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5 Priors over Grouped
Continuous VariablesY

In this chapter, we define a prior for the similarity of a set of cross sections ordered by
a discretized continuous variable, such as a set of age groups. From a practical point of
view, a key result given here is a method of defining the entire spatial contiguity matrix that
is a function of only a single adjustable parameter. We begin in section 5.1 by developing
a specific notion of prior indifference that we use in the rest of the chapter and book.
A detailed example of smoothing over age groups then appears in section 5.2. Chapter 6
follows this analysis with practical methods for making the various necessary choices in
using these priors, and chapter 7 develops priors for the similarity of vectors defined over
time and geographical space, as well as combinations of these dimensions.

5.1 Definition and Analysis of Prior Indifference

The task of choosing a prior density for a Bayesian model involves clarifying and
formalizing one’s knowledge about the likely values of and patterns in a set of parameters,
but it also involves specifying what one is indifferent to. A good prior must obviously
be informative about the former but not about the latter. For example, demographers and
public health researchers are normally confident that the expected log-mortality rate varies
smoothly over age groups and is likely to stay that way in the future, but they are normally
less willing to offer an opinion about precisely what level the rate will be at for any
particular year, country, cause, or sex group.

A huge literature in statistics attempts to formalize what information, or lack of it, is
represented by a prior, and especially how we can write priors that are minimally informa-
tive. Deep philosophical issues arise, primarily around how to represent complete ignorance
in the form of a specific probability density—a philosophical stance sometimes known
as “logical Bayesianism.” Numerous creative ideas have been suggested to try to achieve
this goal in some part, such as making the prior invariant to reparameterization (Jeffreys,
[1939] 1961), but, as is recognized, the task is ultimately impossible: here, as everywhere,
counting on scientific progress about purely philosophical issues would not be prudent.
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As Dawid (1983, p. 235) writes, “The formalization of ignorance thus remains the central
object of a continuing quest by the knights of the Bayesian round table: inspiring them to
imaginative feats of daring, while remaining, perhaps, forever unattainable.”

The problem, from the perspective of the philosophy of inference, is that a prior
density is a specific probabilistic statement and thus represents considerable knowledge,
even if the density is described as “flat,” “diffuse,” or “noninformative.” Following a
detailed review of the practical choices offered in this literature, Kass and Wasserman
(1996, p. 1343) recommend the choice of “reference priors” for standard problems, but
nevertheless conclude that “it is dangerous to put faith in any ‘default’ solution” unless
the prior is dominated by the data. Of course, if the prior is dominated by the data,
then likelihood inference will normally work well, most special features of Bayesian
inference vanish, and no prior needs to be specified in the first place (except sometimes
for computational reasons like Monte Carlo Markov Chain algorithms).

In our work, we see no reason to subscribe to the Bayesian religion as a way
to make all inferences, but we do find its associated technology to be exceptionally
useful when prior knowledge is available, especially in complicated models. When prior
knowledge is not available, the likelihood theory of inference is a perfectly adequate
approach (Edwards, 1972; King, 1989b). We thus feel no driving normative need to state
a philosophical view on representing ignorance from a purely Bayesian perspective. If
we have a philosophical viewpoint, it is utilitarianism (or consequentialism), which in our
view is almost by definition the appropriate philosophy when the goal, as in statistics,
is to create something useful. Utilitarianism may not answer the desire of philosophers
of science for a self-contained, logically consistent, and normatively satisfying theory of
inference, but it works.

The main problem we tackle here is that we often know some things and not others
about the same set of parameters and wish to write informative priors only for the things
we know. For the quantities we do not know, we cannot write a proper prior, and so we use
a flat, constant (improper) prior. We see no need to justify the constant prior by appeal to
the “principle of insufficient reason” (Laplace, [1820] 1951) or other such concepts (that
themselves are based on insufficient reason!). Instead, we view this choice as a simple
combination of likelihood and Bayesian inference: when we have information, we use it
and the likelihood; when we have no such information, we use only the likelihood.

Our approach has much in common with the spirit of “robust Bayesian analysis”
(Berger, 1994; King and Zeng, 2002), although the technology is very different. More
relevant to our particular technical approach is the pioneering work of Julian Besag and
the literature on spatial smoothing (Besag, 1974, 1975; Besag and Kooperberg, 1995),
as well as the work of Speckman and Sun (2001) and the literature on nonparametric
regression, in particular the seminal work of Wahba (1978). In the following, we define
what we call prior indifference, or the indifference of a prior density to a specific set of
patterns or values of a set of parameters. We borrow freely from the authors cited here,
and others, and combine and extend strands of literature from a diverse set of scholarly
fields in order to present a simple but coherent approach. (This chapter requires only
some linear algebra and basic mathematical concepts. For readers not familiar with the
mathematical concepts we use, such as vector spaces, subspaces, orthogonality, and null
spaces, we provide a self-contained review in appendix B, and a glossary of our notation in
appendix A.)

We begin with an elementary observation about the simplest possible case and build
from there.
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5.1.1 A Simple Special Case

Consider the problem of writing a prior for the d components µ1, . . . , µd of some vector
µ. If we know something about the first r components but not about the last n = d − r
components, then we would write a prior that simply does not depend on, or is indifferent
to, the last n components. This prior would have the property:

P(µ1, . . . , µr , µr+1, . . . , µd ) = P(µ1, . . . , µr , µ
′
r+1, . . . , µ

′
d ),

∀µi , µ
′
i ∈ R, i = 1, . . . , d. (5.1)

The dependency on the first r variables would be determined by what we know about them.
Notice that this prior is obviously improper, because the integral over the last n variables
is infinity. This will never be a problem in our applications, because (as our likelihood is
normal and proper) our posteriors will always be proper. Improperness therefore is relevant
only as a side effect of the assumption of indifference to some of the parameter space.

A good way to understand prior indifference in this simple special case, and indeed
in any more general specification, is to imagine weighting the prior as heavily as possible
(or, equivalently, letting its variance tend toward zero). Even in this extreme situation, our
prior will have absolutely no influence over the last n parameters. In contrast, a proper
prior in this situation would cause the estimation procedure to ignore what the data (and
likelihood) have to say about all the parameters; it would force the posterior to degenerate
to a spike over each parameter, thus allowing the posterior to reflect only the single value
for each parameter chosen by the investigator in setting the hyperparameters. In contrast,
our improper priors, when maximally weighted, constrain the posterior only to a subset of
the parameter space, known as the null space. The null space in this example is a subset
of parameters; in our other more general priors, the null space reflects particular patterns in
the parameters.

Simple as it is, the preceding formula can take us very far if properly applied. The
problem with it is that it seems unlikely that in our applications we can partition our set
of parameters in two nonoverlapping subsets, one over which we have knowledge, and one
over which we do not. We emphasize seems because, as we will see shortly, it is indeed the
case that such a partition is always possible, although it may become apparent only after an
appropriate linear change of variables.

5.1.2 General Expressions for Prior Indifference

In order to understand prior indifference better, we first rewrite equation 5.1 in a more
abstract way. First define the following r -dimensional subspace of Rd :

S◦ ≡ {µ ∈ Rd | µ = (0, 0, . . . , 0, µr+1, . . . µd )}. (5.2)

Its r -dimensional orthogonal complement—that is, the set of vectors in Rd that are
orthogonal to all the elements of S◦ (See appendix B.1.11, page 225)—is then:

S⊥ ≡ {µ ∈ Rd | µ = (µ1, µ2, . . . , µr , 0, . . . , 0)}.
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Clearly any vector µ ∈ Rd can be uniquely decomposed into the sum of two vectors, one
in S◦, which we denote by µ◦, and one in S⊥, which we denote by µ⊥. The vectors
µ◦ and µ⊥ can be obtained as linear transformations of the vector µ, that is µ◦ = P◦µ
and µ⊥ = P⊥µ, where the matrices P◦ and P⊥ are called the projectors onto S◦ and S⊥,
respectively. The projector onto a subspace is uniquely determined by the subspace; that is,
for any given subspace, we can easily derive the corresponding projector (as described in
appendix B.1.13, page 226). Thus, in the present case, it is easy to see that

P◦ =
(

0r×r 0r×d

0d×r Id×d

)
, P⊥ =

(
Ir×r 0r×d

0d×r 0d×d

)
.

Using this notation, we rewrite our expression of prior indifference in equation 5.1 as

P(µ) = P(µ+µ∗), ∀µ ∈ Rd , ∀µ∗ ∈ S◦. (5.3)

We read this equation by saying that the prior P is constant over the subspace S◦ or is
indifferent to S◦. Another way of rewriting this equation is as follows:

P(µ) = P∗(P⊥µ), for some probability density P∗. (5.4)

The last equation makes clear that P(µ) does not depend on µ◦, the part of the vector µ

which is in the subspace S◦.

5.1.3 Interpretation

The reason for rewriting equation 5.1 as equation 5.3 or 5.4 is that the latter two hold
independently of the particular choice of coordinate system, and even if µ cannot be
uniquely partitioned into nonoverlapping subsets. In fact, suppose we want to describe our
system in terms of the random variable ν = Bµ, for some invertible matrix B. The prior
density of ν will not in general satisfy any equation of the form 5.1. However, an equation
of the type 5.3 will still hold, where µ has been replaced by ν and S◦ has been replaced
with its image under the transformation B.

While it is rarely the case that we can naturally express our ignorance in the form of
equation 5.1 at first, it happens often that we can express it in the form 5.3, for appropriate
choices of the subspace S◦. In general, the subspace S◦ will be written in a different form
from equation 5.2, but this is irrelevant: all that matters is that any vector µ ∈ Rd can be
written as the sum of two orthogonal parts, µ◦ and µ⊥, such that we have knowledge only
about µ⊥.

Because P⊥µ is a linear combination of the elements of µ, one way to interpret
equation 5.4 (and therefore equation 5.3) is by saying that we have prior knowledge only
about some particular linear combinations of the elements of µ. Notice also that, given
any subspace S◦, we could always find a change of variable ν = Bµ such that our notion of
indifference, expressed in terms of ν, will take a form like the one of equation 5.1. However,
although it is good to know that this can be done, because it helps to clarify the fact that all
we are doing is making separate lists of things we know and do not know, this exercise is
not of practical interest, because equations 5.3 and 5.4 can be used directly.
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Example 1 Let µ ∈ Rd be a vector of random variables. Assume, for example, that they
represent the expected values of log-mortality in d different countries, for a given year.
We refer to the set of d countries as the world. Suppose we have knowledge about some
properties of µ but not about others. For example, we may not have any idea of what the
world mean µ̄ ≡ d−1 ∑

i µi of log-mortality should be, because data in some countries
have never been collected. Hence, given two configurations whose elements differ by the
same constant c, we cannot say which one is most likely. This is equivalent to saying that,
whatever prior density for µ we choose, it should have the property that

P(µ1, µ2, . . . , µd ) = P(µ1 + c, µ2 + c, . . . , µd + c), ∀c ∈ R.

We now rewrite this expression by introducing the one-dimensional subspace:

S◦ ≡ {µ ∈ Rd | µ = (c, c, . . . , c), c ∈ R}. (5.5)

Thus, the preceding equation is equivalent to

P(µ) = P(µ+µ∗), ∀µ∗ ∈ S◦. (5.6)

This suggests that the prior density should only be a function of µ⊥ = P⊥µ, where P⊥ is
the projector onto the subspace of equation 5.5.

What are the orthogonal complements, µ⊥ and µ◦, in this case? It is easy to see that

µ◦ = µ̄ (1, 1, . . . , 1), µ⊥ = (µ1 − µ̄, µ2 − µ̄, . . . , µd − µ̄).

This result is intuitive: µ◦ contains all the information about the global mean of µ, while
µ⊥ contains all the remaining information but no information about µ̄. In other words, if
we are given µ⊥, we could reconstruct µ up to an additive constant, whereas if we are given
µ◦, we could reconstruct only its global mean. Because of our (lack of) knowledge, it is to
be expected that the prior should depend only on µ⊥.

Now that we have identified the subspace S◦, and we know that the prior should be a
function of P⊥µ, we could proceed to use additional pieces of information to constrain the
prior further. A typical step would be to assume that it is normal and write

P(µ) ∝ exp

(
−1

2
θ (P⊥µ)′ B(P⊥µ)

)

for some positive definite matrix B and some positive parameter θ , which controls the
size of the overall variance. In this expression, B represents our knowledge, and P⊥ our
ignorance. That is, P⊥, when multiplied into µ, wipes out the piece of µ about which we
wish to profess our ignorance (i.e., the null space). This expression can be rewritten as

P(µ) ∝ exp

(
−1

2
θµ′Wµ

)
, (5.7)

where we have defined the matrix W ≡ P⊥ B P⊥ (remember that P⊥ is symmetric). The
only difference between this prior and a regular normal prior is that here, because P⊥
is singular, the matrix W is singular and admits a nontrivial null space N(W ). Recall
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that the null space of a matrix W is the set of vectors µ such that Wµ = 0 (see
appendix B.2.1, page 228, for more detail). In this case the null space N(W ) coincides
with S◦, from equation 5.5. Because W is singular, the prior is improper, as expected. The
improperness comes only from the existence of the null space, which is the set of vectors
“invisible” to W ; that is, Wµ = W (µ+µ∗) for any µ∗ ∈N(W ).

Although improper, the prior is still meaningful, as long as we think of a vector µ not
as an individual element of Rd but as an equivalence class, obtained by adding to µ the
arbitrary constants c to all its elements. Under this view, all the usual operations performed
on prior densities, such as computation of the moments, can be performed on this prior (see
appendix C for details). For example, when we say that the preceding prior has zero mean,
what we are really saying is that the mean of the prior is known to be zero up to the addition
of an arbitrary element of N(W ). �

Although the example presented is very simple, the final form in equation 5.7, with
W singular and positive semidefinite, closely represents all the priors we consider in
this book.1 The advantage of priors of this form is that the matrix W not only encodes
information about the quantities we know (e.g., their correlations) but also, through its null
space, defines the subspace to which the prior is indifferent.

Our approach then follows two steps:

1. We use the concept of the null space of a matrix to analyze W , the
advantage of which is that the tools in linear algebra to characterize and
analyze null spaces are well developed.

2. We note that when a pattern in or values of the parameters µ are in the null
space of W , then the prior in equation 5.7 has the property of prior
indifference given in equation 5.6.

To understand prior indifference, then, we need to understand only the null space of W .
We also add slightly novel terminology by referring to the null space N of the matrix

W in equation 5.7 as the null space of the prior. Because the expression µ′Wµ, with W
singular and positive semidefinite, defines a seminorm (see appendix B.1.3, page 220), it
would be more appropriate, and more in line with some literature, to refer toN as “the null
space of the seminorm associated with the prior,” but this terminology seems unnecessarily
complicated, and so we do not adopt it here.

Before proceeding to a full analysis of several classes of priors, we make the key point
that partially informative priors can also be used to force the random variables to assume a
certain class of configurations with high probability, without requiring them to take on any
one configuration, as would be the case with a proper prior. To see this, consider the prior
in equation 5.7, with its null space N(W ), and let θ assume larger and larger values. This
will force the proper part of the prior to become increasingly concentrated around µ⊥ = 0,
but still leave µ◦ unaffected. Plugging such a prior in the posterior is then equivalent to
constraining the solution to the entire null space rather than to a point, as would be the case

1 Priors similar to that in equation 5.7, often defined over an infinite set of random variables, are commonly called
“partially improper” or “partially informative” priors. They play a fundamental role in nonparametric regression
(Speckman and Sun, 2001; Wahba, 1975, 1978, 1990), where, among other things, they provide the link, originally
unearthed by Kimeldorf and Wahba (1970), between spline theory and Bayesian estimation. The importance and
usefulness of the prior being improper were stressed by Wahba (1978), who pointed out that the prior can be
used as a mechanism to guard against model errors. Priors similar to this form also appear in the spatial statistics
literature often under the name of “(conditionally) intrinsic autoregressive” priors.
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for a proper prior. Which element of the null space corresponds to the solution will then
be determined by the data through the likelihood. If we built the prior in such way that the
null space is a set of configurations with “desirable” properties, then we will have found
the configuration with these properties that best fit the data. We explore this observation
more in detail in the following example.

Example 2 Let µt be a random variable representing the expected value of log-mortality
in a given cross section. We take t to be a continuous variable for the purpose of explanation,
and discretize it later. Consider the case in which we know that the time series describes a
seasonal phenomenon and must have (approximately) the following form:

µt = γ1 sin(ωt + γ2),

where we know ω but we have no idea about the parameters γ1 and γ2 (higher frequencies
could be included, but we exclude them for simplicity). Now notice that the preceding
time series satisfies the following differential equation, independently of the value of the
parameters γ1 and γ2:

(
d2

dt2
−ω2

)
µt ≡ Lµt = 0,

where the differential operator L is defined by the parenthetical term on the left side of
the equation. The set of solutions of this differential equation is the subspace of the set
of all possible time series, defined as the null space N(L) of the operator L , an analogy
with the definition of the null space for matrices. Our ignorance over the possible values
of γ1 and γ2 implies that we are indifferent over the null space of L . However, we also
know that the time series must lie, approximately, inN, because it must have that particular
form.

Now discretize the time series so that it has length T and replace the differential
operator L with the corresponding T × T matrix L . An appropriate prior for this problem
could have the following form:

P(µ) ∝ exp
(−θ‖Lµ‖2

)
,

where θ is some large number. This prior will assign high probability only to those
configurations such that Lµ is approximately 0, but will not specify, among those, which
are the most likely. Notice that because Lµ = Lµ⊥, this prior is written as a function of µ⊥
only, as expected. �

5.2 Step 1: A Prior for µ

In this section, we consider the case in which the cross-sectional index is a variable like
age, which is intrinsically continuous, although it is discretized in practice. We proceed
in two distinct steps, as outlined in section 4.4: in this section, we build a nonparametric
(qualitative) prior for the expected value of the dependent variable and then, in section 5.3,
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use it along with an assumption about the functional form to derive a prior for the regression
coefficients β.

Begin by setting the index i = a and think of age as a continuous variable for the
moment, so that the expected value of the dependent variable is a function µ(a, t) :
[0, A] × [0, T ] → R. The reason for starting from a continuous variable formulation is
that, in so doing, we can borrow from the huge literature on nonparametric regression and
splines, where smoothness functionals are commonly used. A potential problem of such
an approach is that, when µ is a function, it is more difficult to give rigorous meaning
to expressions such as P(µ | θ ) ∝ exp(−H [µ, θ ]), because there are some nontrivial
mathematical technicalities involved in defining probabilities over sets of functions. We
need not to worry about this issue, though, because we will discretize the function µ

and the smoothness functional H [µ, θ ] before defining any probability density, which will
therefore always be defined in terms of a finite number of variables.

We assume that we have the following prior knowledge: at any point in time, the
expected value of the dependent variable µ is a smooth function of age. By this assumtion,
we mean that adjacent age groups have similar values of µ. We now formalize this idea.

5.2.1 Measuring Smoothness

Our immediate goal is to find functionals Ht [µ] defined for any time t that are small when
µ is a smooth function of a (remember that a functional is a map from a set of functions to
the set of real numbers; see appendix B.1.6, page 223). Functionals of this type are easily
constructed using the observation that the oscillating behavior of a function is amplified by
the application of any differential operator to it. Therefore, an initial candidate for Ht [µ]
could be

Ht [µ] ≡
∫ A

0
da

(
dnµ(a, t)

dan

)2

should be small ∀t ∈ [0, T ] (5.8)

where n is an arbitrary integer that will be referred to as the degree of smoothness, for
reasons that will become clear shortly. The parenthetical measures the slope (or higher
derivatives) of µ(a, t) as a function of age for any time t . The squared term recognizes
that “smoothness” is unaffected by the sign of the slope. Finally, the integral computes
the average (of the squared slope) over different ages. In other words, equation 5.8 is the
expected value of the squared derivative, taken with respect to the uniform probability
density (with the constant factor 1/A representing the uniform density omitted for
simplicity). For related ideas in spline theory, see Schoenberg (1946), de Boor (1978), and
Wahba (1975, 1990).

Example In order to convince ourselves that this functional does what we expect it to do,
we compute it for a family of wiggly functions and check that it gets larger if we make
the functions more wiggly. Fix t = 1 and take the family µk(a, 1) = sin( 2πka

A ), indexed by
the integer k. These are sin waves of frequency proportional to k, so k is a measure of how
wiggly these functions are. First, notice that, taking n even for simplicity, we have

dnµk(a, 1)

dan
=

(
2πk

A

)n

sin

(
2πka

A

)
.
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FIGURE 5.1. The sin function and its 2nd derivative, for different
frequencies. On the vertical axis we have both the function µk(a) =
sin( 2πka

A ) and its 2nd derivative. Here A = 20 and k takes on the
values 2 and 5.

Therefore, taking the derivative of order n amplifies the magnitude of the function of a
factor kn . This is easily seen in figure 5.1, where we show the preceding function and
its derivative of order n = 2 for the values k = 2 and k = 5: while the amplitude of the
sin function is independent of k, the derivative corresponding to k = 5 has much larger
amplitude than the derivative corresponding to the value k = 2. Then a simple computation
shows that

H1[µ] ≡ A

4

(
2πk

A

)2n

.

Now it is clear that, as k increases the functions, µk oscillate more and the smoothness
functional gets larger, as desired. �

For a given k, the value of the functional is increasing with n . Therefore, large values
of n correspond to functionals that are very restrictive, because in these cases even small
values of k can lead to a large value for the smoothness functional. This justifies calling n
the degree of smoothness (other justifications for this terminology lie in spline theory and
in some other important properties of the preceding smoothness functional but we do not
discuss them here). For further information, see Wahba (1990), de Boor (1978), Schumaker
(1981), or Eubank (1988).

Because every function on [0, A] can be written as a linear superposition of sin
and cosine waves, this example turns out to be completely general and shows that the
functionals defined previously are indeed always a measure of smoothness. We shall
therefore use them and our method of deriving them quite generally, even, in chapter 7,
for priors defined over units that are not inherently continuous.
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5.2.2 Varying the Degree of Smoothness over Age Groups

Before proceeding, we point out that the smoothness functional in equation 5.8 can be
generalized in a way that can be very useful in practice. It is often the case that, while µ(a, t)
is a smooth function of a, it can be smoother in certain regions of its domain than in others.
For example, if µ(a, t) is the expected value of log-mortality from all causes, we know that
it will have a fairly sharp minimum at younger ages (and therefore be less smooth), but it
will be almost a straight line at older ages (i.e., where it is more smooth). (For example,
see figure 2.1, page 22.) Therefore, penalizing the lack of smoothness uniformly across
age groups would misrepresent our prior knowledge: younger ages should be penalized
relatively less than older ages. This problem is easily fixed by replacing the Lebesgue
measure da in the integral in equation 5.8 with a more general measure dwage(a).2 For
example, we may set dwage(a) = alda for some l > 0 in order to penalize older ages more.

Thus, we represent prior knowledge about smoothness of the expected value of the
dependent variable over ages, with the additional information about where in the age profile
different levels of smoothness will occur, as follows:

Ht [µ] ≡
∫ A

0
dwage(a)

(
dnµ(a, t)

dan

)2

should be small ∀t ∈ [0, T ]. (5.9)

However, enforcing this constraint for every time t can be difficult or unrealistic, and
therefore it may be preferable to have a slightly different formulation, where the functionals
Ht [µ] are averaged over time according to a measure dwtime(t). If the “small” in
equation 5.9 is the same for all times t , the measure dwtime(t) will be the uniform Lebesgue
measure; otherwise, it can be chosen to enforce the constraint more in certain years than
in others. Therefore, instead of equation 5.9, we consider smoothing only the average over
time rather than at each time point and represent our prior knowledge as follows:

H [µ, θ ] ≡ θ

∫ T

0
dwtime(t)

∫ A

0
dwage(a)

(
dnµ(a, t)

dan

)2

should be small, (5.10)

where we have also added the fixed positive parameter θ , to control how small (or
influential) the functional should be. It is important to notice that the integration interval
[0, T ] can include future values as well as past ones, allowing one to impose prior
knowledge on in-sample and out-of-sample predictions. Obviously, more complicated
choices than equation 5.10 can be made, and we will indeed discuss some of them in
section 6.1, but for the moment equation 5.10 is sufficient to explain both the idea and
the formalism.

5.2.3 Null Space and Prior Indifference

Putting aside for the moment technical issues involved in giving a precise meaning to a
probability density defined over a function space, we define from equation 5.10 a prior

2 The “Lebesgue measure” means that the integral is performing an average of a quantity over the uniform density.
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density over µ as follows:

P(µ | θ ) ∝ exp

(
−θ

2

∫ T

0
dwtime(t)

∫ A

0
dwage(a)

(
dnµ(a, t)

dan

)2
)

.

One reason for which such a prior is useful is that it is indifferent to a specific rich class
of patterns of the expected value of the dependent variable. The key observation is that the
derivative of order n is an operator whose null space is the set of polynomials of degree
n − 1. To clarify, denote by pn the set of polynomials in a of degree at most n − 1, that is,
the set of functions of the form:

f (a, t) =
n−1∑
k=0

bk(t)ak .

These functions have the property that

dn

dan
f (a, t) = 0, ∀a, t ∈ R.

Therefore, the preceding prior has the indifference property:

P(µ | θ ) = P(µ+ f | θ ), ∀ f ∈ pn .

This implies that, at any point in time t , we have no preference between two functions that
differ by a polynomial of degree n in age, or, in other words, we consider the two functions
equiprobable. The polynomials we are indifferent to have coefficients that are arbitrary
functions of time.

Example: n = 1 Consider the simplest case, in which n = 1. The first derivative is
indifferent to any constant function, and therefore our notion of prior indifference here
is expressed by saying that

P(µ | θ ) = P(µ+ f (t) | θ ), for any function f (t).

Therefore, while we know something about how the dependent variable µ varies from one
age group to the next, we declare ourselves totally ignorant about the absolute levels it may
take. �

Example: n = 2 The second derivative is indifferent to constant and linear functions, and
therefore our version of prior indifference is expressed by saying that

P(µ | θ ) = P(µ+ f (t) + g(t)a | θ ), for any function f (t), g(t).

In this case we are indifferent to a larger class of patterns than the one in example 1: not
only do we have no preference over two age profiles that differ by a constant, but we also
do not distinguish between age profiles differing by a linear function of age. Put differently,
we declare ourselves ignorant of the mean and linear age trend of the age profiles. �
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In both of these examples we impose no constraints on the functions f (t) and g(t),
which appear in the null space of the prior. In real applications, this, of course, is unrealistic,
because although we are ignorant about the levels of the age profiles, we expect them
to move smoothly as a function of time. (We address this issue later by using another
smoothness functional, which explicitly encourages the expected value of the dependent
variable to vary smoothly over time.)

5.2.4 Nonzero Mean Smoothness Functional

As pointed out in section 4.5.1, the functional in equation 5.10 is symmetric around the
origin. It assigns the same value, and therefore the same probability, to µ and −µ, which
may be undesirable. If a “typical” age profile µ̄(a) is available, it may be more appropriate
to use the following smoothness functional instead:

H [µ, θ ] ≡ θ

∫ T

0
dwtime(t)

∫ A

0
dwage(a)

(
dn

dan
(µ(a, t) − µ̄(a))

)2

. (5.11)

This smoothness functional represents a different kind of prior information: now the
deviation of the dependent variable from the mean age profile varies smoothly across
age groups.

This distinction is important. It may happen that the age profiles themselves are not
particularly smooth (e.g., there may be a huge variation in log-mortality from age group
0–4 to age group 5–9), and therefore it would not be appropriate to use the prior associated
with equation 5.10. However, we may still expect them to look like “smooth variations” of
the typical age profile µ̄, and therefore the smoothness functional in equation 5.11 may be
more appropriate. Because using the smoothness functional in equation 5.11 is equivalent
to that in equation 5.10 in which the dependent variable has been redefined as µ� µ− µ̄,
we use, unless otherwise noted, only the simpler form 5.10 in the following. This implies
that when we refer to the dependent variable as “log-mortality,” we might also be referring
to its deviation from µ̄, depending on whether we have set µ̄ = 0 or not.

5.2.5 Discretizing: From Age to Age Groups

Now that we have a generic smoothness functional given by equation 5.10, the next step is
computational: both the age and time variable are discrete in practice, so that the function
µ(a, t) should be replaced by an A × T matrix with elements µat , the n-th derivative should
also be replaced by a matrix, and the integral by a weighted sum. We develop discrete
versions of the n-th derivative in appendix D; for the moment, all we need to know is that
this appendix provides well-defined matrices Dage,n , which approximate the derivative of
order n with respect to age. Therefore, we should make in equation 5.10 the replacements:

µ(a, t)� µat ,
dnµ(a, t)

dan
�

∑
a′

Dage,n
aa′ µa′t ,

∫
T

dwtime(t)
∫

A
dwage(a)�

∑
at

wtime
t wage

a ,

where wtime
t and w

age
a are vectors of positive weights, summing up to 1, that correspond

to the measures dwtime(t) and dwage(a). In order to keep the notation simple, we assume



April 2, 2008 Time: 11:46am chapter5.tex

86 • CHAPTER 5

here that dwtime(t) and dwage(a) are simply normalized Lebesgue (uniform) measures, and
therefore we set wtime

t = T −1 and w
age
a = A−1. The preceding smoothness functional can

now be redefined in its discretized form:

H [µ, θ ] ≡ θ

T A

∑
at

(∑
a′

Dage,n
aa′ µa′t

)2

.

Introducing the matrix W age,n ≡ A−1(Dage,n )′Dage,n , we rewrite the preceding expression
in simpler form as

H [µ, θ ] = θ

T

∑
aa′t

W age,n
aa′ µatµa′t ≡ θ

T

∑
t

µ′
t W

age,nµt , (5.12)

where µt is an A × 1 vector whose elements are µat , also referred to as the time-series age
profile at time t . This implies that the prior for µ has the form:

P(µ | θ ) ∝ exp

(
−θ

2

∑
t

µ′
t W

age,nµt

)
. (5.13)

5.2.6 Interpretation

We now further interpret the smoothness functional in equation 5.12. First, we have seen
in section 5.2.3 that the prior associated with the smoothness functional in equation 5.10 is
indifferent to polynomials of degree n − 1 in age, with time-dependent coefficients. This
important and useful property was derived in the continuous setting, and it also holds in the
discretized setting if the derivative operator is discretized properly. In fact, any discretized
form of the derivative of order n should have the property that Dage,nν = 0 for any vector
ν of the form νa = ak , k = 0, 1, . . . ,n − 1 (and any linear combination of such vectors).
This means that the matrix Dage,n has nullity (see section B.2.1) equal to n and rank equal
to A −n . because the matrix W age,n is proportional to (Dage,n )′Dage,n , its eigenvalues are
simply the squares of the singular values of Dage,n (see section B.2.4, page 233). As a result,
W age,n has the same rank and nullity as Dage,n :

rank(W age,n ) = A −n, nullity(W age,n ) = n .

Therefore, the prior specified by equation 5.13 is improper, because W age,n is singular.
The improperness comes from the fact that we do not want to commit ourselves to specify
a preference over some properties of the age profiles, such as the mean (when n = 1)
or the mean and trend over ages (when n = 2). However, the prior, unlike improper flat
priors, does represent some genuine knowledge. In fact, the prior is proper and informative
once we restrict ourselves to the age profiles that lie in the subspace orthogonal to the null
space.

Take, for example, n = 1, so that the null space is the set of constant age profiles. The
space of age profiles orthogonal to the null space is the space of age profiles with zero
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mean. In this space, the prior is proper, and we can, for example, draw samples from it.
In general, the prior in equation 5.13 is proper once we restrict ourselves to age profiles
whose moments of order up to n − 1 are zero (ensuring that they are orthogonal to the
null space of the prior). (The technical details of how to draw from prior 5.13 and compute
associated expected values are described in appendix C.) Obviously, once we have a sample
from the prior, we can add arbitrary elements of the null space and obtain random draws
that have exactly the same probability as the original sample under the improper prior.
Thus, one question is, Which samples should we show? We adopt the convention that when
we sample from an improper prior, we show only the samples whose projection on the
null space is 0 (because this is actually how the samples are obtained) and leave to our
imagination the task of adding arbitrary elements of the null space in order to visualize the
prior indifference. This is usually easy when the null space consists of constant or linear
functions. However, in order to aid this process, before showing samples from different
kinds of priors, we now show what samples look like when we add an arbitrary member of
the null space.

Consider the cases n = 1 and n = 2, with µ̄ = 0 (zero mean) and µ̄ set to some typical
age profile (in this case, the one for all-cause male log-mortality). For figure 5.2, we drew
three samples from the proper portion of the prior in equation 5.13. Then we added to
each an arbitrary element of the null space. Notice that we say an “arbitrary” and not a
“random” element of the null space, because we cannot draw at random from the null space
since the density over it is improper. Hence, we selected the particular elements here for
visual clarity. In the top left panel, we have set n = 1 and µ = 0: the prior has zero mean
and the null space is the space of constant functions. Each of the three random samples
from the proper portion of the prior is color-coded (red, green, or blue). We then repeat
each of the three samples three times by adding to the sample three arbitrary elements of
the null space. Hence, in this graph, we can see three red curves, which differ only by a
constant. Our prior is indifferent to the choice among these three red curves, in that they
have identical prior probabilities. The same holds for the three green curves and three blue
curves in the top left graph of the figure. (The samples originally produced by the algorithm
that samples from the proper prior are the ones in the middle, which have zero mean over
age groups, but this is a minor technical point about how we happen to choose to draw
priors.)

In the top right panel, we show a similar graph, but with a nonzero mean prior, for
which we set µ̄ to some typical shape for the age profile of male all-cause log-mortality.
In the bottom left panel, we give samples from a zero-mean prior with n = 2, whose null
space consists of the space of linear functions. The original samples are again the ones in
the middle (zero mean and zero trend). We have added constant positive and negative shifts
and linear terms with positive and negative slopes to form the other two sets of three curves
in this graph. The bottom right panel has been obtained in the same manner of the bottom
left panel, but with a nonzero mean prior (same µ̄ as in the top right panel).

Of course, whenever we talk about null space and prior indifference, we are always
idealizing the situation somewhat: obviously it is not true that we are totally ignorant about
the levels of the age profiles (e.g., we have the constraint that log-mortality is a negative
number, and some of the values in the figure are positive!). What we mean by “ignorant”
is that we think that the prior knowledge is sufficiently less important than the knowledge
contained in the data that it should be ignored. In this situation, we might as well pretend
we do not have any such prior knowledge and take advantage of the nice properties of the
null space of the prior.
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FIGURE 5.2. Age profile samples from smoothness priors with added arbitrary elements of the null
space. For each panel, different colors correspond to different samples, while curves of the same color
differ by an element of the null space. Top left: n = 1 and µ̄ = 0; top right: n = 1 and µ̄ �= 0; bottom
left: n = 2 and µ̄ = 0; bottom right: n = 2 and µ̄ �= 0. These graphs have data with 17 age groups, at
5-year intervals, labeled 0, 5, . . . , 80. The value of θ has been chosen so that the standard deviation
of µa is 0.3, on average over the age groups.

We now proceed to analyze in more detail what samples from the improper priors
described in this section look like when we ignore the null space. To this end we show in
figure 5.3 samples from the proper part of the prior in equation 5.13 for n = 1, 2, 3, 4.

An obvious feature of these graphs is that the samples become less and less “jagged”
(or locally smooth) as n increases. This is what we should expect, because the smoothness
functional is built to penalize an average measure of local “jaggedness.” (The same pattern
can also be seen in figure 5.2, which we constructed to focus on the null space.) Another
way to say this is that as n increases, the values of µ at different ages become more and
more correlated with each other.
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FIGURE 5.3. Age profile samples from the smoothness prior in equation 5.13 for n = 1, 2, 3, 4.
Here A = 80, and there are 81 age groups, from 0 to 80. The value of θ has been chosen so that
the standard deviation of µa is 0.3, on average over the age groups, and the scale is the same in all
graphs.

Another very evident feature of these graphs is that, as n increases, the samples
acquire more and more large “bumps” (or global changes in direction). If we think of the
number of bumps as a measure of oscillation then this implies that, as n increases, the
samples oscillate more. This sounds like a contradiction: the point of building smoothness
functionals is to penalize functions that oscillate too much, and we have been claiming
all along that, as n increases, the functionals become more restrictive, and therefore their
samples should oscillate less. The contradiction is apparent, however, only because we
have been mixing two kinds of oscillations: one is local oscillation, measured locally by the
derivative of order n , and the other is global oscillation, measured by the number of bumps,
or, better, by the number of zero crossings. The smoothness functional in equation 5.10 is
built to penalize the local amount of oscillation, on average, and it does not care about the
global shape of a function. In fact, we can dramatically alter the global shape of a function
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by adding to it a polynomial of degree n − 1 without changing the value of the smoothness
functional at all. Take, for example, n = 4, so that the null space is the 4-dimensional space
of polynomials of degree 3. Polynomials of degree 3 can have 2 “bumps,” but they are the
smoothest possible curve according to this smoothness functional. Therefore, it should not
be surprising that samples from the prior often have one more bump, as is the case for most
of the samples in the bottom right panel of figure 5.3.3

The samples we show in figure 5.3 are all for the zero-mean prior. In order to give an
idea of what the samples look like when the prior is not zero mean, as in equation 5.11, we
repeated the same experiment centering the prior around µ̄, where µ̄ has been chosen as the
average age profile of all-causes log-mortality in males (the average is over all years and in
all 67 countries with more than 20 observations). The results are reported in figure 5.4. The
most “reasonable” age profiles are those obtained with n = 2, for which the null space is
the set of linear functions of age. If this null space is too large, we can combine the priors
for n = 1 and n = 2 in order to reduce the size of the null space but retain smooth age
profiles. We address this issue in more detail in section 6.1.

Finally, we compare the smoothness functionals in equation 5.12 derived in this section
with the “bare bones” smoothness functional in equation 4.15 (page 70). Because n ≥ 1,
the constant vector ν = (1, 1, . . . , 1) is always in the null space of W age,n , implying that
the rows and columns of W age,n always sum to 0. In turn, this implies (via the result
in appendix B.2.6, page 237) that it is always possible to find a matrix sage,n such that
we can write the smoothness functional in equation 5.12 (page 86) in the same form as
equation 4.15 (page 70):

H [µ, θ ] = θ

T

∑
t

∑
aa′

sage,n
aa′ (µat −µa′t )

2. (5.14)

Because the derivative is a local operator, the matrix W age,n will usually have a “band”
structure, such that W age,n

aa′ is different from 0 only if a and a′ are “close” to each other
(although not necessarily first neighbors). This structure is reflected in the matrix sage,n ,
which makes clear that the smoothness functional in equation 5.12 is a sum of “local”
contributions, obtained by comparing the value of µ in a certain age group with the values in
nearby age groups. In this respect, the smoothness functional in equation 5.12 is like the one
in the previous chapter, which resulted from pairwise comparisons between neighboring
age groups. An important difference between equations 5.14 and 4.15, however, is that in
equation 4.15 the “weights” saa′ were chosen to be positive. This allows us to interpret
the smoothness functional as a way to penalize configurations in which similar age groups
do not have similar values of µ. As soon as n becomes larger than 1, however, many of
the elements of sage,n become negative, which may appear counterintuitive. Yet this must
be the case because, if the elements of sage,n were all positive, then the null space of the
functional could only be the set of constants, independent of the values of sage,n , while we
know that the size of the null space increases with n . In other words, the elements of sage,n

become negative in order for some cancellations to occur, cancellations necessary to ensure
that the null space has the correct structure.

3 Another noticeable feature of these graphs is that the variance of the samples for the first and last age group
becomes larger with �. This is partly due to the difficulty of writing a good discretization of the derivative
operator near the edges of the domain (for age groups 0 and 80, only “one-sided” information can be used),
and it is sensitive to choices we make in this regard.
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FIGURE 5.4. Age profile samples from the smoothness prior in equation 5.13 for n = 1, 2, 3, 4
and a typical age Profile for all-causes log-mortality in males. There are 17 age groups (A = 17), at
5-years intervals, labeled 0, 5, . . . , 80. The value of θ has been chosen so that the standard deviation
of µa is 0.3, on average over the age groups, and the scale is the same in all graphs.

Thus, it may be tempting to build priors “by hand” starting from the intuitive formula
in equation 5.14, where the elements of sage,n are chosen to be positive, because it iseasy
to understand its meaning in this case. In some cases this is appropriate, and we shall do so
when we will consider smoothness functionals over discrete variables, such as countries, in
chapter 7. In other cases, however, following the approach of equation 5.14 would probably
cause us to miss a richer class of smoothness functionals, and so it is more appropriate to
start from the more formal notions of smoothness we offer here, such as the one expressed
by equation 5.10. Such an approach has a tremendous practical advantage in that we do
not have to choose the elements of the matrix sage,n . They are provided to us from the
discretization of the derivative operator, so that the only choice we have to make is about
the parameter θ and the degree of smoothness n .
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5.3 Step 2: From the Prior on µ to the Prior on β

5.3.1 Analysis

Now that we have a better understanding of the meaning of the prior on µ in equation 5.12,
we proceed to step 2 of our strategy and derive a meaningful prior in terms of β by using
our prior for µ constrained to fit the specification µat = Zatβa . One way to think about
this procedure is as another way to add information, by restricting ourselves to patterns for
the expected value of the dependent variable that can be explained by a set of covariates.
Formally this is done by projecting the prior implied by equation 5.12 on the subspace
spanned by the covariates. Substituting µat = Zatβa into equation 5.12, we obtain

Hµ[β, θ ] ≡ θ

T

∑
aa′t

W age,n
aa′ (Zatβa)(Za′tβa′ )

= θ
∑
aa′

W age,n
aa′ β ′

aCaa′βa′ , (5.15)

where the second line uses the fact that the coefficients β do not depend on time and so the
sum over time can be performed once for all, and where we have defined the matrix:

Caa′ ≡ 1

T
Z′

aZa′ ,

so that Za is the usual data matrix of the covariates in cross section a, which has Zat for
each row. Hence, the prior for β, conditional on the parameter θ , is now simply:

P(β | θ ) ∝ exp

(
−1

2
θ

∑
aa′

W age,n
aa′ β ′

aCaa′βa′

)
. (5.16)

5.3.2 Interpretation

We now make three brief but critical observations. First, the vectors of covariates Zat and
Za′t are of dimensions ka and ka′ , respectively, and so Caa′ is a rectangular ka × ka′ matrix,
and it does not matter whether we have same number or type of covariates in the two cross
sections.4 That is, this result enables us to include all available covariates in the time-series
regression in each cross section, even if they differ from cross section to cross section in
number, content, or meaning.

Second, the weights W age,n
aa′ in equation 5.16 are fully specified once we choose,

from prior information, the order n of the smoothness functional in equation 5.10 (see
section 6.1). That is, all A2 elements of this matrix—all elements of which, under previous

4 This last statement is true even if the age groups indexed by a are not equally spaced. In this case it is somewhat
more complicated to build the matrix W age,�

aa′ , because one is required to approximate the �-derivative of µ using
unequally spaced points: this task goes beyond the simple rules explained in appendix D, but straightforward
methods can be found in standard numerical analysis textbooks.
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approaches, would need to be specified by hand—are uniquely determined by the single
scalar n .

Third, the form of the prior in equation 5.16 depends on the fact that the cross-sectional
index can be thought of as a (possibly discretized) continuous variable, so that we can
define the fundamental notion of smoothness with respect to a continuous variable in terms
of derivatives. We show in section 7.2 that when the cross-sectional index is a label, like a
country name, a formally similar approach is viable and leads to a prior of the same form
as the one in this section.


