
April 2, 2008 Time: 12:13pm chapter9.tex

Part III.
Estimation

In this part, we show how to estimate and implement the models introduced in part II.
Chapter 9 implements the full Bayesian version of our model via Markov Chain Monte
Carlo algorithms. Chapter 10 shows how to implement a faster estimation procedure, not
requiring Markov Chains.
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9 Markov Chain Monte Carlo
EstimationY

In practical applications, researchers can build a prior using any combination of the results
developed in part II. Once this step has been performed we are left with a prior of the
mathematical form given in equation 7.12 (page 132), except for the fact that the exponent
is likely to contain a sum of l terms of that form, with different parameters θ1, . . . , θl

and different matrices Ci j . Then the only thing left to do is to assume some reasonable
prior densities for σ and θ , plug them in equation 4.3, and estimate the mean of the
posterior distribution of β. In this chapter, we summarize the complete model, filling in
these remaining details, and then describe a method of estimation based on the Gibbs
sampler to calculate quantities of interest (Tanner, 1996). We report our calculations
for the case in which there is only one prior (e.g., the one for smoothness over age
groups). The full details of the more general case appears in the software accompanying
this book.

9.1 Complete Model Summary

We now review the model and identify the main quantities involved in the estimation. We
begin with the full posterior density (reproduced from equation 4.2, page 58):

P(β, σ, θ |m) ∝ P(m|β, σ )P(β|θ )P(θ )P(σ ). (9.1)

In this section, we now formally define each of the densities on the right side of equation
9.1, so that we can compute the mean posterior of the coefficients (from equation 4.3):

βBayes ≡
∫

βP(β, σ, θ |m)dβdθdσ, (9.2)

and our forecasts.
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9.1.1 Likelihood

Each cross section i includes Ti observations and has its own standard deviation σi . As
explained in section 3.1.2, we allow the observed values of the dependent variable mit

to be weighted. Therefore, instead of m and Z, and the likelihood P(m|β, σ ), we use their
weighted counterparts y and X (see equations 3.8 and 3.10, pages 45). The weighted version
of the likelihood is then:

P(y|β, σ ) ∝
(∏

i

(σ−2
i )

T
2

)
exp

(
−1

2

∑
i

1

σ 2
i

∑
t

(yit − Xi tβ i )
2

)
. (9.3)

9.1.2 Prior for β

We consider a prior for β of the form described in equation 7.12 (page 132). This prior has
only one hyperparameter, θ , and can be expressed as

P(β|θ ) = K θ
r
2 exp


−1

2
θ

∑
i j

Wi jβ
′
i Ci jβ j


, (9.4)

where r is the rank of the matrix defining the quadratic form in the exponent in 9.4 (see
equation C.8, page 244).

9.1.3 Prior for σ i

Because we do not desire it to have a major influence on our results, the functional form
of the prior for σi is chosen for convenience. Therefore, we follow standard practice and
choose an inverse Gamma prior for σ 2

i (see Gelman, 2006 for an alternative):

σ−2
i ∼ G(d /2, e/2). (9.5)

Here, d and e are user-specified parameters that determine the mean and the variance of
σ−2

i as follows:

E[σ−2
i ] = d

e
, V[σ−2

i ] = d

e2
. (9.6)

In order to specify these parameters, the user must specify the mean and variance of σ−2
i and

then solve equation 9.6 for d and e . The user may not have prior knowledge of σ−2
i and is

more likely to have some knowledge of σi (see section 6.5.3). Therefore, one should relate
the parameters d and e to moments of σi rather than σ−2

i . This is not totally straightforward,
because the resulting formulas do not allow for closed form solutions. We derive here all
the necessary formulas for a numerical solution.

Because the object about which we have prior knowledge is σi , it is important to
understand how the prior density in equation 9.5 looks in terms of σi . Defining the
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auxiliary variable si ≡ σ−2
i from the definition of Gamma density, we rewrite the density of

equation 9.5 as

P(si ; d , e) = 1

�( d
2 )

(e

2

)�
2

si
�
2 −1e− �

2 si .

The density for σi is derived with a simple change of variable, and it has the following
form:

P(σi ; d , e) = 2

�( d
2 )

(e

2

)�
2

σ−d −1
i e

− �
2

1
σ2

i .

A lengthy but straightforward calculation shows that the moments of the preceding density
are as follows:

E[σ n
i ] = �( d −n

2 )

�( d
2 )

(e

2

) n
2
. (9.7)

The mean and variance of the prior density for σi are therefore:

E[σi ] = �( d −1
2 )

�( d
2 )

(e

2

) 1
2

V[σi ] = e

d − 2
−E[σi ]

2. (9.8)

Notice that the variance of σi goes to infinity as d tends to 2, and therefore we impose the
constraint d > 2. The relationship 9.8 cannot be inverted to express d and e as a function
of E[σi ] and V[σi ], and so a numerical procedure is necessary. To this end, it is convenient
to rewrite the equations 9.8 as:

E[σi ]√
V[σi ] +E[σi ]2

= �( d −1
2 )

�( d
2 )

√
d

2
− 1

e = (d − 2)
(
V[σi ] +E[σi ]

2
)
. (9.9)

The top part of equation 9.9 is easily solved numerically (for d > 2), because it has only one
solution, and once a value for d is obtained, the value for e follows via simple substitution.

9.1.4 Prior for θ

Here again we follow standard practice and choose a Gamma prior for θ :

θ ∼ G(f/2, g/2), (9.10)

where f and g are user specified parameters, which control the mean and the variance of θ

through formulas like those in equation 9.6. We have shown in section 6.2 (page 97) how
to make reasonable choices for the mean and the variance of θ , and therefore we can use
those results to set f and g .
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9.1.5 The Posterior Density

Now we can bring together all the quantities just defined and write the full posterior
density as

P(β, σ, θ |y) ∝
(∏

i

(σ−2
i )

�+Ti
2 −1e− 1

2 eσ−2
i

) (
θ
�+r

2 −1e− �
2 θ

)

× exp


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
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(yit − Xi tβ i )
2 + θ

∑
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Wi jβ
′
i Ci jβ j





. (9.11)

In the next section, we briefly describe the Gibbs algorithm used to sample from this density
and to compute the posterior mean in equation 9.1.

9.2 The Gibbs Sampling Algorithm

We evaluate of the conditional mean in equation 9.2 using a Markov Chain Monte
Carlo (MCMC) approach. In this section, we give the expressions needed to implement
the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990), one of the
most commonly used MCMC techniques. We refer the reader to standard textbooks on
MCMC for a description of the Gibbs sampler (Gelman et al., 2003; Gilks, Richardson, and
Spiegelhalter, 1996; Gill, 2002; Tanner, 1996). We describe this algorithm with reference
to the prior in equation 7.12, with only one hyperparameter θ and only one type of cross-
sectional index, generically denoted by i .

To draw random samples from the posterior density in equation 9.11, we use the Gibbs
sampling algorithm. The essence of the Gibbs sampler lies in breaking a complicated joint
probability density into a set of full conditional densities, and sampling one variable (or a
group of variables) at a time, conditional on the values of the others.

In our case we have three sets of variables, β, σ , and θ , so that one iteration of the
algorithm consists of sampling each of these sets. To simplify our notation, we denote the
density of a variable x conditional on all the others byP(x |else). Then, we write an iteration
of the Gibbs sampler containing the following steps:

1. σ−2
i ∼ P(σ−2

i |else) i = 1, . . . , n

2. θ ∼ P(θ |else)

3. β i ∼ P(β i |else) i = 1, . . . , n

Once we know how to sample from the preceding conditional densities, we compute the
posterior mean of β in equation 9.1 by averaging the values of β obtained by repeating
these steps a large number of times (after having discarded a suitable number of “burn-in”
iterations to ensure that the algorithm has converged, possibly also with separate chains; we
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do not worry about autocorrelation in the series unless we are computing standard errors).
Because the conditional densities need to be known only up to a normalization factor, we
only need terms in the posterior that include the variables of interest.

We now derive each of these conditional densities. We also show that each can be
understood simply as a weighted average of a maximum likelihood estimate and the
prior mean.

9.2.1 Sampling σ

The Conditional Density

When we choose the prior for σk , we implicitly assume that the relevant variable (the one
with the gamma density) was σ−2

k , rather than σk . Consistently with that choice we use
σ−2

k as the sampled variable and pick from equation 9.11 all the terms that contain σ−2
k ,

grouping the others in a generic normalization constant. We thus obtain

P(σ−2
k | else) ∝ (σ−2

k )
�+Tk

2 −1e− 1
2 eσ−2

k exp

(
−1

2
σ−2

k

∑
t

(ykt − X′
ktβk)2

)
,

which is a Gamma distribution for σ−2
k . Thus, by defining

SSEk ≡
∑

t

(ykt − X′
ktβk)2 , (9.12)

we conclude that sampling for σ−2
k should be as follows:

σ−2
k |else ∼ G

(
d + Tk

2
,
e + SSEk

2

)
. (9.13)

Interpretation

In order to clarify this expression further, we write the conditional expected value of σ−2
k :

E[σ−2
k |else] = d + Tk

e + SSEk
,

and define, respectively, σ 2
P,k , which is related to the expected value of σ 2

k under the prior
in equation 9.5, and σ 2

k,ML, the usual maximum likelihood estimator of σ 2
k :

σ 2
P,k ≡ e

d
= 1

E[σ−2
k ]

, σ 2
k,ML = SSEk

Tk
.
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Now rewrite the equation for the conditional mean of σ−2
k :

E[σ−2
k |else] =

(
dσ 2

P,k + Tkσ
2
k,ML

Tk + d

)−1

.

This expression helps clarify that when d is large—when the prior density is highly
concentrated around its mean—the conditional mean of σ−2

k is very close to the prior
mean. On the other hand, when the number of observations Tk is large, then the likelihood
dominates, and the conditional mean becomes determined by the likelihood. Although this
conclusion is to be expected, it is useful, because it makes clear the “dual” role of the
quantities d and Tk , which control the trade-off between the prior and the likelihood as
measures of concentration around the mean. It is also possible to show a similar kind of
duality between e and SSEk .

9.2.2 Sampling θ

The Conditional Density

Proceeding in the same way, we write the conditional distribution for θ as

P(θ | else) ∝ θ
�+r

2 −1e− 1
2 θg exp


−1

2
θ

∑
i j

Wi jβ
′
i Ci jβ j


 ,

which is again a Gamma distribution. Thus, sampling for θ may be done according to the
following, expressed in standard form:

θ ∼ G

 f + r

2
,
g

2
+ 1

2

∑
i j

Wi jβ
′
i Ci jβ j


 . (9.14)

Interpretation

Again, we examine the conditional mean of θ , which is

E[θ |else] = f + r

g +∑
i j Wi jβ

′
i Ci jβ j

.

In order to interpret this expression, we define, respectively, θP, the expected value of θ

under its prior (see equation 9.10), and θML, the maximum likelihood (ML) estimator of θ ,
that is, the value of θ that maximizes P(β|θ ) (see equation 9.4):

θP ≡ E[θ ] = f

g
, θML ≡ r∑

i j Wi jβ
′
i Ci jβ j

.

Rewriting the preceding equation for the conditional mean as an equation for its reciprocal
is easier. Although the mean of the reciprocal is not the reciprocal of the mean, these
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quantities are related, which is enough for the purpose of explanation:

1

E[θ |else]
= f 1

θP
+ r 1

θML

f + r
.

As is the case for σ , this expression depends on the trade-off between two terms: one that
relates to the prior of θ and another that relates to its likelihood. The parameters which
control this trade-off are f and r . The parameter f controls how concentrated is the prior
distribution of θ around its mean. By the same token, we would expect that r , the rank of the
matrix in the exponent of P(β|θ ), describes the concentration of P(β|θ ) around its mean.
This can be seen by writing the density for the random variable H = ∑

i j Wi jβ
′
i Ci jβ j ,

which is the relevant expression from the point of view of θ . Using the techniques described
in appendix C, we can show that

H ∼ G(r, θ ).

From here we can see immediately that r plays for the likelihood the same role played by
f in the prior and is indeed a measure of concentration.

9.2.3 Sampling β

The Conditional Density

In order to find the distribution of βk with all the other variables held constant, we need
to isolate from the posterior all terms that depend on βk . As a first pass, we eliminate
unnecessary multiplicative terms in equation 9.4 and write

P(βk |else) ∝ exp


−1

2


 1

σ 2
k

∑
t

(ykt − X′
ktβk)2 + θ

∑
i j

Wi jβ
′
i Ci jβ j





 . (9.15)

We collect in a generic term K all the terms that do not depend on βk (we reuse the symbol
K to refer to possibly different constants for each subsequent equation). For the first term
in equation 9.15, we have

∑
t

(ykt − X′
ktβk)2 = β ′

kX′
kXkβk − 2β ′

kX′
k yk + K .

For the second term in equation 9.15, we have

∑
i j

Wi jβ
′
i Ci jβ j = Wkkβ

′
kCkkβk + 2

∑
j �=k

W jkβ
′
kCk jβ j + K .

If we use the quadratic form identity in appendix B.2.6 (page 237), W = s+ − s, and so we
rewrite the preceding expression as

∑
i j

Wi jβ
′
i Ci jβ j = s+

k β ′
kCkkβk − 2

∑
j

s jkβ
′
kCk jβ j + K .
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Putting everything together,

P(βk |else) ∝ exp


−1

2


β ′

k

(
X′

kXk

σ 2
k

+ θs+
k Ckk

)
βk − 2β ′

k


X′

k yk

σ 2
k

+ θ
∑

j

s jkCk jβ j






,

we now define

�−1
k ≡ X′

kXk

σ 2
k

+ θs+
k Ckk

and

βk ≡ X′
k yk

σ 2
k

+ θ
∑

j

s jkCk jβ j .

With these definitions we have

P(βk |else) ∝ exp

(
−1

2

[
β ′

k�
−1
k βk − 2β ′

kβk

])

= exp

(
−1

2

[
(βk −�kβk)′�−1

k (βk −�kβk)
])

.

Therefore, we need to sample βk as follows:

βk ∼N (�kβk,�k), (9.16)

which is easily done by setting

βk = �kβk +
√

�kb, b ∼N (0, I ).

Interpretation

Despite the apparent complexity, equation 9.16 has a clear interpretation, similar to the
interpretation of the formulas for the conditional means of σ−2

k and θ . In those cases the
conditional mean was a weighted average of two terms: one was interpreted as a maximum
likelihood estimate, and the other was the prior mean. Because we expect to see the same
phenomenon, we define the two quantities:

βML
k ≡ (X′

kXk)−1X′
k yk , β

p
k ≡

∑
j

sk j

s+
k

C−1
kk Ck jβ j .

The quantity βML
k is simply the maximum likelihood estimator of βk . The quantity β

p
k is

the conditional mean of the prior, in equation 8.5 (page 147).
In order to see the meaning of equation 9.16, we consider a special, but informative,

case. Remember that by definition we have Ckk = T −1Z′
kZk . Here, Zk is a vector of

covariates extending over T time periods—the time over which we think prior knowledge
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is relevant. In general, the data matrix Zk differs from the data matrix Xk : Xk might
include population weights, and it reflects the same pattern of missing values of mit .
Therefore, even without population weighting, the rows of Xi t are a subset of the rows
of Zk . Here, for the purpose of explanation, we assume that Xk and Zk are identical, so that
Ckk = T −1

k X′
kXk . Using this assumption and a bit of algebra, we rewrite the conditional

mean for βk as follows:

E[βk |else] =
Tk

σ 2
k
βML

k + θs+
k βP

k

Tk

σ 2
k

+ θs+
k

.

As expected, the conditional mean of βk is a weighted average of βML
k and βP

k . The weight
of βML

k is large when the number of observations Tk is large, or when the noise affecting
the observation (σk), which also measures the variance of βk (in the likelihood), is small. In
order to interpret the weight on βP

k , we need to inspect equation 8.5 (page 147). From this
equation we see that the term θs+

k is inversely proportional to the (conditional) variance of
βk under the prior. Therefore, the weight on βP

k is large when βk has large prior variance;
it is the counterpart of 1

σ 2
k

in the weight on βML
k .

9.2.4 Uncertainty Estimates

Once the Gibbs sampler has been implemented, no additional effort is needed to estimate
model-based standard errors or confidence intervals for the forecast. This is done by
producing, at every iteration of the Gibbs sampler (after the “burn-in” period), a forecast
for each cross section based on the current sample from β and adding to it a random
disturbance, sampled from a normal distribution with standard deviation given by the
current sample from σ . The standard deviation for this random set of forecasts will give
us an estimate of the standard errors. Of course, model-based uncertainty estimates do not
take into account the most important source of error, which is the specification error, for
which other techniques must be used.

9.3 Summary

This chapter offers a method of computing forecasts from our model in chapter 4 given the
choice of any of the priors in chapters 5 or 7. The following chapter offers speedier versions
that do not rely on the Gibbs algorithm.


