
Matching for Causal Inference Without Balance Checking

Gary King
Institute for Quantitative Social Science

Harvard University

joint work with

Stefano M. Iacus (Univ. of Milan) and Giuseppe Porro (Univ. of Trieste)

(talk at the University of Rochester, 1/19/09)

()
(talk at the University of Rochester, 1/19/09) 1

/ 17



Preview Slide: Coarsened Exact Matching (CEM)

1 Preprocess (X , T ) with CEM:

(A) Temporarily coarsen X as much as you’re willing

e.g., Education (grade school, high school, college, graduate)
Easy to understand, or can be automated as for a histogram

(B) Perform exact matching on the coarsened X , C (X )

Sort observations into strata, each with unique values of C(X )
Prune any stratum with 0 treated or 0 control units

(C) Pass on original (uncoarsened) units except those pruned

2 Analyze as without matching (adding weights for stratum-size)

(Or apply other matching methods within CEM strata
& they inherert CEM’s properties)

 A version of CEM: Last studied 40 years ago by Cochran
 First used many decades before that
 We prove: many new properties, uses, & extensions,

and show how it resolves many problems in the literature
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Characteristics of Observational Data

Lots of data

Data is of uncertain origin. Treatment assignment:

not random, not controlled by investigator, not known

The idea of matching: sacrifice some data to avoid bias

Removing heterogeneous data will often reduce variance too

(Medical experiments are the reverse: small-n with random treatment
assignment; don’t match unless something goes wrong)

Gary King (Harvard, IQSS) Matching without Balance Checking 3 / 17
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Model Dependence

What to do?

Preprocess I: Eliminate extrapolation region (a separate step)

Preprocess II: Match (prune bad matches) within interpolation region

Model remaining imbalance
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Matching within the Interpolation Region
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Matching reduces model dependence, bias, and variance
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
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Matching reduces model dependence, bias, and variance
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The Goals, with some more precision

Notation:

Yi Dependent variable
Ti Treatment variable (0/1)
Xi pre-treatment covariates

Treatment Effect for treated (Ti = 1) observation i :

TEi = Yi (Ti = 1)−Yi (Ti = 0)

= observed −unobserved

Estimate Yi (0) with Yj from matched (Xi ≈ Xj) controls

Ŷi (0) = Yj(0) or a model Ŷi (0) = ĝ0(Xj)

Prune unmatched units to improve balance (so X is unimportant)

Sample Average Treatment effect on the Treated:

SATT =
1

nT

∑
i∈{Ti=1}

TEi
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Prune unmatched units to improve balance (so X is unimportant)

Sample Average Treatment effect on the Treated:

SATT =
1

nT

∑
i∈{Ti=1}

TEi

Gary King (Harvard, IQSS) Matching without Balance Checking 6 / 17



The Goals, with some more precision

Notation:
Yi Dependent variable
Ti Treatment variable (0/1)

Xi pre-treatment covariates

Treatment Effect for treated (Ti = 1) observation i :

TEi = Yi (Ti = 1)−Yi (Ti = 0)

= observed −unobserved

Estimate Yi (0) with Yj from matched (Xi ≈ Xj) controls
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Prune unmatched units to improve balance (so X is unimportant)

Sample Average Treatment effect on the Treated:

SATT =
1

nT

∑
i∈{Ti=1}

TEi

Gary King (Harvard, IQSS) Matching without Balance Checking 6 / 17



The Goals, with some more precision

Notation:
Yi Dependent variable
Ti Treatment variable (0/1)
Xi pre-treatment covariates

Treatment Effect for treated (Ti = 1) observation i :

TEi = Yi (Ti = 1)−Yi (Ti = 0)

= observed −unobserved

Estimate Yi (0) with Yj from matched (Xi ≈ Xj) controls
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Prune unmatched units to improve balance (so X is unimportant)

Sample Average Treatment effect on the Treated:

SATT =
1

nT

∑
i∈{Ti=1}

TEi

Gary King (Harvard, IQSS) Matching without Balance Checking 6 / 17



Problems With Existing Matching Methods

Don’t eliminate extrapolation region

Don’t work with multiply imputed data

Most violate the congruence principle

Largest class of matching methods (EPBR, e.g., propensity scores,
Mahalanobis distance):

requires normal data (or DMPES); all X ’s
must have same effect on Y ; Y must be a linear function of X ; aims
only for expected (not in-sample) imbalance;  in practice, we’re
lucky if mean imbalance is reduced

Not well designed for observational data:

Least important (variance): matched n chosen ex ante
Most important (bias): imbalance reduction checked ex post

Hard to use: Improving balance on 1 variable can reduce it on others

Best practice:

choose n-match-check, tweak-match-check,
tweak-match-check, tweak-match-check, · · ·

Actual practice:

choose n, match, publish, STOP.
(Is balance even improved?)
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Not well designed for observational data:
Least important (variance): matched n chosen ex ante
Most important (bias): imbalance reduction checked ex post

Hard to use: Improving balance on 1 variable can reduce it on others
Best practice: choose n-match-check, tweak-match-check,

tweak-match-check, tweak-match-check, · · ·
Actual practice:

choose n, match, publish, STOP.
(Is balance even improved?)
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A New Class of Methods: Monotonic Imbalance Bounding

No restrictions on data types

Designed for observational data (reversing EPBR):

Most important (bias): degree of balance chosen ex ante
Least important (variance): matched n checked ex post

Balance is measured in sample (like blocked designs), not merely in
expectation (like complete randomization)
Covers all forms of imbalance: means, interactions, nonlinearities,
moments, multivariate histograms, etc.
One adjustable tuning parameter per variable
Convenient monotonicity property: Reducing maximum imbalance on
one X : no effect on others

MIB Formally (simplifying for this talk):

D(Xε
T ,Xε

C ) ≤ γ(ε) vars to adjust

D(X ε
T ,X ε

C ) ≤ γ(ε) remaining vars
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What’s Coarsening?

Coarsening is intrinsic to measurement

We think of measurement as clarity between categories
But measurement also involves homogeneity within categories
Examples: male/female, rich/middle/poor, black/white, war/nonwar.
Better measurement devices (e.g., telescopes) produce more detail

Data analysts routinely coarsen, thinking grouping error is less risky
than measurement error. E.g.:

7 point Party ID  Democrat/Independent/Republican
Likert Issue questions  agree/{neutral,no opinion}/disagree
multiparty voting  winner/losers
Religion, Occupation, SEC industries, ICD codes, etc.

Temporary Coarsening for CEM; e.g.:

Education: grade school, middle school, high school, college, graduate
Income: poverty level threshold, or larger bins for higher income
Age: infant, child, adolescent, young adult, middle age, elderly
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CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for:

means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for:

means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for:

means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means,

variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances,

skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,

covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances,

comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments,

coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness,

co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis,

quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles,

and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.

=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .
too large?

 You’re left modeling remaining imbalances
too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .
too large?  You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .
too large?  You’re left modeling remaining imbalances
too small?

 n may be too small
as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .
too large?  You’re left modeling remaining imbalances
too small?  n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .
too large?  You’re left modeling remaining imbalances
too small?  n may be too small
as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .
too large?  You’re left modeling remaining imbalances
too small?  n may be too small
as large as you’re comfortable with, but n is still too small?
 No magic method of matching can save you;

 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

We Prove: setting ε bounds the treated-control group difference,
within strata and globally, for: means, variances, skewness,
covariances, comoments, coskewness, co-kurtosis, quantiles, and full
multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,
interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .
too large?  You’re left modeling remaining imbalances
too small?  n may be too small
as large as you’re comfortable with, but n is still too small?
 No magic method of matching can save you;
 You’re stuck modeling or collecting better data

Gary King (Harvard, IQSS) Matching without Balance Checking 10 / 17



Other CEM properties we prove

Automatically eliminates extrapolation region (no separate step)

Bounds model dependence

Bounds causal effect estimation error

Meets the congruence principle

The principle: data space = analysis space
Estimators that violate it are nonrobust and counterintuitive
CEM: εj is set using each variable’s units
E.g., calipers (strata centered on each unit):

would bin college drop out
with 1st year grad student; and not bin Bill Gates & Warren Buffett

Approximate invariance to measurement error:
CEM pscore Mahalanobis Genetic

% Common Units 96.5 70.2 80.9 80.0

Fast and memory-efficient even for large n; can be fully automated

Simple to teach: coarsen, then exact match
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Imbalance Measures

Variable-by-Variable Difference in Global Means

I
(j)
1 =

∣∣∣X̄ (j)
mT − X̄

(j)
mC

∣∣∣ , j = 1, . . . , k

Multivariate Imbalance: difference in histograms (bins fixed ex ante)
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∑
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|

Local Imbalance by Variable (given strata fixed by matching method)
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S∑
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CEM in Practice: EPBR-Compliant Data

Monte Carlo: XT ∼ N5(0,Σ) and XC ∼ N5(1,Σ). n = 2, 000, reps=5,000
Allow MAH & PSC to match with replacement; use automated CEM

Difference in means (I1):

X1 X2 X3 X4 X5 Seconds

initial 1.00 1.00 1.00 1.00 1.00
MAH .20 .20 .20 .20 .20 .28
PSC .11 .06 .03 .06 .03 .16
CEM .04 .02 .06 .06 .04 .08

Local (I2) and multivariate L1 imbalance:

X1 X2 X3 X4 X5 L1

initial 1.24
PSC 2.38 1.25 .74 1.25 .74 1.18

MAH .56 .36 .29 .36 .29 1.13
CEM .42 .26 .17 .22 .19 .78

 CEM dominates EPBR-methods in EPBR Data
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CEM in Practice: Non-EPBR Data

Monte Carlo: Exact replication of Diamond and Sekhon (2005), using data
from Dehejia and Wahba (1999). CEM coarsening automated.

BIAS SD RMSE Seconds L1

initial −423.7 1566.5 1622.6 .00 1.28
MAH 784.8 737.9 1077.2 .03 1.08
PSC 260.5 1025.8 1058.4 .02 1.23
GEN 78.3 499.5 505.6 27.38 1.12
CEM .8 111.4 111.4 .03 .76

 CEM works well in non-EPBR data too
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CEM Extensions I

CEM and Multiple Imputation for Missing Data

1 put missing observation in stratum where plurality of imputations fall
2 pass on uncoarsened imputations to analysis stage
3 Use the usual MI combining rules to analyze

Multicategory treatments: No modification necessary; keep all strata
with ≥ 1 unit having each value of T

Blocking in Randomized Experiments: no modification needed;
randomly assign T within CEM strata

Automating user choices

Histogram bin size calculations, Estimated
SATT error bound, Progressive Coarsening

Detecting Extreme Counterfactuals
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CEM Extensions II: Improving Existing Matching Methods

1 Most commonly used methods:

cannot be used to eliminate extrapolation region
don’t possess most other CEM properties
but inherent CEM properties if applied within CEM strata

2 Propensity Score matching:

requires correct specification or balance can drop (the usual
specification tests are irrelevant; must check balance)
CEM strata can bound bias in pscore matching
may be good for applications with many covariates we know little
about (so we’re willing to take balance on any subset)

3 Mahalanobis distance: can apply within CEM strata

4 Genetic Matching: can constrain results to CEM strata

5 Synthetic Matching, or Robins’ weights: CEM can identify region to
apply weights, increasing efficiency/robustness

6 Nonparametric Adjustments: can apply within CEM strata

7  & whatever else you all come up with
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For papers, software (for R and Stata), tutorials, etc.

http://GKing.Harvard.edu/cem
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