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Appendix A Geometric Features of Legislative Districts

We define many useful existing compactness measures, and other geometric features of

legislative districts we introduce. We use all of these quantities in Section 3.2. We begin

with basic notation used in many of the measures and then define the measures.

Notation Denote a generic legislative district asD, and define it as a non-self-intersecting

closed polygon with n vertices, each labeled (xi, yi) and numbered i in clockwise order

(for i = 1, . . . , n). We choose an arbitrary starting vertex for label i = 1 and (using clock

or modular algebra) define i = n+1 = 1. The length of the line segment from vertex i to

i+ 1 is then Li = ||(xi, yi), (xi+1, yi+1)|| where ||(a, b), (c, d)|| =
√

(a− c)2 + (b− d)2.

Denote the set of all horizontal vertex coordinates as X = {xi : i = 1, . . . , n}, verti-

cal vertex coordinates as Y = {yi : i = 1, . . . , n}, and line lengths as L = {Li : i =

1, . . . , n}.

Then the area of D is A(D) = 1
2

∑n
i=1(xiyi+1 − xi+1yi) and perimeter is P (D) =∑n

i=1 Li. Occasionally, as in the case of islands, D is composed of multiple polygons. In

these cases, A(D) and P (D) are the sums of the areas and perimeters of all the polygons

in D, and all subsequent notation refers to all vertices in all polygons taken together.

Denote the district centroid as C(D), defined by a vertex with coordinates C(D)x =

1
6A(D)

∑n−1
i=0 (xi + xi+1)(xiyi+1 − xi+1yi) and C(D)y =

1
6A(D)

∑n−1
i=0 (yi + yi+1)(xiyi+1 −

xi+1yi), and radii ri = ||[C(D)x, C(D)y], (xi, yi)||. Then denote as Circle(D) the min-

imum bounding circle (Nielsen and Nock, 2008) and as Hull(D) the minimum bound-

ing convex hull (King and Zeng, 2006; Kong, Everett, and Toussaint, 1990), and as

Box(D) the minimum bounding box. Finally, for set S with cardinality #S, denote

the mean over i of function g(i) as meani∈S[g(i)] = 1
#S

∑#S
i=1 g(i), the variance as

vari∈S[g(i)] = meani∈S
[
{g(i) − meanj∈S[g(j)]}2

]
, and the mean absolute deviation as

mad[g(i)] = 1
#S

∑#S
i=1 |g(i)−mean[g(i)]|.

Measures The perimeter of the minimum bounding circle is PC = P (Circle(D)) and

minimum bounding convex hull is PCH = P (Hull(D)). The area of each is the AC =
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A(Circle(D)) and ACH = A(Hull(D)) and ABB = A(Box(D)). The number of poly-

gons is PARTS and vertices, or sides, is SIDES = n (Timmerman, 100 N.Y.S. 57, 51 Misc.

Rep. 192 (N.Y. Sup. 1906)). We then have REOCK = A(D)/A(Circle(D)); GROFMAN =

P (D)/
√
(A(D)); HULL RATIO = A(D)/A(Hull(D)); BOUNDING BOX RATIO = A(D)/A(Box(D));

SCHWARTZBERG = P (D)/(2π
√
A(D)/π) and the mathematically related POLSBYPOPPER =

4πA(D)/P (D)2; the variation in the coordinates of the x-axis, XVAR = vari∈X [xi],

y-axis, YVAR = vari∈Y [yi], and the ratio of the two |1 − XVAR/YVAR|; the average,

AVGLL = P (D)/n = meani∈L Li, and variance, VARLL = var[Li], of the polygon

line segment lengths; JAGGEDNESS, the average line length divided by the perimeter;

LENGTH-WIDTH RATIO = [maxi(xi)−mini(xi)]/[maxi(yi)−mini(yi)]; (our simplified

expression of modified) BOYCE-CLARK = 1 − 1
2meani[ri]

madi[ri] (MacEachren, 1985,

p.56); POINTS = n for the district polygon defined by the official US Census TIGER

shapefiles; using the Harris Corner Detector algorithm (Harris and Stephens, 1988), we

also have the number of significant “corners” (i.e., vertices), CORNERS, and the variance

in the x-coordinate XVARCORNERS and y-coordinate YVARCORNERS|of each corner. As

well, we measure CORNERRATIO, equal to |1−XVARCORNERS/YVARCORNERS|. The

EQUAL-LAND-AREA CIRCLE, defines noncompactness as a threshold occurring when a

circle with origin at C(D) and area A(D), i.e. with radius
√
A(D)/π, captures less than

half the area of D (Angel and Parent, 2011, p.93). Finally, we have Y-SYMMETRY, the

area of districtD overlapping with the reflection ofD around a vertical line going through

C(D), divided by A(D), and X-SYMMETRY, which is the same except for reflection of

D around a horizontal line going through C(D).

We calculate these features from the US Census TIGER shapefiles, and derive all

measures from the coordinate sets which define districts according to that file. This is as

fine-grained a resolution as possible; though many of these measures change depending

on the resolution used, we argue that using the highest-resolution data possible reduces

measurement error and subsequently improves modeling performance.

3



Appendix B Compactness Data and Software

We offer additional details here of how we collected data for our experiments and how

other researchers can do the same. We then outline data we make available on the com-

pactness of numerous state legislative and congressional districts.

Data Collection To construct training and test sets for our various experiments, we use

a set of 17,896 district shapes, including all congressional districts 1823–2013 and the last

two cycles of state legislative districts. We obtained the shape files and other geographic

data for congressional districts from Lewis, DeVine, Pitcher, and Martis (2013) and state

legislative districts from McMaster, Lindberg, and Van Riper (2003).

To ensure we have variation in districts according to existing measures, we begin with

a preliminary compactness ranking by ordering these districts based on an average of

each district’s Reock, Polsby-Popper, and Convex Hull scores. We create six groups of

districts using systematic random sampling — to ensure a spread over the entire range of

compactness — using a random start without replacement across groups — to avoid over-

lap among the groups. For the cross-validation in Section 4.1, we drew 100 districts. For

our out-of-sample validations in Section 4.2, we collected 20 districts (to accommodate

respondent time constraints).

We tested a variety of different instructions to our respondents. Here is a simple

version we used for our online administration for full ranking. [We found the sentences

in square brackets below useful for respondents, such as some from Mechanical Turk,

who are not as familiar with the concept of compactness or the idea of legislative districts.

Experiments we conducted among those familiar indicate that these passages do not affect

the resulting rankings.]

The law requires that legislative districts for the US congress and many
state legislatures be “compact”. The law does not say exactly what dis-
trict compactness is, but generally, people think they know it when they see
it. [One dictionary definition of compactness is “joined or packed together
closely and firmly united; dense; arranged efficiently within a relatively small
space.” Some characteristics of districts people view as noncompact are wig-
gles, arms, noncontiguous segments, river-like features, or being much longer
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than wide. Compact districts look more densely packed, like rectangles, cir-
cles, or hexagons.]

Here’s your task: Below is a group of legislative districts, randomly or-
dered. Order the districts from most compact (at the top left) to least compact
(at the bottom right) according to your own best judgement, by dragging and
dropping. [We have many individuals performing this task, and the more your
ranks are similar to others’, the better you will have done.]

For paired comparisons, we changed the second paragraph to ask respondents to

choose the more compact district of the two presented to them.

Our undergraduate respondents ranked 100 districts in a conference room with a long

set of connected tables. We printed out pictures of each district, along with an identifying

number, on a card measuring 4.25 × 5.5” (one quarter of a standard 8 × 11.5” paper).

We asked each respondent to order the cards from most to least compact. As described

in Section 3.1, we experimented with different sets of instructions, and with respondents

working alone and in pairs, but we found no difference in intercoder or intracoder relia-

bility as a result.

We asked the Mechanical Turk workers who ranked 100 districts to print out twenty-

five sheets of paper with four districts each, and then to cut each in quarters and to follow

the same instructions we gave our undergraduates. We asked for and received cell phone

photos from the Turkers at each stage, to help ensure the task was completed as designed.

The undergraduates and Mechanical Turk respondents each took about 45–90 minutes

to rank 100 districts. In order to reach a larger number of respondents, and especially

to avoid charges of diverting public officials from performing their duties, we conducted

our out-of-sample predictions with 20 districts. We chose this number by repeated exper-

imentation with undergraduates, until we were able to get the time necessary to complete

the task to under ten minutes. Most took 7–10 minutes.

Data Availability and Future Research For each of 17,896 congressional and state

legislative districts, we compute the degree of compactness (Section 3.2) and an uncer-

tainty estimate (see Supplementary Appendix D). We make all these data, as well as the

ranking data we collected to generate our model, publicly available as a companion to

this paper, as well as software to estimate compactness in other districts or geographies.
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We think further analyses of these data may shed light on many venerable political sci-

ence questions, such as compactness’ relationship with balance between the parties, the

existence of partisan gerrymandering, and the extent of racial fairness.

These data suggest many important questions worthy of further analysis. To illustrate,

we examine compactness in four states frequently mentioned in the press as examples

political gerrymandering. In Maryland’s 2016 congressional elections, Republicans re-

ceived 37% of the state’s vote but only one of seven congressional seats. In Pennsylvania,

despite winning approximately 46% of the two-party vote share in 2016, Democrats won

only 5 of 18 congressional districts. In North Carolina, Democrats won 47% of the vote

in 2016, but won only 3 of 13 congressional seats. Similarly, in Ohio, the Democratic

vote was 42% while Democrats hold only 3 of 16 seats. A full partisan symmetry analysis

would need to be conducted to evaluate whether these results were fair to the political par-

ties (Gelman and King, 1994; King and Browning, 1987), but this prima facie evidence

certainly suggests further analysis is worthwhile.

Our model predicts the rank a district would be given by a human coder (given only

the shape of the district), with rank 1 being most compact and higher numbers indicating

higher levels of noncompactness. We thus compute this noncompactness measure, using

our methods, for each congressional district in each of these four states, for every new

redistricting since 1893. We then average compactness for all districts within each state

and, in Figure 1, plot the averages over time.

Interestingly, noncompactness dramatically increases in Ohio and Pennsylvania be-

ginning in the mid-1960s, shortly after Baker v. Carr (1962) mandated redistricting to

achieve equal district populations. Maryland and North Carolina, in contrast, show no

such increase. Is this because these states had high noncompactness levels to begin with?

Could noncompactness have been at an effective maximum? Did redistricters from the

majority parties in Ohio and Pennsylvania take advantage in ways those in North Carolina

and Maryland did not? Did the progress (or overreaching) on behalf of minorities in two

of the states take a different path than in the other two? Or might the differences be due to

other factors, such as local political subdivisions, communities of interest, or natural fea-
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Figure 1: Time series plots of average district compactness (and 95% confidence inter-
vals) in congressional districts for four states often claimed in the media to be political
gerrymanders.

tures of the states being taken into account in districting in different ways? We encourage

future researchers to delve into these and the numerous other questions these data suggest.

Appendix C Ensemble Modeling

Since we have six distinct training sets, we construct our ensemble using six distinct train-

ing sets. We do so in three steps: (1) fit each of four models described below to each of the

training sets; (2) calculate each model’s predictions for our universe of 17,896 districts;

and (3) average each of the 24 predictions elementwise to produce a final ensembled com-

pactness measure. We offer more detailed information about each step in our replication

data file and information about each model here:
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Linear regression with variable selection We chose covariates via cross-validation,

iteratively dropping the worst-performing covariate and observing the increase in cross-

validation accuracy. We followed this procedure until the cross-validation accuracy began

to decrease.

The selected main variables are: Polsby-Popper, Boyce-Clark, Convex Hull, Signif-

icant Corners, Significant Corner coordinate variance ratio, X Symmetry, Y Symmetry,

District Area, Point coordinate variance ratio, Variation in Line Segment Length. As well,

included are the following interactions: Polsby-Popper * Convex Hull, Polsby-Popper *

X Symmetry, Polsby-Popper * Y Symmetry, X Symmetry * Y Symmetry, Polsby-Popper

* Significant Corners, Convex Hull * Significant Corners, Polsby-Popper * X Symmetry

* Y symmetry, and Corner coordinate variance ratio * point coordinate variance ratio.

Random Forest Random Forests, which consist of bootstrap-aggregated decision trees,

are among the most commonly used machine learning models in practice. We train our

random forest using 2,000 trees and the default settings in the randomForest library

(Liaw and Wiener, 2002).

AdaBoosted decision trees ADTs are structurally similar to random forests, but with

each tree trained on a version of the data reweighted based on the previous tree’s residuals

(Kaufman, Kraft, and Sen, 2018). We use 2,000 trees, an interaction depth of 3, and

otherwise default settings in the gbm library (Ridgeway, 2015).

SVM Support vector machine regression is also widely applicable and requires little

tuning. We train using the default settings for the e1071 library (Meyer, Dimitriadou,

Hornik, Weingessel, and Leisch, 2017), which includes the radial kernel.

All together, we produce 24 models and predictions: four methods each for six differ-

ent and non-overlapping training sets. We therefore have 24 predictions for each of the

17,896 districts in our test set; we average the predictions for each district and produce a

final compactness score which we include in our replication file.
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Appendix D Uncertainty Estimation

Prior approaches to compactness do not define theoretical quantities of interest separate

from their proposed empirical measures. As a result, the statistical properties of these

measures have not been defined or evaluated. And without this key distinction, estimates

of uncertainty (based on deviations from a quantity of interest) have not been introduced.

Our theoretical quantity of interest is perceived compactness, which we theorize is

common across educated people. Like all existing compactness measures, our proposed

measure is a deterministic function of only district shape. We treat our measure as a pre-

diction of perceived compactness and evaluate its uncertainty based predictive accuracy.

Uncertainty estimates are then a function of (a) measurement error in eliciting views of

compactness from any individual, (b) actual variation across individuals in their views,

and (c) predictive inaccuracy.

We offer uncertainty measurements for both a single compactness measure and the

difference in two compactness measures. For a single measure, we plot all our data used

to evaluate out-of-sample our compactness predictions in Figure 2 (left panel), with our

predicted compactness horizontally by the absolute deviation from the truth vertically. We

then sort these data into 20 bins defined on the horizontal axis. Then we calculate for each

bin the quantiles of the absolute deviations from the out-of-sample truth. We record the

20 points that are at the 50% quantile and the 20 at the 95% quantile. Each fairly closely

follows a quadratic curve and so we fit a polynomial regression and add these to the graph

(black for 50% and red for 95%). The height of the black curve then represents the average

amount of uncertainty we should expect and the height of the red curve indicates, for any

given prediction, half the width of the 95% predictive interval. The red curve happens to

have a relatively simple and easy-to-use form. Let c denote predictive compactness. Then

half the 95% confidence interval is simply c − 2 − 0.01c2. So for a highly noncompact

district with a score of 90, the 95% interval is ±7.1

Finally, Figure 2 (right panel) gives uncertainty estimates for differences between two

1We also perform this procedure treating positive and negative errors separately, producing two separate
quadratics rather than one. This less efficient procedure produces similar but less conservative predictive
intervals, and so stick to the procedure in the text.
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Figure 2: Uncertainty Intervals for a single compactness score (left panel) and for the
difference in two compactness scores (right panel). Each graph plots the uncertainty on
average (black line) and that which bounds 95% of likely outcomes (red line).

predicted compactness values. We do this by computing the percent agreement on those

two districts (vertically) by absolute differences in predicted compactness for two districts

(horizontally). We then again create 20 bins on the horizontal axis and compute the 50%

and 95% quantiles, and fit smoothed lines (which are also quadratics, except to the top

right with few data points). For example, the red line indicates, for a difference of 10 in

predicted compactness between districts i and j, on average 80 evaluators out of 100 will

agree that district i is more compact than district j, and only at a difference of 5 out of

100 will fewer than 75 judges out of 100 agree.

Appendix E Feature Correlations

This table gives correlations between our measure and related and component measures.

We do that here the wrong way, by stacking up all data from all districts in our data set,

and allowing bias due to causal heterogeneity. We do it the right way, one legislature at a

time, in the next section of this appendix.

We code all measures so that higher levels indicate noncompactness. The Pearson col-

umn gives the raw correlations between our measure and others. The Spearman column

is the Spearman correlation between our measure, ranked, and the other measures, also

ranked. The Pearson_avg column is the average Pearson correlation across each state-

chamber-year. We also examine our ensemble as a weighted average of its component
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measures. We produce three unweighted averages of various compactness measures and

calculate their correlation to our ensemble measure. The bottom three rows all indicate

these naive averages of various sets of measures. The OldFeatures measure is the naive

average of all previously existing compactness measures, after they have been direction-

corrected. AllFeatures includes all measures we use in our ensemble; SmartFeatures

uses measures we consider to be good predictors of compactness. The SmartFeatures

measures consist of X-Symmetry, Y-symmetry, Reock, Polsby-Popper, Convex Hull, and

the Bounding Box measure. The OldFeatures measures are the Varcord Ratio, Boyce-

Clark, Length/Width, Jaggedness, Convex Hull, Bounding Box, Reock, Polsby-Popper,

and Schwartzberg.

feature Pearson Spearman Pearson_avg
Convex Hull 0.74 0.95 0.94
Polsby-Popper 0.92 0.94 0.91
Reock 0.62 0.62 0.62
X Symmetry 0.54 0.54 0.53
Corners 0.50 0.57 0.49
Boyce-Clark 0.32 0.36 0.36
OldFeatures 0.93 0.94 0.93
AllFeatures 0.82 0.83 0.85
SmartFeatures 0.95 0.95 0.94

Why Not to Use Single Measures or Unweighted Averages

Given the results in the previous table, it may be tempting to use a simpler measure than

our ensemble, perhaps Polsby-Popper, since it correlates so highly. This would be in-

appropriate, since the overall correlation masks important heterogeneity, which indicates

that the correlations in the table are biased.

For example, it would be easy to design a map such that any two measures contradict

each other in rankings, or another map where they agree. As such, we cannot be confident

that for any given map, that any measure evaluated in any way based on prior data will

correlate highly with our ensemble. Yet, we know from the paper that our measure —

and no other existing measure — will reflect the degree of compactness that human be-

ings know when they see. To illustrate this point, we perform a lengthy analysis in which
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we systematically evaluate 778 legislatures, every unique state-level legislative map (one

state’s chamber in one session, including upper chamber, lower chamber, and Congres-

sional maps) for which we have geospatial data.

To take one example, Polsby-Popper correlates with our ensemble at 0.99 in Indiana,

but −0.7 in Maryland. Without also calculating our ensemble measure, districters would

draw the wrong conclusions about compactness using only Polsby-Popper.

In the tables that follow, we then systematically explore this relationship and perform

two analyses: (1) for any given chamber, we record which measure correlates most highly,

and (2) for any given measure, we record the percent of the cases that each measure

correlate negatively with our measure.

The measure that correlates highest with our measure in the largest number of legis-

latures is Convex Hull, but this occurs in only 49.6% of the data sets — followed by the

Polsby-Popper in 33.3%, Grofman in 7.1%, X-axis Symmetry in 2.1%, Reock and Y-axis

Symmetry at 1.7% each, and Boyce-Clark at 1.4%; even measures such as the area of

the minimum bounding circle and the number of discontiguous polygons correlate most

highly in some situations. In other words, any existing measure can come out on top in ap-

proximating our measure depending on the particular features of the set of district shapes

that make up the legislature, and so none of these measures alone can be used as a simpler

replacement with our measure of what people know when they see, without checking the

relationship first. This means that, using any measure but ours, will result in data sets

where a human being looking at the districts will draw one conclusion and the measure

will suggest the opposite: that is, the human observer will conclude that the measure is

wrong. As we show in the paper, this is highly unlikely to occur with our new measure.

Indeed, every measure correlates negatively a significant portion of the time with our

measure. Convex Hull and Grofman both do so in around 1% of the cases; Polsby-Popper,

around 1.1%. Reock does so in 3.7% of the cases. X symmetry and Y symmetry correlate

negatively in 6.5% and 5.2% of the cases, respectively. Significant Corners and Boyce

Clark correlate negatively in 10.4% and 11% of the cases, respectively; Length/Width, a

stunning 42.5%.
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The conclusion here reinforces that in the paper: If one wishes to measure the type

of compactness that all types of people seem to perceive — from undergraduates and

Mechanical Turk workers to justices, legislators, and other public officials — then the

measure we develop in our paper (coded from these perceptions) is the right choice. No

other existing measure is trying to estimate that quantity of interest, nor do any of these

measures happen to pick up the same information.

Feature Proportion of Negative Correlations
Convex Hul 0.010
Polsby-Popper 0.011
Reock 0.037
Grofman 0.010
X-axis Symmetry 0.065
Y-axis Symmetry 0.052
Significant Corners 0.104
Boyce-Clark 0.110
Length/Width 0.425
Jaggedness 0.436
Parts 0.166
Circle Area 0.526
Cornervar Ratio 0.550
OldFeatures 0.013
AllFeatures 0.015
SmartFeatures 0.010

Feature Highest Correlation Lowest Correlation Smallest Absolute Correlation
Convex Hull 0.996 0.550 0.550
Polsby-Popper 0.997 -0.251 0.251
Reock 0.993 -0.375 0.015
X-Symmetry 0.982 -0.682 0.016
Y-Symmetry 0.976 -0.813 0.012
Significant Corners 0.971 -0.597 0.005
Boyce-Clark 0.929 -0.762 0.000
AllFeatures 0.990 -0.199 0.199
SmartFeatures 0.997 0.637 0.637
OldFeatures 0.997 0.210 0.210
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