 1,810

836 1,575 79 2,480
aQuestion marks indicate unknown quantities to be estimated.

Table 3
Ecological inference for invalid overseas
absentee ballots in Florida

Gore Bush

Invalid ballots bi
bad 1 − bi

bad Xi
Valid ballots bi

good 1 − bi
good 1 − Xi

Ti 1 − Ti
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not have been counted; whereas the minimum number of inva-
lid ballots for Gore is only 5 out of his total 836 votes (0.6
percent). Furthermore, Bush could have inappropriately ben-
efited from up to 668 out of the 680 invalid ballots.

The most significant conclusion from this analysis is that
we cannot exclude the possibility that Gore actually won the
election. That is, without making any assumptions other than
that the Times coding decisions were correct (and again, we
saw no significant objection to them in the media discussion
that followed their story), the 537 vote margin for Bush now
changes to somewhere from a 126 vote victory for Gore to a
936 vote victory for Bush. However, once the ballots were
removed from the envelopes, America forever gave up the pos-
sibility of knowing for certain who won the most votes in
Florida’s 2000 election.

Statistical analysis with a single model specification
The lack of any statistical assumptions puts the analysis pre-
sented in the preceding section on firm footing. In fact, mea-
surement error aside, its conclusions contain no inferential
uncertainties at all (which is quite unusual for social science
research). If the resulting bounds excluded the chance of one
candidate winning, our analysis would end here. Unfortu-
nately, the bounds only reveal that there exists a possibility that
either Gore or Bush received more votes. Indeed, even if all
but a tiny piece of the bounded interval reflected a Bush (or a
Gore) victory, it would provide no information about the prob-
ability that a particular candidate won other than that zero is
excluded (since the bounds alone do not imply any probability
distribution over the interval). Since this probability was the
quantity of interest for our project, the Times reporters needed
us to go further than the bounds. They needed us to make an
inference about the probability that around 90 percent of the
bad ballots went to Bush, which, if true, would have produced
a Gore victory.

To learn more about who actually won the Florida election—
the likely margins of victory within the deterministic bounds—
the only option is to add some statistical assumptions. With
them, we can make probabilistic statements about our quan-
tities of interest. The problem with any model-based statistical
analysis, of course, is that there might be disagreement about
the assumptions to be made. The price we must pay for the
more precise results that follow is the additional uncertainty

due to model specification. This is a common problem in
social science research, but it is particularly salient when attempt-
ing to provide independent, nonpartisan advice in the midst
of one of the most highly charged partisan debates in modern
times. Our approach to this problem is to formally incorpo-
rate uncertainty due to model specification into our final
estimate.

We use the class of ecological inference models (now called
EI after the software that implements them) given in King’s A
Solution to the Ecological Inference Problem.16 The choices of
models within this class have been contested in specific appli-
cations since, as with any ecological inference technique, mod-
els require identifying assumptions that may or may not be
appropriate.17 Nevertheless, EI is used in most academic eco-
logical inference applications as well as in legislative redistrict-
ing litigation.18

To begin, we summarize graphically the bounds obtained
above. For each Florida county, we show all possible values of
bi

bad and bi
good. As it turns out, the data tell us more than

merely the bounds on each parameter separately since equa-
tion (3) says that if bi

good is near the top of its bounds, bi
bad

must be near the bottom of its bounds. In fact, the two are
perfectly correlated and fall on a line defined by that equation.
To illustrate, we chart one line for each county in Florida in
the tomography plot of figure 1, which merely reexpresses the
data in the form closest to the answers we seek. This is as far as
it is possible to go without making statistical assumptions.
Next, we add three assumptions, all conditional on X and a
specified set of control variables Z. We could begin with the
assumption that bi

bad and bi
good are the same for all counties,

which is essentially Goodman’s regression.19 This would be
enough to identify the model, but it would be a very strong
assumption, and indeed in our application it can be rejected
with certainty by merely examining figure 1.

Thus, instead of assuming that bi
bad and bi

good are the same
over counties, we assume that they come from the same distri-
bution (the truncated bivariate normal distribution, with trun-
cation kept to the square in the figure). The idea is that whatever
the values of the unknown parameters from Florida’s 67 coun-
ties on their respective tomography lines, they all have some-
thing in common—since they are all in the same state, subject
to almost the same electoral campaign, et cetera. Differences
of any size across the counties in these parameters are therefore

Table 4
Analysis of bounds for the state and selected counties

Gore’s votes Bush’s votes Others

Valid ballots Valid ballots Valid ballots

County

Total
invalid
ballots

Official
counts Min. Max.

Official
counts Min. Max.

Official
counts Min. Max.

Escambia 102 47 0 47 154 52 106 7 0 7
Santa Rosa 55 16 0 16 65 10 28 2 0 2
Baker 1 0 0 0 1 1 1 0 0 0
All counties 680 836 309 831 1,575 907 1,447 79 0 79
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allowed so long as they are either random and fit the distribu-
tional assumption, or they are systematic and taken into account
by control variables. The main constraints added by this assump-
tion are that the bivariate density is unimodal (which is the
formalization of the assumption that the counties “have some-
thing in common”) and that all volume under the density
appears over the square represented by the tomography plot.
Violations of this distributional assumption do not seem to
affect the quantities we need for this application.20

The second assumption is the absence of residual spatial
correlation in T after taking into account X and Z. King’s
ecological inference model has been shown to be relatively
insensitive to anything but extreme levels of spatial autocorre-
lation,21 but we make this assumption even more plausible by
including tests with covariates that tap into Florida’s regions
and other spatial features.

The final assumption states that the two unknown quantities,
bi

bad and bi
good , are independent of Xi , given Z. For example, if

more bad ballots cast for Gore, bi
bad , came from counties with

more bad ballots overall, Xi , then this assumption would be vio-
lated unless Z included variables that sufficiently controlled for
this relationship. This is the most critical of the three assump-
tions, and so the validity of the analysis depends on the content
of Z. Each of these three assumptions can be modified or relaxed
by the inclusionofdifferent covariates,Z, and so themainmodel
uncertainty that is assumed presently is Z.

Statistical analyses that acknowledge model uncertainty
Sensitivity to model specification in quantitative political sci-
ence is perhaps most commonly seen when minor changes
among the explanatory variables in regression-type analyses
result in large differences in the estimates. The endemic nature

of such model dependent inferences makes a decision to base
inferences on a single model highly dubious in many situa-
tions. This is particularly true in ecological inference, where
model dependence is frequently an issue. Yet, almost all exist-
ing applications of ecological inference use a single specifica-
tion. Indeed, few use any explanatory variables, Z, at all.

The partisan nature of the controversy in which we were
providing advice makes the issue of model dependence espe-
cially salient, although its nature is not markedly different from
other applications. We began by following the most common
procedure of estimating many models (i.e., with different Z !
and assessing the degree to which our ultimate quantities of
interest depend on the specification. This was informative but
insufficient, since our task was to provide a single inference
with a point estimate and confidence interval.

Three basic ways of drawing a single inference in the pres-
ence of model uncertainty exist. Some researchers persist in
choosing a single model, perhaps on the basis of qualitative
arguments about its merits, and draw inferences assuming its
veracity. This optimistic approach often overestimates the degree
to which the researcher is certain of the correct model specifi-
cation, and hence typically gives biased estimates and overly
narrow confidence intervals. Other researchers use a formal
model selection criterion, such as stepwise regression, Mal-
low’s Cp, or AIC, to pick the best model. Although these
procedures are inappropriate when estimating causal effects,
they are reasonable when the quantity of interest is predictive,
such as ecological inference. Unfortunately, even in these sit-
uations, the result of applying these criteria is one model, which
also ignores model uncertainty.

An approach now widely recognized to be superior to stan-
dard model selection criterion is Bayesian model averaging,
which we apply to our ecological inference problem. The basic
idea is to estimate a large number of potential models and take
the weighted average of their results, with weights based on the
probability that a model is correct. The correctness of the model
is not assumed ex ante, nor is it merely based on goodness of
fit; it is instead calculated from the data via Bayesian analysis.
The key result of Bayesian model averaging is that the result-
ing inferences (1) are more accurate than those produced by
standard model selection criterion, (2) formally incorporate
model uncertainty, and (3) outperform any of the individual
models that are averaged over. The last property does not depend
on whether the true model generating the data lies inside or
outside models averaged over. That is, inferences from Bayes-
ian model averaging always outperform any individual model
considered.22 Model averaging thus allows one to consider a
wide range of models, while still producing one set of results.

Of course, one can never cover the entire model space, which
is normally of infinite size, since Bayesian model averaging
only allows one to include a finite number of models. There-
fore, the resulting inferences can always be improved by add-
ing additional models, no matter how many models have already
been included. This is not a unique feature of Bayesian model
averaging since it is always possible to come up with a better
model for any statistical analysis where the correct model is

Figure 1
Tomography plot for invalid overseas absentee ballots.
bi

bad and bi
good are the proportion of Gore’s invalid and valid

ballots, respectively. Each line traces out the possible values
of the bi

bad, bi
good point for each county i. The thick solid

line represents Escambia County.
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unknown to researchers. However, Bayesian model averaging
offers a significant improvement over the usual approach of
basing inferences on one assumed model, no matter how that
model is chosen.

Bayesian model averaging is especially important in our appli-
cation since political scientists have rarely studied absentee
ballots, and we therefore have little prior theory with which to
assist in model specification. The procedure thus enables us to
conduct an analysis without having to defend one particular
specification, or even a small set of specifications. We came up
with our list of models by talking in detail to reporters and
partisans on both sides. We then formalized their intuitions
into an ecological inference model (by defining Z ! and included
every one in our analysis. We also added several other models
we came up with independently.

Our search for models identified 31 possibilities for Z, includ-
ing the race, sex, and party registration of overseas absentee vot-
ers as well as models based on 24 county-level election and
demographic variables. We also include a model with no covari-
ates, and three models with Xi as the covariate for the mean of
b bad, b good, and for both.23 Each of our models includes at most
two covariates. In part this is because no one, including jour-
nalists and academics, proposed a model that clearly was defined
by more. But more importantly, we know that better predic-
tions can be obtained when not overfitting the data with too
many covariates. Jennifer Hoeting and colleagues,24 David Madi-
gan and Adrian Raftery,25 and many others have shown that
Bayesian model averaging almost never puts much weight on
such models, and predictive inferences (unlike some causal infer-
ences) are typically better with parsimonious specifications.26

Although we know of no application of ecological inference
that uses more than a single explanatory variable (and almost
all applications use none), we also tried expanding our setup
from 0, 1, and 2 variable models to ones that include several 3
and 4 variable specifications. While some of these highly com-
putationally intensive models had large enough estimated
weights to be meaningful, including them in the Bayesian model
averaging procedure did not appreciably change our substan-
tive estimates. Of course, we have also omitted an infinite
number of other possible models from the set we average over,
and it is possible that future researchers will find and include a
model we excluded that would change our empirical conclu-
sions. For example, we exclude all models with more than four
explanatory variables, as well as all interactions and all models
based on data we do not have. Our Bayesian model averaging
results are known to be better than any individual model among
those we average over; but our results could be overturned if
someone finds a plausible model to add that has a high prob-
ability of being correct and leads to different inferences.

Empirical Results
Would Gore have won the election without the bad ballots? In
this section we discuss that possibility, as well as a variety of
more specific counterfactuals, and evidence about how local
election officials differentially responded to Republican pres-
sure in their application of local election law.

The probability that Gore would have won without
bad absentee ballots
Figure 2 portrays the posterior distribution from our analysis
of Bush’s margin of victory if the bad ballots had not been
counted (the histogram of 1000 draws from the posterior).
Note first that, as required by the procedure, all area for this
distribution is contained within the bounds we found for this
quantity of 2126 to 936. The weight of the statistical evidence
within these bounds clearly demonstrates that Bush benefited
from the bad ballots, and that removing them takes away from
his margin. This is evident in the figure because almost all of
the area of the histogram of posterior probability falls to the
left of the official margin of 537 votes. The mean margin of
victory for Bush without the bad ballots is only 251 votes. The
figure also portrays the probability that Gore actually won the
election by the area under the curve to the left of zero. This is
only about 0.2 percent, indicating that Gore probably would
not have won, even if the bad ballots had been discarded.

Other counterfactuals
While our results indicate that it is unlikely that invalid over-
seas absentee ballots alone changed the election outcome, the
illegally counted ballots could have had a much more signifi-
cant effect when combined with slight changes in decisions
regarding the manual recounts. We show this result by first
focusing on several scenarios involving the two key counties
where a manual recount was conducted—Miami Dade and
Palm Beach. In Miami Dade County, election officials decided
to stop the manual recount when they determined that they
could not meet the deadline set by the Florida Supreme Court,
5 PM Sunday, November 27. Their partial manual recount gave
a net gain of 157 votes to Gore. Officials in Palm Beach County
also concluded that they could not finish the manual recount
in time. But while they submitted the outcome of their partial
recount just before the deadline—a net gain of 192 votes for

Figure 2
Posterior distribution of Bush’s margin of victory
without the 680 invalid overseas absentee ballots.
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Gore—they also reported the result of the complete recount to
Katherine Harris later that day. She, however, rejected this
complete recount as well as the two partial recounts and did
not include them in the certified official tally, thereby denying
Gore a total of 349 votes.27

The panel of table 5 marked “actual recounts” presents our
prediction for Bush’s margin and Gore’s probability of victory
in situations where the invalid overseas absentee ballots had
been rejected and the recounts in one or both of these counties
had been included in the final tally. For example, if the
recounted votes in Miami Dade and Palm Beach had all been
counted, Gore would have won with a 0.82 probability, with
the uncertainty in this number coming only from our analysis
of the bad overseas absentee ballots. If only the Palm Beach
votes had been counted, Gore would have won with a 0.29
probability. To put it one way, the massive differences in the
probabilities from 0.002 to 0.82 for a Gore victory were due to
the decisions made by Katherine Harris. Of course, these deci-
sions could have been overturned by the courts, and the can-
didates could have influenced them if they had requested
statewide or different types of recounts.

In the last panel of table 5, we consider counterfactuals
where the invalid overseas absentee ballots had not been counted
and election day voting recounts had occurred in various ways,
as suggested in a study conducted by a consortium of media
organizations.28 For instance, this analysis shows that if the
U.S. Supreme Court had not stopped the recount in Bush v.
Gore, the victor would have changed with only a 1 percent
probability. However, if Gore’s formal request that Broward,
Miami Dade, Palm Beach, and Volusia Counties be recounted
had been granted, he would have been elected with a 73 per-

cent probability. If the entire state
had been recounted, according
to almost any standard for judg-
ing the punch cards, Gore would
have won the election with a very
high probability.

Indirect evidence of local
election officials responding
to Republican pressure
Six months of interviews and
archival research in Florida and
elsewhere led reporters from the
New York Times to conclude that
“the Republicans mounted a legal
and public relations campaign to
persuade canvassing boards in
Bush strongholds to waive the
state’s election laws when count-
ing overseas absentee ballots. . . .
Their goal was simple: to count
the maximum number of over-
seas ballots in counties won by
Mr. Bush, particularly those with
a high concentration of military

voters, while seeking to disqualify overseas ballots in counties
won by Vice President Al Gore.”29 The Times claimed that, as
a direct result of this pressure,

[C]anvassing boards in about a dozen Republican-leaning counties
had reconvened for a second round of counting. In each place, long-
standing election rules were bent and even ignored. Boards counted
ballots postmarked as many as seven days after the election, including
some from within the United States. They counted two ballots sent by
fax. Officials in Santa Rosa County even counted five ballots that
arrived after the November 17 deadline. Again and again, election
officials crossed out the words “REJECTED AS ILLEGAL” that had
been stamped on ballot envelopes.30

If these claims are correct, we ought to be able to find evidence
of them in our data. We therefore conducted two tests. In the
first, we divide Florida’s counties into three categories: the six
counties mentioned explicitly in the Times story where the
Republicans pressured officials to count illegal ballots, the four
counties mentioned where Republicans pressured local elec-
tion officials not to count the ballots, and the remaining coun-
ties that were not mentioned. We then compute various statistics
for these three categories and present them for comparison in
table 6. (The results in this table were not available to the
reporters before their article appeared, so table 6 does repre-
sent an independent test.)

The evidence strikingly supports the Times’ account of events.
The first two columns of table 6 report on the characteristics
of the county, information available to Republican strategists
before they started lobbying. With the exception of two coun-
ties with very few absentee ballots, the ones identified as areas
where the Republicans focused their efforts to count ballots
were those with large populations of military personnel and

Table 5
Estimated margin and probability of victory if the invalid overseas
absentee ballots had not been counted, with selected other
counterfactuals (each excluding invalid absentee ballots)

Bush’s margin Prob(Gore wins)

Invalid overseas ballots alone 251 0.002
Actual recounts

Miami Dade partial recount 94 0.19
Palm Beach recount 59 0.29
Miami Dade and Palm Beach −98 0.82

Media recounts
No U.S. Supreme Court decisiona 242 0.01
Vote adjustmentsb 227 0.21
Gore’s request grantedc −26 0.73
Hanging chads and dimplesd −358 >0.99
Only fully punched ballotse −366 >0.99
Each county’s standardf −422 >0.99

aIf the U.S. Supreme Court had not stopped the manual recount.
bIncluding valid votes found by county officials after certification.
cIf Broward, Miami-Dade, Palm Beach, and Voulusia Counties had been recounted.
dIf all counties recounted using standard that any hanging chad or dimple included.
eIf only fully punched ballots recounted in all counties.
fIf entire state recounted using standards adopted by each county.
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Republican voters. Similarly, counties that the Times identi-
fied as places where Republicans discouraged the ballots from
being counted had consistently fewer military personnel and
Republican voters.

The result of the Republican efforts also appears to have
been successful. A larger fraction of bad ballots were counted
in those counties where Republicans tried to get them accepted
than the average, and a smaller fraction than the average were
counted in every county where the Republicans tried to have
them rejected. The fraction of accepted bad ballots that had
been cast for Bush supports the same theory: fewer had been
for Bush where the Republicans tried to have them rejected
than in every county where the Republicans tried to have them
accepted.

The Times’ report also helps explain some interesting varia-
tions in this table. In Duval County, for example, we would
have expected to find more Bush votes among the bad ballots
than we actually found, due to its large percentage of military
personnel. However, the Times reported that an election offi-
cial on the Duval County canvassing board “held the line on
counting ballots with missing postmarks.”31 Similarly, Pasco
County has relatively low numbers of military ballots and a
small Republican vote share. So we might expect it to have had
fairly few of the bad ballots being cast for Bush. Yet the story
also described the unusually strong Republican pressure applied
in this county: “‘It looks to me like we’ve got a lot of pressure
here,’ Judge Robert P. Cole, chairman of the Pasco board, said
as he faced a throng of cheering Republicans and more than a

dozen Bush representatives [and no officials from the Gore
campaign].”32 Our quantitative results are consistent with this
qualitative evidence.

We also look for indirect evidence of local election officials
succumbing to pressure from representatives of the Republi-
can Party by examining the posterior probabilities of each of
the 31 component models we included. Generally, if the Times’
hypothesis is right, we would expect that the covariates that
have the biggest effects would be related to areas where Repub-
licans tried hardest to influence local officials. These would be
counties that the Republicans—if they were as rational and
deliberate as the Times suggested—expected to find the largest
numbers of bad ballots that, if counted, would help Bush’s
cause. Obviously, we have no such variable, but we do have a
variety of related variables. Table 7 gives the top six models
listed in order of the posterior probability of being correct.
The two with the largest effects are consistent with the theory
that the more absentee voters registered as Republicans, and
the more white absentee voters in a district, the more bad
ballots cast for Bush. (The negative sign indicates that Bush’s
lead is reduced when these ballots are not counted.) The other
covariates have comparatively small effects.

The large variation in our prediction for Bush’s margin across
the six models in table 7 emphasizes a clear advantage of our
Bayesian model averaging procedure. The variation results from
the large degree of model dependence in these data (because
the data have fairly wide bounds). For example, the specifica-
tion with white absentee voters gives a confidence interval

Table 6
Counties classified by whether the New York Times reported evidence of Republican
pressure to count or not count overseas absentee ballots, compared
to an average for remaining counties not mentioned

Military
ballots

Republican
vote

Bad ballot
acceptancea

Bad ballots
counted

for Bushb
All

ballots

Republican pressure to count
Collier 46.7% 65.6% 53.7% 64.5% 60
Duval 83.8 57.5 62.3 67.8 637
Escambia 88.6 62.6 64.2 80.3 272
Okaloosa 88.9 73.7 42.0 69.4 189
Pasco 62.3 48.0 60.5 76.4 53
Santa Rosa 90.3 72.1 84.6 84.4 93
Average 83.4 60.0 61.5 74.3 1,304

Counties not mentioned by the Times
Average 67.6 51.8 30.0 71.5 1,751

Republican pressure not to count
Alachua 46.8 39.8 12.5 54.5 77
Broward 46.9 30.9 21.8 54.3 213
Miami Dade 44.4 46.3 11.7 57.1 306
Palm Beach 45.3 35.3 40.7 56.2 53
Average 45.6 38.1 17.2 55.4 649

aPercent of bad ballots arriving with local election officials included in official count.
bEstimated by our Bayesian model averaging ecological inference procedure.
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which, when considered in isolation from the other models,
would not enable us to reject the hypothesis that Gore would
have won if only the overseas absentee ballots had been rejected.
This is obviously quite different from our overall result of only
a 0.2 percent probability that Gore won. Since different spec-
ifications yield very different inferences, an analyst having to
choose one model would be in the untenable position of hav-
ing to defend choices without much prior evidence.

Bayesian model averaging offers a way around this common
problem. Instead of results jumping dramatically from one
specification to the next, inferences resulting from Bayesian
model averaging do not change as much when new models are
added to the specification, unless they have especially large
probabilities of being true. Of course, we cannot get some-
thing for nothing. Our procedure is an improvement over
straight EI because we only need to assume that one of our 31
models, or some combination of our 31 models, contains some-
thing close to the right model. This is in contrast to the usual
approach where we merely get one model from which to choose,
but it is not a panacea: if someone comes up with a new idea
for a model, we can include it; but if none or no combination
of those we consult comes close to the right model, then our
procedure will obviously fail to give valid answers.

Concluding Remarks
Counterfactual analysis is difficult, especially when the subject
of the inference is far from the factual evidence. When the
counterfactual is very close to the data, however, we stand a
good chance of making valid inferences.33 In the case of the
presidential elections in Florida, the counterfactuals are espe-
cially clear and could easily have happened, which makes the
results of this particular study somewhat more certain than
usual. If the problem of the overseas absentee ballots had been

litigated and the law applied
equally in every county (as Bush
v. Gore required of the votes cast
on election day), the bad ballots
might very well have been dis-
qualified. Although Gore prob-
ably still would have lost the
Florida vote, we conclude that
no one will ever be able to say
with certainty who would have
won the American presidential
election. Also, if Florida’s secre-
tary of state had held different
views on issues that were some-
what open to discretion, the out-
come of the election might very
well have changed. Of course,
had the candidates expressed dif-
ferent views on campaign spend-
ing, Elian Gonzales, or any of a
variety of other issues, the out-
come might have been different.
Our results also provide indirect

but strong and independent support for the thesis that local
election officials yielded to the efforts of Republican strategists
to follow the law in Gore counties but disregard it in Bush
areas.

Finally, we believe this article provides an especially good
example of the use of Bayesian model averaging. We have devel-
oped an application of it to the ecological inference model and
offer computer code for others to use. In applied work, Bayes-
ian model averaging has been approximated, as, for example,
with the Bayesian information criteria (BIC), but its full ver-
sion has not seen as much use as it could—and none before
this in political science. Bayesian model averaging is a clear
improvement on the usual situation, which entails having to
select and defend a single model, but it is no panacea. A
researcher never knows whether all relevant models have been
included and, although its results are more robust than single-
model approaches, it is always possible to come up with a
different list of models and produce different results. And so in
the end, as always, the investigator’s judgment plays an impor-
tant role in making inferences. Model averaging cannot sub-
stitute for judgment, but it can help account for model
uncertainties where prior knowledge is not available. In the
present case, where 100 percent confidence intervals are avail-
able (in the form of bounds on the parameters), we have addi-
tional constraints on possible results.

Appendix A: Technical Issues in
Modeling and Estimation
From one application of one specification of this model, we
compute the posterior density of a quantity of interest D by
drawing it from its posterior, conditional on the model
P~D6Mk,T ). To do this, we draw simulations of bbad and
b good from their posterior and calculate simulations of D. Bayes’

Table 7
Estimates of Bush’s margin of victory after dropping invalid overseas
absentee ballots—overall and for six component models with highest
posterior model probabilities among the 31 estimated.
The first differences represent the increase or decrease in Bush’s
estimated margin when the value of the covariate increases by
10 percentage points.

Bush’s margin
(95% C.I.)

First
difference

Posterior
model

probability

Bayesian Model Averaging 251 (69, 468)
Individual models

Registered Repub. absentee voters, 6a 269 (97, 475) −52 0.565
Dem. vote share, 19 232 (69, 448) 3 0.239
Black absentee voters, 10 231 (69, 440) −2 0.102
White absentee voters, 9 123 (−18, 315) −23 0.033
Registered black Repubs., 25 229 (62, 441) −6 0.021
Accepted absentee ballots, 27 218 (62, 409) 4 0.004

aEach model identified in the table by the covariate included, followed by the model number we assign
to each in note 10.
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theorem specifies that the posterior is proportional to the prod-
uct of the prior times the likelihood, P(Q 6T ) } P(Q )P(T |Q!,
where P~Q ) is the prior probability distribution on some
unknown parameter Q, and P~T 6Q ) is the likelihood. Every-
thing is conditioned on X, N, and Z, which we observe. We
use the standard independent prior on each parameter of Q as
described in King.34 This prior distribution and the likelihood
function together to define King’s model in a standard Bayes-
ian framework.

Let Mk denote the k th model specification ~k 51, . . . , 31).
Then we make an inference about a quantity of interest D by
computing its posterior distribution via Bayesian model aver-
aging. To do this, we first compute, for each model, the pos-
terior distribution of D (computed from the posterior with D
being some known function of Q ): P(D |Mk,T ). Then we
average over these models by weighting by the relative poste-
rior probability that each model is correct given the data,
Pr~Mk6T !: Pr(D |T ) 5 Sk51

31 P~D |Mk,T ) Pr~Mk6T !, where
the posterior model probability is Pr~Mk6T ! 5 P~T 6Mk! 3
Pr~Mk!/@Sj51

31 Pr~T 6Mj! Pr(Mj)]. This is the probability that
model k is correct, given the set of models in the analysis; it
should not be confused with R 2-like measures, which typically
reward models that over-fit without distinguishing systematic
from idiosyncratic features of the data.

To compute the posterior model probability, we need two
elements. The first is a prior probability that each model is
correct, Pr~Mk!, which we set to uniform. The other is the
marginal likelihood, P~T 6Mk!, which is obtained by averag-
ing the likelihood over the prior distribution.35 The marginal
likelihood is “the probability of seeing the data that actually
were observed, calculated before any data became available.”36

That is, instead of maximizing the likelihood with respect to
the parameter given the data, as we would do to compute the
maximum likelihood estimate, the marginal likelihood does
not have a maximization step: it is the average value of the
likelihood evaluated at parameter values drawn from their prior
density. (Although the quantity could be computed by simu-
lation in this way, such a method tends to be highly inefficient,
especially for problems with relatively flat priors or high dimen-
sional parameter vectors.)

To compute the marginal likelihood, we use the Laplace
approximation, which is known to perform well compared
with other methods.37 Its rate of approximation is O~n21!,
which is considerably better than easier-to-apply methods such
as Bayesian information criteria (BIC), which has a rate of
only O~n21/2!.38 For example, Robert Kass and Raftery say
that “even for very large samples, it [BIC] does not produce
the correct value.”39 Hence, in our application the Laplace
approximation is more appropriate than BIC.

Appendix B: The Minor Effects of Minor
Candidates and Prior Densities
Here, we analyze the effects on our results of ignoring the
minor party candidates and study the sensitivity of our results
to our choices for model priors. Figure 3 plots the posterior
distribution of Bush’s new margin without invalid overseas

absentee ballots for different model specifications in compar-
ison to our posterior distribution. The solid line in this figure
is an alternative specification of the ecological inference model
where we combine the votes for the minor candidates together
with those for Gore rather than with the votes for Bush, result-
ing in 31 new individual models corresponding to the 31 mod-
els already run. The posterior distribution for this model is
very similar to the results of our previous analysis, indicating
that our results do not depend on which model specification is
used. The other two lines represent the use of different prior
distributions for the coefficients of the covariate of each model.
We use different prior standard deviations for the coefficients
of the covariates to see if the results are sensitive to the choice
of the prior distribution. While some features of the posterior
do vary across specifications, the graph shows that model results
are not particularly sensitive to the prior specification. The
median posterior point in particular hardly changes across the
models.

Notes
1 Barstow and Van Natta Jr. 2001.
2 The only exception seems to have been Zelnick 2001.
3 The Democrats had planned to contest the absentee bal-

lots. But Democratic Vice Presidential Candidate Joe Lie-
berman, appearing on Meet the Press, ended this strategy
when he explained that he “would give the benefit of
the doubt to ballots coming in from military personnel gen-
erally. . . . Al Gore and I don’t want to ever be part of any-
thing that would put an extra burden on the military
personnel abroad who want to vote.” Gore backed him up
and left the Republican strategy unchallenged. Berke
2001.

4 Barstow and Van Natta Jr. 2001.
5 Ibid.

Figure 3
Sensitivity analysis of Bayesian model averaging.
The histogram is the posterior distribution of Bush’s new
margin for our model. The other lines give posterior
distributions from different models and prior specifications.
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6 Barbanel 2001.
7 Barstow and Van Natta Jr. 2001.
8 Ibid. Photographs of the bad ballots make the determina-

tion of flaws unambiguous; for examples, see http://
www.nytimes.com/images/2001/07/15/politics/absentee/
nat_ABSENTEE_count_index.html.

9 At times, the Republicans argued that military ballots
did not need a postmark because the law allowed those
in the military to send mail without postage. However,
according to the Times, Florida state law clearly required
overseas ballots to be “postmarked or signed and dated” by
election day. Barstow and Van Natta Jr. 2001.

10 Although our presentation always involves only the Bush/
Gore choice, our empirical results using deterministic
bounds, presented below, include the possibility of bad bal-
lots having been cast for minor party candidates. We han-
dle minor parties in our statistical analyses by ignoring
the problem at first and then conducting sensitivity analy-
ses in appendix B; since votes for minor party candi-
dates only total 3 percent, we find, as expected, that they
have a very small effect on the overall result. Other analy-
ses (not shown) using more computationally intensive tech-
niques designed to model these choices separately
confirm the results. See Rosen et al. 2001.

11 The weighted average is b bad 5 Si51
67 Ni bi

bad/Si51
67 Ni .

12 Note that bgood is not used in equation (1) but is neces-
sary as an ancillary parameter during estimation.

13 Duncan and Davis 1953.
14 King 1997.
15 Indeed, the name, address, and individual vote cast by all

people in counties, like Baker, that cast all their absentee bal-
lots for one candidate, are on the public record. This is
because the bounds have zero width whenever either Xi or
Ti is zero or one.

16 King 1997.
17 See, for example, Adolph and King 2003; Adolph et al.

2003; Anselin and Cho 2002a; Anselin and Cho 2002b;
Cho 1998; Cho and Gaines 2004; Freedman et al.
1998; Herron and Shotts 2003a; Herron and Shotts
2003b; King 1999; King 2002.

18 On parametric and nonparametric advances see Imai
and Lu 2004. See also King, Rosen, and Tanner 2004,
which includes methodological developments in ecologi-
cal inference from contributors in many academic
disciplines.

19 Goodman 1959.
20 King 1997, table 9.2.
21 Ibid., table 9.1; King 2000.
22 E.g., Madigan and Raftery 1994. This result is similar to

insights from the closely related literature on committee
methods, although surprisingly the literatures have rel-
atively few cross-citations. Bishop 1995; see also Rosen,
Jiang, and Tanner 2000; and Robert 1996. See Hoet-
ing et al. 1999 for a general introduction to Bayesian
model averaging. Raftery and Zheng 2003 derive the opti-
mality of its long-run performance. See Bartels 1997; Bar-

tels and Zaller 2001; and Erikson, Bafumi, and Wilson
2001 for political science applications that use an approx-
imation to formal Bayesian model averaging.

23 A list of all 31 models follows: (1) no covariate, (2) Xi

for b bad, (3) Xi for b good, (4) Xi for both b bad and b good,
(5) military absentee voters, (6) registered Republican
absentee voters, (7) registered Democratic absentee vot-
ers, (8) female absentee voters, (9) White absentee vot-
ers, (10) black absentee voters, (11) Hispanic absentee
voters, (12) rejected military absentee voters, (13)
rejected registered Republican absentee voters, (14)
rejected registered Democratic absentee voters, (15) rejected
female absentee voters, (16) rejected white absentee vot-
ers, (17) rejected black absentee voters, (18) rejected
Hispanic absentee voters, (19) Democratic vote share
among residents, (20) vote share of Republican candi-
dates, (21) vote share of other candidates, (22) regis-
tered Democratic residents, (23) registered Republican
residents/registered black Democratic residents, (24) pro-
portion of voting age population not registered, (25)
black registered Democrats, (26) black registered Repub-
lican residents, (27) acceptance ratio of overall absen-
tee ballots, (28) ratio of invalid absentee ballots, (29)
Panhandle Florida regional indicator variable, (30) south-
ern Florida regional indicator variable, (31) corruption
indicator. All the covariates except indicator variables are
entered as a ratio varying from 0 to 1. Except the first
three models, the covariate was used to model the condi-
tional untruncated mean of both parameters, b bad and
bgood. Models (5) to (11) are based on information about
the absentee ballots, so different variables were avail-
able regarding the invalid and valid ballots; we used the for-
mer group to predict b bad and the latter to predict
b good. We reran each model with different starting values
to verify that we found the global maximum. We also
examined each of the tomography plots with confidence
regions to search for outliers or bad model fits. In addi-
tion, we plotted E~T 6X ! or E~T 6X , Z ! by X or Z, and
checked whether the observed T fell within the (say)
90 percent confidence interval 90 percent of the time.

24 Hoeting et al. 1999.
25 Madigan and Raftery 1994.
26 Multiple covariates uncorrelated with Xi cause no identi-

fication problems in EI. Ecological inference models that
do not incorporate information from the deterministic
bounds are not identified when including Xi or variables
related to X. See Goodman 1953; King 1997. Thus,
to the extent that models that incorporate the bounds,
such as EI, are estimable when including Xi or covariates
that are related to Xi, the information that makes this pos-
sible is coming from the bounds. Predictions about the
quantities of inferences in EI are not often greatly
affected by including more than one covariate at a time.

27 Purdum 2000.
28 Fessenden and Broder 2001.
29 Barstow and Van Natta Jr. 2001, 1.
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30 Ibid., 16.
31 Ibid.
32 Ibid.
33 King and Zeng 2001; Lebow 2000.
34 King 1997.
35 The marginal likelihood is P~T 6Mk! 5 *P(T 6Qk, Mk! 3

P(Qk|Mk!dQk, where P(Qj 6Mj! is the prior distribution
for the parameter vector Q in Model k.

36 Kass and Raftery 1995, 776.
37 Raftery 1996; Lewis and Raftery 1997; DiCiccio et al.

1997. If a model is estimated through a Markov chain
Monte Carlo simulation, one can construct an algorithm
where the chain visits each model stochastically and
can thus compute the posterior model probability as a
direct output of the posterior draws. See Chib 1995. How-
ever, this requires constructing a new MCMC algo-
rithm for each application.

38 Kass, Tierney, and Kadane 1989.
39 Kass and Raftery 1995, 778.
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