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8 Comparisons and
Extensions ~M\ AL

In this chapter, we provide some general procedures for understanding the priors built
in chapters 5-7. We begin in section 8.1 with a systematic comparison of the priors-on-
coefficients approach with our priors on the expected value of the dependent variable.
We then prove, in section 8.2, that priors specified in the large literature on hierarchical
Bayesian models that feature exchangeable clusters of cross sections are special cases of
our models. The results in this section demonstrate that our results about the inappropriate-
ness of putting priors on coefficients in spatial models apply to the hierarchical literature as
well. It also demonstrates how our approach has the same attractive features of empirical
Bayes but without having to leave the standard Bayesian approach to inference. Section 8.3
shows how our models can also be used for smoothing noisy data to reveal the underlying
patterns, even if forecasting is not of interest. Section 8.4 then shows how to modify our
methods when the dependent variable changes meaning, such as when the international
classification of disease changes definitions.

Priors on Coefficients versus Dependent Variables

In this section, we compare the prior on coefficients from section 4.2 with that on the
expected value of the dependent variable, in section 4.4 and chapters 5 and 7. We provide
intuition by comparing the notion of distance in section 8.1.1 and the relevant conditional
densities in section 8.1.2. Section 8.1.3 describes connections between the results in our
first two sections with theoretical results from the pattern recognition literature.

8.1.1 Defining Distances

In order to facilitate comparison, we write each prior in two equivalent forms with the aid
of the quadratic form identity (appendix B.2.6, page 237). Then, we put the prior on 8 in
equation 4.5 (page 59) side by side with the prior on u from equation 7.11 (page 132) as
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where u; =Z;8; isa T x 1 vector, | - | is the Euclidean norm, and ||b||fb =b’'®b is the

Mahalanobis norm of the vector b (the left-hand side of equation 8.2 can be proved to
be equal to the left-hand side of equation 8.1 by direct substitution of w; and p; into the
expression). Notice that the matrix s does not have to be the same in the two priors, but
because it has similar meaning and its explicit form is irrelevant here, we just take it to be
the same to ease notation.

When imposing smoothness on B, researchers use s;; as a distance in the space of
cross-sectional units, but, for fixed i and j, no natural definition of distance between B,
and B; exists. Therefore, the usual procedure is to parametrize the distance between B; and
B ; as the Mahalanobis distance ||; — B || o. This approach obviously cannot be used when
B; and B have different dimensions, or correspond to different covariates, because the set
of coefficients would have no obvious metric structure and so would not be comparable.

In contrast, in our case, rather than comparing the coefficients 8; and 8 j» We compare
their predicted patterns for the expected value of the dependent variable, 1; and u;, taking
advantage of the fact that y; and w; are interpretable and there exists a natural distance
between them, no matter what covariates are included. This distance is Euclidean (rather
than Mahalanobis; see appendix B.1.3, page 220), and so the normalization matrix & is not
required. In other words, we project B; and B into the same higher-dimensional metric
space through the covariate matrices Z; and Z; and then compare them. The covariates
play here the role of “translators,” allowing one to compare vectors of disparate quantities.
This they do through the matrices C;;, which allow us to project a vector of “type i’ onto a
vector of “type j.”

This result can be seen more clearly in equation 8.1 where the prior on coefficients
contains a sum of scalar products B:®B ;j» wWhich does not have meaning unless B; and
B; are of the same type. However, on the right-hand side of equation 8.1, we see that
following our approach the scalar products 8;C;; B ; are well defined: vector B; of type j is
converted to a vector of type i by the matrix C;;, and then the usual Euclidean scalar product
is computed (because ,B;C,-jﬁj = ,B’jC/jiﬂ,-, we can also say that vector §8; of type i is
converted to a vector of type j by the matrix C’j ;). The matrices C;;, despite their simplicity,
allow us to impose a metric structure on a set that does not have any existing structure.
While the set of coefficients 8 does not even have the structure of a vector space (see section
B.1.1, page 218), because the sum of B; and B is not defined, a notion of distance is defined
between B; and B ;, when translated to the scale of the expected value, by the expression:

d*(B;. B;|Zi. L)) = |Z;B; — Z;B,|> = B;CiiB; + B,C;; B, —2B/Ci; B, (8.3)

This expression should be compared with the Mahalanobis distance, which, written in terms
of scalar products, is as follows:

IB: —Bils=B;®B; + B;PB; —28;DB;.
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This comparison reinforces the point that the expression B;C;; B; is the “natural” scalar
product between B; and B ;, and, indeed, it has all the properties of a scalar product (except,
of course, the fact that a true scalar product is always defined between elements of the same
set; see appendix B.1.2, page 219). Similarly, the distance in equation 8.3 satisfies all the
axioms of a distance or, to be precise, of a semidistance, because dz(ﬁ i B j|Z,-, Z;)=0
does not imply that 8; = B; (for a formal definition see appendix B.1.2, page 219).

One way to summarize this discussion is to say that the intuition of putting a prior on
coefficients is reasonable, except that the notion of similarity should be defined using prior
knowledge about the expected value of the dependent variable.

8.1.2 Conditional Densities

Another useful way to compare the two approaches is to examine the implied conditional
priors. Thus, the prior density on the 8’s implies the following conditional prior distribution
of the coefficient B;, given the values of all the other coefficients 8 _;:

Sij ¢!
LIRS
i

BilB_i @~ N

J

(8.4)

N S

1

The preceding expression confirms the intuition that smoothing is achieved by letting B;
be a weighted average of the regression coefficients of the neighboring cross sections, and
obviously loses any meaning when the B; and B ; are not comparable. Performing a similar
calculation for our prior in equation 7.12 (page 132), we obtain the following conditional
prior:

Sii 1 _
B:AB_ .0 ~N Z#ciilcijﬂj,esjciil . (8.5)
j l l

The key to this expression is the presence of two sets of matrices, with different roles: in
the conditional mean, the matrix C;; converts vectors of “type j” into vectors of “type 7,”
but also produces a vector with different measurement units, and so the matrix C;;" con-
verts this result to the correct measurement units, to ensure that the coefficients 8 have
measurement units that are the inverse of the measurement units of the covariates.

The presence of Ci_l.1 in the conditional variance ensures that the Bayes estimator
4.3 (page 58) based on the prior in equation 7.12 (page 132) produces forecasts that are
invariant for scaling of the covariates in each cross-sectional unit. In other words, we can
decide to use pounds instead of dollars in some cross-sectional units and still obtain the
same forecast (and obviously a different set of appropriately scaled coefficients). If we
used the prior on coefficients in equation 4.4 (page 59), not only would we have to make
sure that the covariates in the different cross sections are measured in the same units, but, if
we changed units, we would also have to change the scale of the covariance parameter .

8.1.3 Connections to “Virtual Examples”

in Pattern Recognition

Expression 8.5 has an interesting interpretation in terms of what in the pattern recognition
literature are called “virtual examples.” The connection to virtual examples is useful here
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8.2

to clarify the meaning of the prior and, in chapter 10, as a starting point for a fast estimation
procedure that does not require Markov Chain Monte Carlo algorithms.

In order to simplify the exposition, we do not smooth over time, so that C;; = %Z;Z 1B
and let us interpret equation 8.5 as saying that, conditional on the values of all the other
coefficients B_;, we expect §; to be in a neighborhood of the conditional mean, a fact that
we write informally as

Sij _
B~ Z #(Z;Zi) IZ;Zjﬂ/*

j 1

Then, noting that the quantities Z;B; = j1; are the predicted values for the dependent
variable in cross section j, we write
Sij

B~ (Z,1,)"'Z ZS—MJ-.
j i

The sum in the preceding expression is simply the average of the predicted values for the
dependent variable in the cross sections that are neighbors of cross section i (excluding i
itself because s;; = 0), and we call this quantity fi;, rewriting

B~ (ZZ) "L ;. (8.6)

This expression is a standard least-squares estimator and has a simple interpretation. Given
the values of all the other coefficients B_;, we could get an a priori likely estimate of f; in
two steps:

1. Obtain an estimate for the dependent variable in cross section i by
averaging the predicted values of the cross sections that are neighbors of i
(the vector fi;).

2. Then, to obtain the coefficients in cross section i, run a least-squares
regression of fi; on Z,;.

Because the vector fi; is not a vector of observed values, or “examples” but rather is inferred
using prior knowledge, we say that it is a vector of “virtual examples,” and in this sense we
could say that the role of the prior knowledge we have on the problem is to create suitable
sets of virtual examples. For more discussion of the connection between prior information
and virtual examples, see Abu-Mostafa (1992), Bishop (1995), and Niyogi, Girosi, and
Poggio (1998).

Extensions to Hierarchical Models and
Empirical Bayes

In this section, we demonstrate two fundamental results. First, our methods incorporate the
key attractive features seen in empirical Bayes approaches, but without having to resort
to the sometimes problematic empirical Bayes theory of inference. In empirical Bayes,
hyperparameters from the last level of a hierarchical model are estimated rather than chosen
a priori. Although this procedure might seem better because it brings the data to bear on
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the problem of making difficult choices about obscure hyperparameters, many scholars
question the inferential validity of this approach: it uses the data twice and inferences
must be corrected in various ad hoc ways to avoid underestimating the width of confidence
intervals. Despite the inferential problems, however, this procedure is still frequently used,
one important reason for which is because using the data in this way turns out to be
equivalent to making the prior indifferent to certain chosen parameters (Carlin and Louis,
2000). For example, with empirical Bayes it is possible to achieve shrinkage among a set
of parameters without having to specify the mean of the parameters. Of course, our formal
approach to prior indifference accomplishes exactly the same task, but entirely within the
standard Bayesian framework. We demonstrate this equivalence here.

Second, we show here that Bayesian hierarchical models, with clusters of exchange-
able units, are a special case of the Bayesian spatial models we are analyzing in this
book. As such, our results about the inappropriateness of putting priors directly on
coefficients in spatial models (see section 4.3) also extends to the Bayesian hierarchical
modeling literature. Taken together, it would seem that the many Bayesian models that
use covariates are using prior densities that inappropriately reflect their prior knowledge.
All our techniques for putting priors on the expected value of the dependent variable and
developing priors indifferent to chosen features of the parameters apply to hierarchical
models as well.

8.2.1 The Advantages of Empirical Bayes without

Empirical Bayes

We begin by considering a hierarchical linear model, with N cross sections and N vectors
of coefficients ;. A common assumption is the following “shrinkage” prior:

ﬂi '\’N(]/, Tz).

The “direct” effect of this prior is to shrink the coefficients f; toward the same mean y.
The “indirect” effect is that the coefficients are shrunk toward each other. It is often the
case that the indirect effect is more desirable than the direct one: one can be confident that
the coefficients B; should be similar to each other without necessarily knowing what value
they should assume. In other words, the researcher may be agnostic (indifferent) about the
absolute level of the coefficients but may be knowledgeable about their relative size. Let
us apply the idea of using subspaces to represent indifference. It is sufficient to work with
one-dimensional coefficients, so we assume f;, ¥ € R in the following. Taking t =1 for
simplicity, the preceding prior can be rewritten as

1 N
P(B) ox exp (—5 > B y>2>. (8.7)
i=1

Defining the N x 1 vectors B = (B, ..., By)and y =(y, ...y), we rewrite the preceding
expression in vector form:

1
P(B) o exp (—5 IB—y ||2). (8.8)
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While this prior is defined over RV, there is a whole subspace of R we are indifferent to:
this is the set V C RN = {x | x = (k, ..., k), Yk € R}, which coincides with the diagonal
of the positive orthant! in RY. In other words, we are indifferent between B; and B, +k,
for any k € R.

How do we modify this prior so that it expresses the indifference we seek? Denoting
by P, the projector onto V|, the orthogonal complement of V, the prior 8.8 can be made
indifferent to V by simply projecting its argument onto V, . Therefore, we define a new
prior:

1
PL(B) o exp (—Eumw - ,,)”2),

Because y € V by construction, then P,y = 0 and the preceding prior becomes simply:

1
PL(B) xexp (—EIIPJJIIZ). (8.9)

This expression makes clear that the only part of 8 we have prior knowledge about is P, 88,
that can be interpreted as the portion of B that contains only “relative” information. Let us
find an explicit expression for P, . By the properties of projection operators in appendix
B.1.13 (page 226), we have P, = I — P,, where P, is the projector onto V, which we now
recognize as the null space of the prior. P, is easily built in terms of an orthonormal basis
for the subspace V, which is given by the constant row vector v = \/Lﬁ(l, ..., 1), where

the factor ~/N ensures normalization. Then the projector P, is given by P, = v'v (see page
226). The form of both P, and P, is given as

1 | )

Hi 1—1N1—ﬁ] .

1 . — 11— ... —%

Po=—1.. P = N N N
N::o : : .

1 1 1

11...1 IR

Therefore the projector P, operates on a vector 8 as
N
PLﬂzﬂ—NZﬂi(l,...,1)E,B—ﬂ(1,...,1),
i=1

where g = ZZN=1 B;/N is the average of the elements of . Using this notation, we can
rewrite the prior 8.9 as follows:

1< _
PL(B) < exp (—5 > B ﬂ)2>- (8.10)
i=1

! An “orthant” is a quadrant in three or more dimensions.
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This expression should be compared to the prior in equation 8.7: the crucial difference
between these two is that while the prior in equation 8.7 shrinks f; to a common,
predetermined value y, the prior in equation 8.10 simply shrinks them to some common
value, which is not known a priori, but is determined by the data. The prior in equation 8.10
is similar to the empirical Bayes prior, with the difference that in empirical Bayes the value
B is replaced by an average of empirical estimates of the B;. It shares with the empirical
Bayes prior the property of being independent of the absolute scale of B, but it obviously
does not require the empirical Bayesian theory of inference.

8.2.2 Hierarchical Models as Special Cases of Spatial Models

8.3

It is instructive to rewrite the prior in equation 8.10 in a way that makes it more similar
to the conditionally autoregressive priors described earlier in this chapter. We notice that
because P, is symmetric and is a projection operator, then || P, B> = B'P P B=PBPB.
Because the rows of P, sum to 0, we can use the quadratic form identity of appendix B.2.6
(page 237) to rewrite the prior in equation 8.10 as

1 N
PiByocexp (== > (B —B)" | @.11)

i,j=1

This prior has the same form of the priors described by the left column of equation 8.2,
in which we have set s;; =1 forall i, j =1, ... N, and therefore it is the simplest form of
conditionally autoregressive prior. This proves that hierarchical models are special cases
of spatial models in which all elements of a cluster are defined to be “neighbors” of all
other elements. All results in this book described in the context of spatial models thus also
apply to hierarchical models.

Smoothing Data without Forecasting

In several purposes researchers may be interested in smoothing observed mortality patterns,
rather than forecasting future values. More precisely, they might have noisy and or
incomplete mortality data and are interested in removing the noise or imputing the missing
values.

This problem is easily handled in our framework and does not require the development
of any new technique. As we describe here, it simply requires coding a set of dummy
variables, one for each observation, and then applying our existing priors. As such, our
existing software designed for forecasting can be used without modification.

We consider the case in which there is only one country. We have already defined a
suitable set of priors for the expected value of the dependent variable:

1
P(u | 0) xexp (_EH[M’ 9]), (8.12)
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where the smoothness functional H[w, 8] will have, in general, a component for smoothing
over age groups and a component for smoothing over time. If smoothness functionals over
age groups and time as those in equations 5.8 (page 81) and 7.1 (page 125), respectively,
are used, the discretized version of the smoothness functional is?

age etime ek
Z age,n time,
T Waa/ MarMa't + A Wn/

aa't att’

Hlw,0]= MHarlar' -

In the preceding expression, n and k are the order of smoothness of the smoothness
functional over age and time, respectively.

Unlike in the regression case, the quantity we are interested in is u itself, and we do
not need to link u to a set of covariates here. Therefore, the smoothing problem consists
simply of estimating p given the prior 8.12 and the likelihood for this specification:

0.2

ma;NN</,La;,—a) a=l,...,A, tzl,T
bar

For clarity, we explicitly write down the negative log-posterior distribution for u:

bar 2
log P(ulm, 6, ) o Z o2 (mar = tar)

gage e Qlime o
| D Waa " Harttan + = D W™ larttar | (8.13)

aa't att’

This expression fits squarely in the standard framework of nonparametric smoothing
and can also be seen as a simple application of standard Bayesian smoothing theory.’
Usually the estimate for p is obtained by maximizing the posterior distribution, that is, by
minimizing the expression in equation 8.13 over u, using a variety of methods, including
cross validation, to determine the parameters 6 and o. This approach takes advantage of
the fact that the log-posterior is quadratic in u, and linear methods can be used to solve
part of the problem. Alternatively, one can develop a full Gibbs sampling strategy for the
computation of the mean of the posterior.

In our case we do not need to develop new methods or even write new code. We observe
that any estimation strategy used to solve the regression problem can be immediately
applied to solve the smoothing problem by constructing an artificial set of covariates such
that the regression coefficients can be interpreted as estimates of the expected value of the
dependent variable.

In order to see this, consider the regression problem with the usual specification
Mar = La B,. Now choose as covariates a set of 7 dummy variables, with one dummy
variable associated with each year from 1 to 7.* This is equivalent to using a covariate

2We are considering a zero mean prior here. If a nonzero mean prior is needed, the rest of the analysis remains
the same, but w is interpreted as the mean-centered age profile.

31f mg, includes missing values, we can simply fill them with an arbitrary number and set the weight b,; to zero.
4 This implies that we drop the constant term for the specification.



March 6, 2008

Time:

04:37pm chapter8.tex

COMPARISONS AND EXTENSIONS -« 153

matrix Z, equal to the T-dimensional identity matrix. The specification j, = Zg 8, can
now be rewritten as

Mar = :85)-

In this way, estimates of the coefficients are easily translated into estimates for . A
user who wishes to smooth the data and is not interested in forecasting has simply
to decide the priors to use, create a set of dummy variables, and run any estimation
algorithm.

Priors When the Dependent Variable
Changes Meaning

We now consider an application of smoothing, as described in section 8.3, to a case not
often considered in standard smoothing theory—smoothing in the presence of discontinu-
ities.

A common problem in the analysis of cause-specific mortality rates is that the
International Classification of Diseases (ICD), which is used to classify causes of death,
changes roughly every decade. If a change is large enough, it could lead to visible
discontinuities in the log-mortality time series, violating the assumptions that observed
log-mortality is smooth over time.

For example, figure 8.1 presents the time series of log-mortality for “other infectious
diseases” in males aged O to 4, for four different countries. The jumps in years 1968 and
1979 do not correspond to the sudden beginning and end of some worldwide epidemic with
instant starting and stopping times, but rather a change in the way some infectious diseases
have been coded. In particular they appear to reflect the adoption of ICD-8 codes in 1968
and of ICD-9 in 1979 (which we designate with vertical lines in each figure).

Several ways exist for dealing with data with one or more such jumps (other than
ignoring the problem). One consists of fixing the problem by preprocessing, that is,
modifying the time series in order to make it comparable across the whole period of
analysis. This can sometimes be done using “comparability ratios,” which attempt to
translate one meaning (or ICD code change) into another. However, comparability ratios
are often unavailable (after all, if such a simple translation were possible, the international
public health establishment would probably not have gone to such lengths to change the
ICD code in the first place), and so we are often stuck with discontinuous time series. In
addition, a discontinuity may exist for other reasons than ICD revisions: for example, a
country that was previously unable to report deaths from certain isolated regions might
suddenly find the resources to increase coverage. Civil wars and other events often lead a
country to sharply change its reporting practices (Murray et al., 2002).

In principle, the dependent variable changes meaning after every jump, and because we
are interested in forecasting only the last meaning, the obvious thing to do is to discard all
the data before the last jump. This, however, is extreme, because it assumes no correlation
between meanings. An alternative consists of making some assumptions about how log-
mortality before and after the jump are related. Here we consider the simplest assumption:
the dynamics of log-mortality remain unchanged, except for a shift and a change in slope at
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FIGURE 8.1. The effects of changes in ICD codes. Log-mortality for “Other Infectious Diseases”
in males, aged 0—4, for four countries. The discontinuous behavior is likely due to changes in ICD
codes. The green lines mark the years of the change.

the time of the change (which we assume known). This can be incorporated into the model
by including two new variables among the covariates: one is an indicator variable that is 1
before the change and 0 after, and the other is linear before the change and O (or constant)
after (i.e., an indicator variable for the change and an interaction between a time trend and
the indicator variable).

Once these variables have been introduced, however, we also have to change our
prior, because we no longer expect log-mortality to vary smoothly over time, and our
smoothness assumption must be replaced by something weaker (less constraining). To do
this, we denote by #* the year in which the discontinuity occurs (the extension to data
with more than one jump will be obvious). The new prior knowledge can be formulated as
follows: log-mortality varies smoothly over time before +* and after *, with no assump-
tion imposed at the discontinuity. We now write a smoothness functional that encodes
this knowledge. We do this by rewriting the generic smoothness functional over time
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FIGURE 8.2. Modeling the effects of changes in ICD codes. Log-mortality for “Other Infectious
Diseases” in males, aged 0—4, for four countries. The green curve smoothes the data with the standard
smoothness functional, while the blue curve smoothes with the modified smoothness functional,
allowing for discontinuities. The smoothness parameter 6 has been set to 10, which is probably close
to optimal.

of equation 7.1 (page 125) as follows:

_9 O e (ARG ON T me s (A7 1G D
H[”’G]:ﬁz,:/odw m(w) +ft* dw (t)(—dtm ) . (8.14)

The two-part integral in this smoothness functional has the desired property, because
it enforces smoothness independently before and after the jump but does not penalize
functions that have a jump at time ¢*. The null space for this functional is the set of
piecewise polynomials of degree n — 1, where the two “pieces” correspond to the period
before and after +*. Take, for example, the standard choice n = 2: this implies that we are
indifferent to patterns of mortality that are linear in time, but with different slopes and
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FIGURE 8.3. The null space for models of changes in ICD codes. Log-mortality for “Other
Infectious Diseases” in males, aged 0—4, for four countries. The green curve smooths the data with
the standard smoothness functional, while the blue curve smooths with the modified smoothness
functional, allowing for discontinuities. The smoothness parameter 6 has been set to 100,000, forcing
the smoothed curve into the null space of the smoothness functional.

intercepts before and after the change. In other words, we make no assumptions about the
coefficients of the two new variables.

Equation 8.14 underscores a key point that should always be kept in mind when
choosing a prior: we must be clear about its domain of definition, that is, the set of
functions we can plug into it. When we write the prior of equation 7.1 (page 125), we
implicitly assume that log-mortality is at least continuous, because, if not, the functional
assumes an infinite value. However, the prior in equation 8.14 is defined also for patterns
of log-mortality that are discontinuous at ¢*. In other words, the domain of definition of the
functional in equation 8.14 is larger then the functional in equation 7.1, although the two
functionals coincide at the domain of equation 7.1. Put differently, in principle, if we did
not add the two variables there would be nothing gained by using functional 8.14 rather
than functional 7.1 (in practice there would be something lost, due to the discretization



March 6, 2008

Time:

04:37pm

chapter8.tex

COMPARISONS AND EXTENSIONS -+« 157

of the derivative operator, which is always poorer at the extrema of the domain of the
integral).

In order to understand the difference between using the smoothness functionals
in equations 8.14 and 7.1, we use both functionals, with n =2, to smooth (rather
than forecast) the log-mortality patterns of figure 8.1 Because the standard smoothness
functional 7.1 is “unaware” of the jumps, and it assumes that the underlying function is
continuous, we expect it to make large errors around the jumps, resulting in oversmoothing
in those areas. The functional in equation 8.14, which has been modified to include two
jumps rather than one—one in year 1968 and one in year 1978—smoothes in the three
regions independently. We report the results in figure 8.2 The red dots represent the
data; the green dashed line, the results of smoothing with functional 7.1, which ignores
the discontinuity; and the blue continuous line, the results of the functional 8.14. The
smoothness parameter 6 has been chosen large enough that the differences between the
two smoothed curves are clear. These results are very pleasing, because the modified
smoothness functional does exactly what it is supposed to do: it smoothes the data while
preserving the discontinuities.

In order to check that the modified smoothness functional also has the right null
space, we smooth the data with the same smoothness functionals, but with a near-infinity
value of the smoothness parameter. In so doing, we force the smoothed curve to lie in the
null space of the functional, thus ignoring the data wherever the prior has information
and providing the best approximation to the data from the null space when the prior
is completely uninformative. We report these results in figure 8.3, using the same color
coding as before. Note that the green curve is a straight line, because the null space of the
smoothness functional 7.1 with n = 2 is the set of polynomials of degree 1. For the modified
smoothness functional in equation 8.14, the smoothed curve is a piecewise polynomial of
degree 1, as predicted by the theory.
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