How to Measure Legislative District Compactness If You Only Know it When You See it¹

Gary King²

Institute for Quantitative Social Science Harvard University

Harvard Law School

¹Based on joint work with Aaron Kaufman and Mayya Komisarchik

Fundamental to Democracy

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation

- Fundamental to Democracy
 - Control redistricting \(\to \) Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - → Get the ball, move the goalposts

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - → Get the ball, move the goalposts
- Blamed for:

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{Get}$ the ball, move the goalposts
- Blamed for:
 - unfair elections,

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship,

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock,

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias,

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness,

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias,

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .
- How to fix this?

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .
- How to fix this?
 - Constrain redistricters via:

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .
- How to fix this?
 - Constrain redistricters via: Population equality,

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .
- How to fix this?
 - Constrain redistricters via: Population equality, partisan fairness,

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .
- How to fix this?
 - Constrain redistricters via: Population equality, partisan fairness, racial fairness,

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .
- How to fix this?
 - Constrain redistricters via: Population equality, partisan fairness, racial fairness, respect for municipal boundaries . . .

- Fundamental to Democracy
 - Control redistricting → Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - $\bullet \ \leadsto \mbox{ Get the ball, move the goalposts}$
- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .
- How to fix this?
 - Constrain redistricters via: Population equality, partisan fairness, racial fairness, respect for municipal boundaries . . . compactness

• Political science contributions to the real world

Political science contributions to the real world

• Political science <u>disconnect</u> from the real world: Compactness

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods

• Political science <u>disconnect</u> from the real world: Compactness

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)

• Political science disconnect from the real world: Compactness

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides

Political science <u>disconnect</u> from the real world: Compactness

- Political science <u>contributions</u> to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
- Political science <u>disconnect</u> from the real world: Compactness

- Political science <u>contributions</u> to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness
 - Researchers: Assumed so complicated, numerous measures needed

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness
 - Researchers: Assumed so complicated, numerous measures needed
 - Law: Assumed so simple, no definition needed!

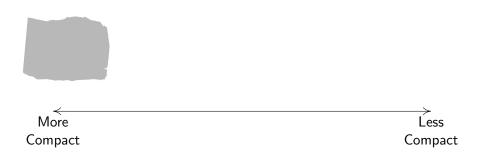
- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness
 - Researchers: Assumed so complicated, numerous measures needed
 - Law: Assumed so simple, no definition needed!
 - Illinois Constitution:

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness
 - Researchers: Assumed so complicated, numerous measures needed
 - Law: Assumed so simple, no definition needed!
 - Illinois Constitution: "Legislative Districts shall be compact"

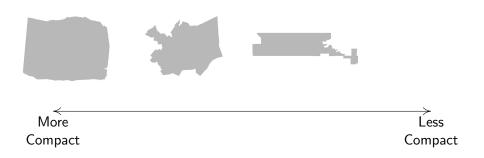
- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness
 - Researchers: Assumed so complicated, numerous measures needed
 - Law: Assumed so simple, no definition needed!
 - Illinois Constitution: "Legislative Districts shall be compact"
 - Washington:

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness
 - Researchers: Assumed so complicated, numerous measures needed
 - Law: Assumed so simple, no definition needed!
 - Illinois Constitution: "Legislative Districts shall be compact"
 - Washington: "Each district shall be as compact as possible"

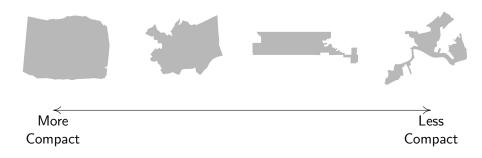

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness
 - Researchers: Assumed so complicated, numerous measures needed
 - Law: Assumed so simple, no definition needed!
 - Illinois Constitution: "Legislative Districts shall be compact"
 - Washington: "Each district shall be as compact as possible"
 - lowa:

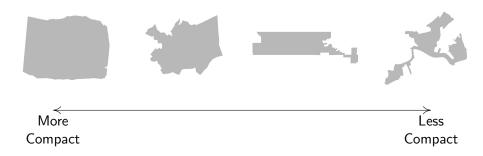

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness
 - Researchers: Assumed so complicated, numerous measures needed
 - Law: Assumed so simple, no definition needed!
 - Illinois Constitution: "Legislative Districts shall be compact"
 - Washington: "Each district shall be as compact as possible"
 - lowa: "avoid drawing districts that are oddly shaped"

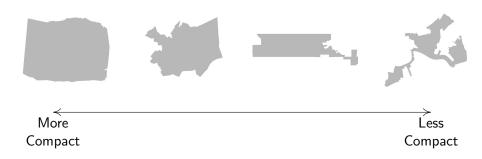
- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness
 - Researchers: Assumed so complicated, numerous measures needed
 - Law: Assumed so simple, no definition needed!
 - Illinois Constitution: "Legislative Districts shall be compact"
 - Washington: "Each district shall be as compact as possible"
 - lowa: "avoid drawing districts that are oddly shaped"
 - Supreme Court:

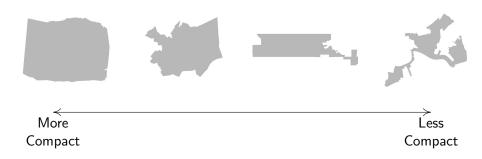

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness
 - Researchers: Assumed so complicated, numerous measures needed
 - Law: Assumed so simple, no definition needed!
 - Illinois Constitution: "Legislative Districts shall be compact"
 - Washington: "Each district shall be as compact as possible"
 - lowa: "avoid drawing districts that are oddly shaped"
 - Supreme Court: "One need not use Justice Stewart's classic definition of obscenity—'I know it when I see it'—... to recognize that dramatically irregular shapes may have sufficient probative force to call for an explanation"

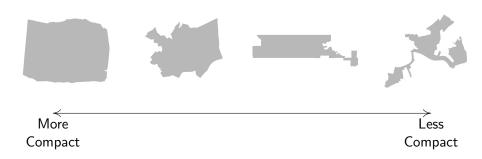
- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws
- Political science <u>disconnect</u> from the real world: Compactness
 - Researchers: Assumed so complicated, numerous measures needed
 - Law: Assumed so simple, no definition needed!
 - Illinois Constitution: "Legislative Districts shall be compact"
 - Washington: "Each district shall be as compact as possible"
 - lowa: "avoid drawing districts that are oddly shaped"
 - Supreme Court: "One need not use Justice Stewart's classic definition of obscenity—'I know it when I see it'—... to recognize that dramatically irregular shapes may have sufficient probative force to call for an explanation"
 - Required in many other jurisdictions

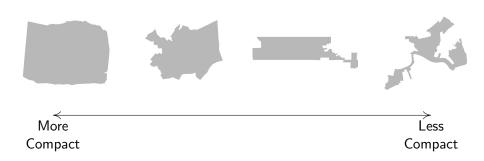





A simple single compactness dimension that you know when you see

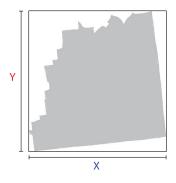

• The dimension is intuitive

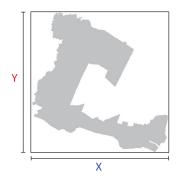

- The dimension is intuitive
- How to estimate where a new district shape falls on this dimension?

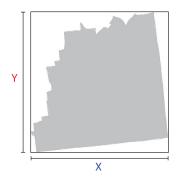

- The dimension is intuitive
- How to estimate where a new district shape falls on this dimension?
- Only a consensus measure can constrain advocates

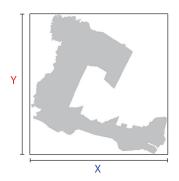
- The dimension is intuitive
- How to estimate where a new district shape falls on this dimension?
- Only a consensus measure can constrain advocates
- Dimension relative to geography;

- The dimension is intuitive
- How to estimate where a new district shape falls on this dimension?
- Only a consensus measure can constrain advocates
- Dimension relative to geography; could generalize (e.g., population)

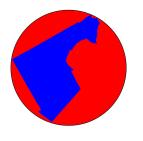

- The dimension is intuitive
- How to estimate where a new district shape falls on this dimension?
- Only a consensus measure can constrain advocates
- Dimension relative to geography; could generalize (e.g., population)
- \(\sim \) Let's start with existing measures by social scientists

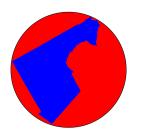


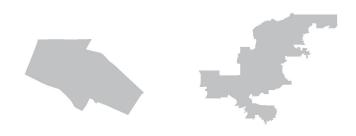


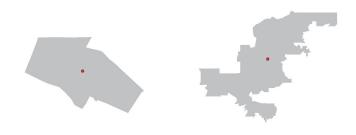


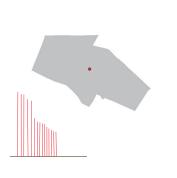
Squarish districts more compact than long thin ones


In both districts: $X/Y \approx 1.30$






Circular districts are most compact


In both cases, $X/(Y + X) \approx 0.37$

Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar

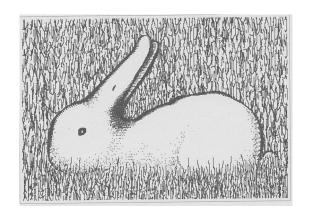


In both cases, $MAD(r)/\bar{r} \approx 0.31$

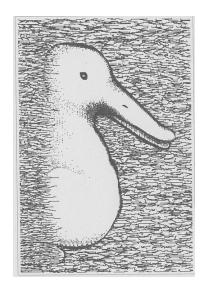
A Brief Rotational Invariance Interlude:

A Brief Rotational Invariance Interlude: Can you Name this Celebrity?

A Brief Rotational Invariance Interlude: Can you Name this Celebrity?



A Brief Rotational Invariance Interlude: Can you Name this Celebrity?



A Brief Interlude on Perception: See the Rabbit?

A Brief Interlude on Perception: See the Rabbit Duck?

A Brief Interlude on Perception: See the Frog?

A Brief Interlude on Perception: See the Frog Horse?

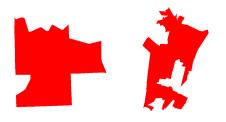
• Existing measures of compactness:

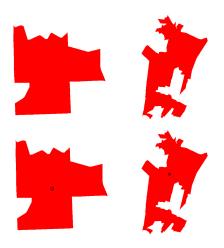
- Existing measures of compactness:
 - Nearly 100 proposed

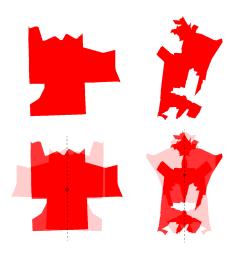
- Existing measures of compactness:
 - Nearly 100 proposed
 - Almost all are rotationally invariant

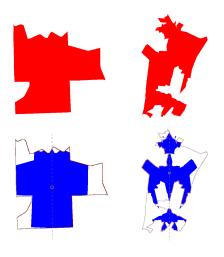
- Existing measures of compactness:
 - Nearly 100 proposed
 - Almost all are rotationally invariant
 - Blind to what humans perceive

- Existing measures of compactness:
 - Nearly 100 proposed
 - Almost all are rotationally invariant
 - Blind to what humans perceive
- Which is more compact?


- Existing measures of compactness:
 - Nearly 100 proposed
 - Almost all are rotationally invariant
 - Blind to what humans perceive
- Which is more compact?




- Existing measures of compactness:
 - Nearly 100 proposed
 - Almost all are rotationally invariant
 - Blind to what humans perceive
- Which is more compact?



→ Measuring "you know it when you see it": No rotational invariance



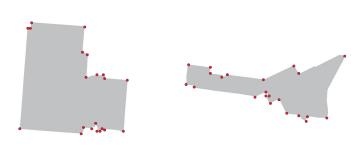
Symmetric figures (circles, squares) are more compact

In both cases, Overlap/Original Area ≈ 0.34

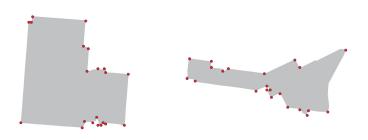
Computer vision algorithm identifies "objects" in photos

Computer vision algorithm identifies "objects" in photos

→ Fewer corners is more compact


Computer vision algorithm identifies "objects" in photos

→ Fewer corners is more compact


Computer vision algorithm identifies "objects" in photos

→ Fewer corners is more compact

Computer vision algorithm identifies "objects" in photos

→ Fewer corners is more compact

Both districts have 21 significant corners

Which is more compact?

Convex Hull	4	3	2	1
Reock	1	2	3	4

Convex Hull	4	3	2	1
Reock	1	2	3	4
Polsby-Popper	4	1	2	3

Convex Hull	4	3	2	1
Reock	1	2	3	4
Polsby-Popper	4	1	2	3
Boyce-Clark	2	3	1	4

			7	
Convex Hull	4	3	2	1
Reock	1	2	3	4
Polsby-Popper	4	1	2	3
Boyce-Clark	2	3	1	4
Length/Width	3	2	1	4

		4	7	
Convex Hull	4	3	2	1
Reock	1	2	3	4
Polsby-Popper	4	1	2	3
Boyce-Clark	2	3	1	4
Length/Width	3	2	1	4
X-Axis Symmetry	1	4	3	2

		4	7	
Convex Hull	4	3	2	1
Reock	1	2	3	4
Polsby-Popper	4	1	2	3
Boyce-Clark	2	3	1	4
Length/Width	3	2	1	4
X-Axis Symmetry	1	4	3	2
Significant Corners	4	1	3	2

			7	
Convex Hull	4	3	2	1
Reock	1	2	3	4
Polsby-Popper	4	1	2	3
Boyce-Clark	2	3	1	4
Length/Width	3	2	1	4
X-Axis Symmetry	1	4	3	2
Significant Corners	4	1	3	2

• 7 measures;

	-		
4	3	2	1
1	2	3	4
4	1	2	3
2	3	1	4
3	2	1	4
1	4	3	2
4	1	3	2
	4 1 4 2 3 1 4	4 1 2 3	1 2 3 4 1 2 2 3 1

• 7 measures; 7 unique rankings

		7	
4	3	2	1
1	2	3	4
4	1	2	3
2	3	1	4
3	2	1	4
1	4	3	2
4	1	3	2
	4 1 4 2 3 1 4	4 1	4 1 2

- 7 measures; 7 unique rankings
- Unusual?

			7	
Convex Hull	4	3	2	1
Reock	1	2	3	4
Polsby-Popper	4	1	2	3
Boyce-Clark	2	3	1	4
Length/Width	3	2	1	4
X-Axis Symmetry	1	4	3	2
Significant Corners	4	1	3	2

- 7 measures; 7 unique rankings
- Unusual? From 18,215 Congressional and State Legislative Districts,

	-		
4	3	2	1
1	2	3	4
4	1	2	3
2	3	1	4
3	2	1	4
1	4	3	2
4	1	3	2
	4 1 4 2 3 1 4	4 1 2 3	1 2 3 4 1 2 2 3 1

- 7 measures; 7 unique rankings
- Unusual? From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%)

			7	
Convex Hull	4	3	2	1
Reock	1	2	3	4
Polsby-Popper	4	1	2	3
Boyce-Clark	2	3	1	4
Length/Width	3	2	1	4
X-Axis Symmetry	1	4	3	2
Significant Corners	4	1	3	2

- 7 measures; 7 unique rankings
- Unusual? From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%)
- Many more inconsistencies on individual districts

• (Recall) The concept of compactness

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right

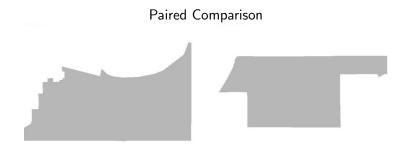
- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional

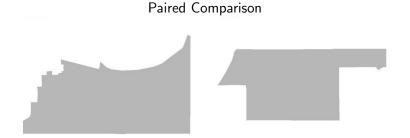
- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see
- How do we know if we find it?

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see
- How do we know if we find it?
 - Public officials and many other types of people:


- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see
- How do we know if we find it?
 - Public officials and many other types of people:
 - Know it when they see it,

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see
- How do we know if we find it?
 - Public officials and many other types of people:
 - Know it when they see it,
 - See the same dimension


- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see
- How do we know if we find it?
 - Public officials and many other types of people:
 - Know it when they see it,
 - See the same dimension
 - I.e., estimate the one dimension of legal interest; show it has:

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see
- How do we know if we find it?
 - Public officials and many other types of people:
 - Know it when they see it,
 - See the same dimension
 - I.e., estimate the one dimension of legal interest; show it has:
 - high intercoder (and intracoder) reliability

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see
- How do we know if we find it?
 - Public officials and many other types of people:
 - Know it when they see it,
 - See the same dimension
 - I.e., estimate the one dimension of legal interest; show it has:
 - high intercoder (and intracoder) reliability
 - high predictive accuracy

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Utterly fails on inter- and intra-coder reliability

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Full Ranking — on line

LEAST Compact Here

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Full Ranking — on line

LEAST Compact Here

We show: very high reliability

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

• Why Paired Comparisons is supposedly better

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: $\binom{20}{2} = 190$ pairs v 20! ≈ 2 quintillion ranks

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: $\binom{20}{2} = 190$ pairs v 20! ≈ 2 quintillion ranks
- Why Ranking is actually better (at least in our application)

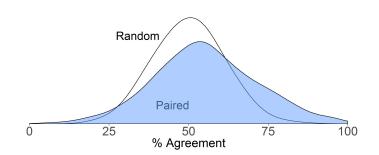
- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
- Why Ranking is actually better (at least in our application)
 - Humans use time-saving heuristics.

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
- Why Ranking is actually better (at least in our application)
 - Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
- Why Ranking is actually better (at least in our application)
 - Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring;

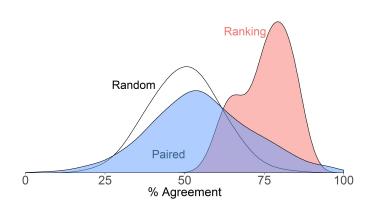
- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
- Why Ranking is actually better (at least in our application)
 - Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring; Ranking is more intellectually engaging

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
- Why Ranking is actually better (at least in our application)
 - Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring; Ranking is more intellectually engaging
 - Saves time: 1 task v 190 comparisons


- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
- Why Ranking is actually better (at least in our application)
 - Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring;
 Ranking is more intellectually engaging
 - Saves time: 1 task v 190 comparisons
 - Paired Comparisons can be answered on different dimensions

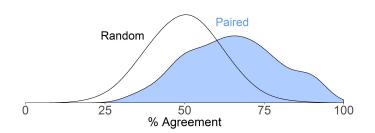
- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: $\binom{20}{2} = 190$ pairs v 20! ≈ 2 quintillion ranks
- Why Ranking is actually better (at least in our application)
 - Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring;
 Ranking is more intellectually engaging
 - Saves time: 1 task v 190 comparisons
 - Paired Comparisons can be answered on different dimensions
 Ranking: all evaluations on one dimension of user's choice

Intercoder Reliability of Pairs

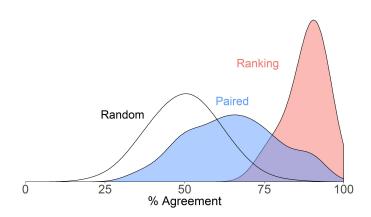

Intercoder Reliability of Pairs

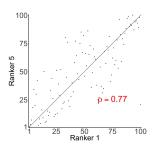
Paired Comparisons: only slightly better than chance;

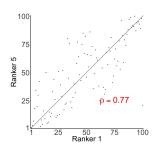
Intercoder Reliability of Pairs

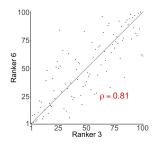

Paired Comparisons: only slightly better than chance; Pairs implied by ranks: better

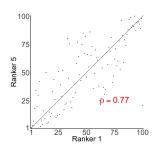
Intracoder Reliability of Pairs

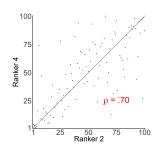

Intracoder Reliability of Pairs

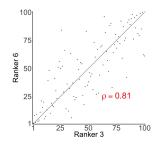

Paired Comparisons: better than chance;

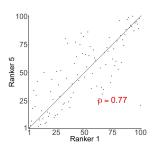


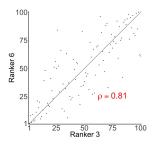

Intracoder Reliability of Pairs

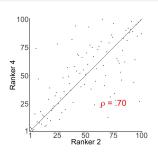

Paired Comparisons: better than chance; Pairs implied by ranks: much better

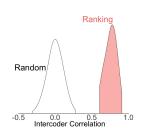


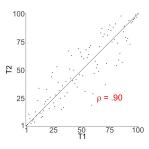


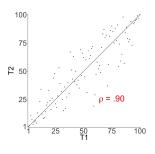


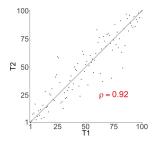


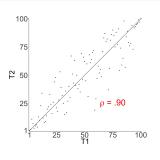


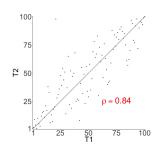


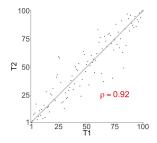


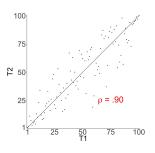


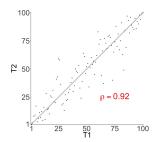


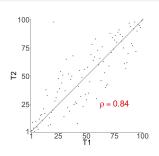


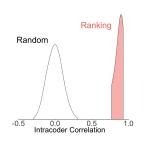












Goal: Compactness score = f(shape)

• Training data: Outcome variable from human rankings

- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)

- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)
- Covariates. Features of district shape

- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)
- Covariates. Features of district shape
 - Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...

- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)
- Covariates. Features of district shape
 - Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - Geometric: Perimeter, area, vertices, polygons, vertex variance, edge length variance. . .

- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)
- Covariates. Features of district shape
 - Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - Geometric: Perimeter, area, vertices, polygons, vertex variance, edge length variance. . .
 - New: X-axis symmetry, Y-axis symmetry, Significant Corners. . .

- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)
- Covariates. Features of district shape
 - Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - Geometric: Perimeter, area, vertices, polygons, vertex variance, edge length variance. . .
 - New: X-axis symmetry, Y-axis symmetry, Significant Corners. . .
- Ensemble of predictive methods: least squares, AdaBoosted decision trees, SVM, random forests...

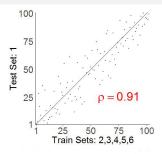
- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)
- Covariates. Features of district shape
 - Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - Geometric: Perimeter, area, vertices, polygons, vertex variance, edge length variance. . .
 - New: X-axis symmetry, Y-axis symmetry, Significant Corners. . .
- Ensemble of predictive methods: least squares, AdaBoosted decision trees, SVM, random forests...
- Meaning of resulting measure:

- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)
- Covariates. Features of district shape
 - Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - Geometric: Perimeter, area, vertices, polygons, vertex variance, edge length variance. . .
 - New: X-axis symmetry, Y-axis symmetry, Significant Corners. . .
- Ensemble of predictive methods: least squares, AdaBoosted decision trees, SVM, random forests...
- Meaning of resulting measure:
 - Polanyi's Paradox:

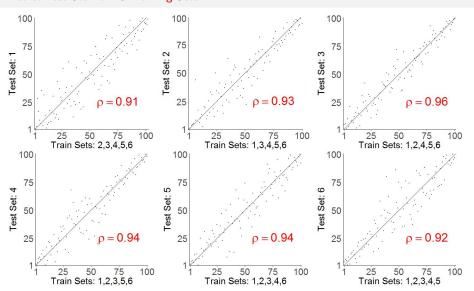
- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)
- Covariates. Features of district shape
 - Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - Geometric: Perimeter, area, vertices, polygons, vertex variance, edge length variance. . .
 - New: X-axis symmetry, Y-axis symmetry, Significant Corners. . .
- Ensemble of predictive methods: least squares, AdaBoosted decision trees, SVM, random forests...
- Meaning of resulting measure:
 - Polanyi's Paradox: we know more than we can tell

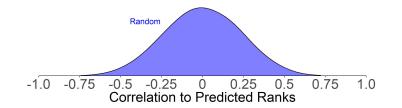
- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)
- Covariates. Features of district shape
 - Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - Geometric: Perimeter, area, vertices, polygons, vertex variance, edge length variance. . .
 - New: X-axis symmetry, Y-axis symmetry, Significant Corners. . .
- Ensemble of predictive methods: least squares, AdaBoosted decision trees, SVM, random forests...
- Meaning of resulting measure:
 - Polanyi's Paradox: we know more than we can tell
 - Tell!

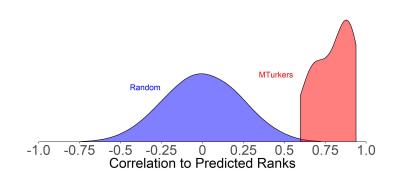
- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)
- Covariates. Features of district shape
 - Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - Geometric: Perimeter, area, vertices, polygons, vertex variance, edge length variance. . .
 - New: X-axis symmetry, Y-axis symmetry, Significant Corners. . .
- Ensemble of predictive methods: least squares, AdaBoosted decision trees, SVM, random forests...
- Meaning of resulting measure:
 - Polanyi's Paradox: we know more than we can tell
 - Tell! squarish, with minimal arms, pockets, islands, or jagged edges

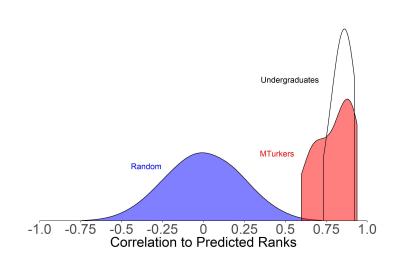

So we can measure it. Can we model it?

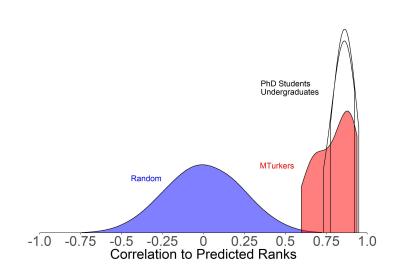
Goal: Compactness score = f(shape)

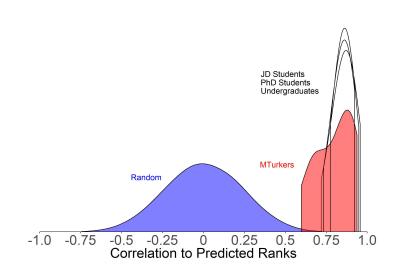

- Training data: Outcome variable from human rankings
- Outcome measure: A district's rank (in a set of 100)
- Covariates. Features of district shape
 - Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - Geometric: Perimeter, area, vertices, polygons, vertex variance, edge length variance. . .
 - New: X-axis symmetry, Y-axis symmetry, Significant Corners. . .
- Ensemble of predictive methods: least squares, AdaBoosted decision trees, SVM, random forests...
- Meaning of resulting measure:
 - Polanyi's Paradox: we know more than we can tell
 - Tell! squarish, with minimal arms, pockets, islands, or jagged edges
 - (Not a description of any one existing measure)

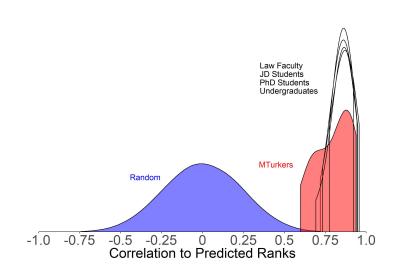

Predict Test Set from 5 Training Sets

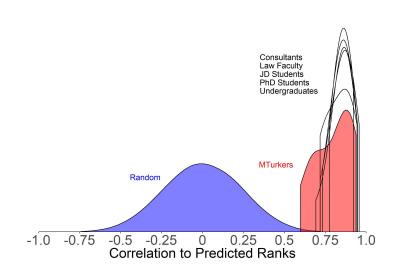

Predict Test Set from 5 Training Sets

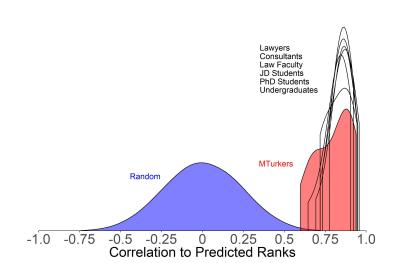


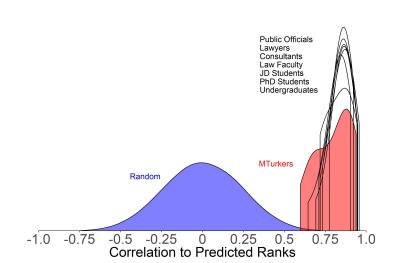

Predict Test Set from 5 Training Sets

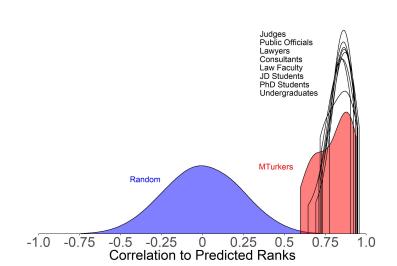












Our measure: Existing measure:

COMPACT COMPACT

noncompact noncompact noncompact COMPACT COMPACT noncompact

Our measure: Existing measure:

COMPACT COMPACT

noncompact noncompact

 $\begin{array}{c} \text{noncompact} \\ \text{COMPACT} \end{array}$

COMPACT noncompact

Reock

Our measure: Existing measure:

COMPACT COMPACT

noncompact noncompact

noncompact COMPACT

COMPACT noncompact

Reock

Sparker .

Boyce-Clark

COMPACT Our measure: noncompact **COMPACT** noncompact **COMPACT** COMPACT Existing measure: noncompact noncompact Reock Boyce-Clark Length/Width

Our measure: Existing measure:	COMPACT COMPACT	noncompact noncompact	noncompact COMPACT	COMPACT noncompact
Reock		S. Carlotte		
Boyce-Clark		aff when		
Length/Width			1	4
X-Symmetry			H	

Our measure: **COMPACT** noncompact **COMPACT** noncompact **COMPACT** COMPACT Existing measure: noncompact noncompact Reock Boyce-Clark Length/Width X-Symmetry

• We address: Disconnect between political science & the real world

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
 - Calculated solely from district geometry

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - → Continue political science tradition of contributing to a fundamental part of representative democracy

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - → Continue political science tradition of contributing to a fundamental part of representative democracy
- Accompanying this paper:

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - → Continue political science tradition of contributing to a fundamental part of representative democracy
- Accompanying this paper:
 - Measures: for 18,215 Congressional & State Legislative districts

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - → Continue political science tradition of contributing to a fundamental part of representative democracy
- Accompanying this paper:
 - Measures: for 18,215 Congressional & State Legislative districts
 - Software to calculate compactness from any district shape

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - → Continue political science tradition of contributing to a fundamental part of representative democracy
- Accompanying this paper:
 - Measures: for 18,215 Congressional & State Legislative districts
 - Software to calculate compactness from any district shape
- Along the way:

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - → Continue political science tradition of contributing to a fundamental part of representative democracy
- Accompanying this paper:
 - Measures: for 18,215 Congressional & State Legislative districts
 - Software to calculate compactness from any district shape
- Along the way:
 - New perspective on > 150 year consensus of ranking v paired comparisons

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - → Continue political science tradition of contributing to a fundamental part of representative democracy
- Accompanying this paper:
 - Measures: for 18,215 Congressional & State Legislative districts
 - Software to calculate compactness from any district shape
- Along the way:
 - New perspective on > 150 year consensus of ranking v paired comparisons
 - New directions for two venerable literatures

For more information

AaronRKaufman.com

GaryKing.org

Mayya Komis archik.com

Paper, data, software, slides: j.mp/Compactness