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This talk

• What’s conjoint? (with easier, more applicable methods)
• Measurement error in conjoint

• How much? Lots!
• Why so much? Approximating real world decisions
• Ignore it? Bias!
• Hard to fix? A few lines of code & estimate IRR

• Planning a survey: add one question
• Reanalyzing existing data: extrapolate

• Evidence: 13+ surveys, 9,472 respondents, 137,785 questions
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Conjoint Questions: Complicated Real World Trade Offs

Please carefully review the two potential candidates running for election
to the U.S. House of Representatives, detailed below.

Candidate 0 Candidate 1
Race/Ethnicity Hispanic Asian American
Age 52 60
Favorability rating among the pub-
lic

70% 34%

Position on immigrants Favors giving citizenship or guest
worker status to undocumented
immigrants

Opposes giving citizenship or guest
worker status to undocumented
immigrants

Party affiliation Republican Party Democratic Party
Position on abortion Abortion is not a private matter

(pro-life)
Abortion is a private matter (pro-
choice)

Position on government deficit Wants to reduce the deficit through
tax increase

Wants to reduce the deficit through
tax increase

Salient personal characteristics Really cares about people like you Really cares about people like you
Position on national security Wants to cut military budget and

keep the U.S. out of war
Wants to maintain strong defense
and increase U.S. influence

Gender Female Female
Policy area of expertise Education Foreign policy
Family Single (divorced) Married (no child)
Experience in public office 12 years 4 years

If you had to choose between them, which of these candidates would you
vote to be a member of the U.S. House of Representatives?
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Simplified (but more general) Data Structure

• Unit of Analysis: the binary choice; 𝑁 rows
• Dependent var: Candidate 0 vs 1
• Covariates: Attributes (randomized)

• Age: “78, 60”, “60, 60”, “52, 43”
• Incumbency: “Incumbent, nonincumbent”, or “open seat”

• Mean, SE: as usual (see intro stat class)
• Better than profile as unit of analysis (legacy from marketing &

psychology)

• Less: Intuitive (2 rows in data per question)
• More: complicated (clustering) methods required
• Fewer: substantive questions can be asked
• Same: measurement error corrections
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Quantities of Interest

• Notation

• Attributes: 𝑎 = {𝑎ℓ, 𝑎−ℓ} = {Attribute of interest, Others}
• Preference: 𝜌𝑖(𝑎ℓ, 𝑎−ℓ) ∈ {0, 1}

• Marginal Mean in traditional (non-conjoint!) survey

𝜌(𝑎ℓ) = mean𝑖 [𝜌𝑖(𝑎ℓ)] .

• E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
• Implicit: Other attributes set to observed (or like “Clarify”)

• Marginal Mean in conjoint survey

𝜌(𝑎ℓ) = mean𝑖,𝑎−ℓ
[𝜌𝑖(𝑎ℓ, 𝑎−ℓ)] .

• A little wacky, but convenient: Each attribute can of interest
• Attribute selection: defines QOI
• Weighting over other attributes: Why uniform?
• Other conjoint QOIs: linear functions of this mean

• Casual effect: Average Marginal Component Effect (AMCE)

𝜃(𝑎ℓ, 𝑎′ℓ) = 𝜌(𝑎ℓ) − 𝜌(𝑎′ℓ).
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𝜌(𝑎ℓ) = mean𝑖 [𝜌𝑖(𝑎ℓ)] .

• E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
• Implicit: Other attributes set to observed (or like “Clarify”)

• Marginal Mean in conjoint survey

𝜌(𝑎ℓ) = mean𝑖,𝑎−ℓ
[𝜌𝑖(𝑎ℓ, 𝑎−ℓ)] .

• A little wacky, but convenient: Each attribute can of interest
• Attribute selection: defines QOI
• Weighting over other attributes: Why uniform?

• Other conjoint QOIs: linear functions of this mean
• Casual effect: Average Marginal Component Effect (AMCE)
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Measurement Error in Binary Choice

• Choices {0,1} observed,

preferences {0,1} unobserved

𝐶𝑖(𝑎) = {𝜌𝑖(𝑎) w.p. 1 − 𝜏
1 − 𝜌𝑖(𝑎) w.p. 𝜏 ←Pr(swapping error)

• Estimate 𝜏 : Ask 1 extra question

1. Estimate Intra-Respondent Reliability (IRR)

• Add one question: Q1, Q2, Q3, Q4, Q5, Q1
• IRR = % agreement on 2 identical questions asked moments apart
• No one remembers the duplicate Q
• Different “considerations” (confounders) unlikely

2. Calculate: ̂𝜏 = 1 − √1 − 2(1 − IRR)
2

• Extrapolate 𝜏 : no new data (to come)
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What changed from the last time you saw this?

Please carefully review the two potential candidates running for election
to the U.S. House of Representatives, detailed below.

Candidate 0 Candidate 1
Race/Ethnicity Hispanic Asian American
Age 52 60
Favorability rating among the pub-
lic

70% 34%

Position on immigrants Favors giving citizenship or guest
worker status to undocumented
immigrants

Opposes giving citizenship or guest
worker status to undocumented
immigrants

Party affiliation Republican Party Democratic Party
Position on abortion Abortion is not a private matter

(pro-life)
Abortion is a private matter (pro-
choice)

Position on government deficit Wants to reduce the deficit through
tax increase

Wants to reduce the deficit through
tax increase

Salient personal characteristics Really cares about people like you Really cares about people like you
Position on national security Wants to cut military budget and

keep the U.S. out of war
Wants to maintain strong defense
and increase U.S. influence

Gender Female Female
Policy area of expertise Education Foreign policy
Family Single (divorced) Married (no child)
Experience in public office 12 years 4 years

If you had to choose between them, which of these candidates would you
vote to be a member of the U.S. House of Representatives?
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Bias Due to Swapping Error

• Quantities of Interest (from earlier)

𝜌(𝑎ℓ) = mean𝑖,𝑎−ℓ
[𝜌𝑖(𝑎ℓ, 𝑎−ℓ)] , 𝜃(𝑎ℓ, 𝑎′ℓ) = 𝜌(𝑎ℓ) − 𝜌(𝑎′ℓ).

• Standard estimators

̂𝜌(𝑎) = mean𝑖∶𝐴𝑖=𝑎
[𝐶𝑖(𝑎)] , ̂𝜃(𝑎, 𝑎′) = ̂𝜌(𝑎) − ̂𝜌(𝑎′)

• If 𝜏 = 0: both unbiased (identified by randomization)
• If 𝜏 > 0: both biased (i.e., most prior research)
• Not like regression: error in outcome variable ; bias

• Alternative estimators

̃𝜌(𝑎) = ̂𝜌(𝑎) − 𝜏
1 − 2𝜏 , ̃𝜃(𝑎, 𝑎′) =

̂𝜃(𝑎, 𝑎′)
1 − 2𝜏 ,

• with 𝜏 known: unbiased
• with consistent ̂𝜏 : Consistent, approximately unbiased
• SE estimators: Fast, accurate, easy

• What we need to show about 𝜏

• IRR small: 𝜏 large ; bias large enough to matter
• 𝜏 (𝑎) ≈ 𝜏 : correction is easy
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8 Replications of Data Collection & Analysis

• Replicated all data collection and analysis from scratch
• Every study replicates! (Median correlation 0.9)
• Impressive literature, especially given crises in other fields
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Low Intra-Respondent Reliability!

• Randomize 2 of 8 studies & 5 Qs per resp.; 𝑛 = 3, 289
• Add one Q: Q1, Q2, Q3, Q4, Q5, Q1; Compute IRR.
• Measurement error: IRR ≈ 0.75

; 𝜏 ≈ 0.15

• 15% of 0s should be 1s or 1s should be 0s
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IRR Doesn’t Vary by Attribute Levels

• Top-down approach: Theories tested, rejected by evidence

• Inconsistency among attribute values
• Complexity of question wording, attribute lists
• Divergence between attribute values of the two profiles

• Bottom-up approach

• Replicate experiment with media articles (Mummolo, 2016)
• 48 possible sets of attributes for the profile pairs
• Collect 𝑛 = 50 for each of the 48 pairs: estimate IRR
• Repeat a second time with 𝑛 = 100, estimate IRR again

• Conclusions:

• Surveys + real world trade offs: IRR plummets
• IRR(𝑎) ≈ IRR constant
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What did he say?

• Simplify methods, generalize substance: use choice-level UOA
• Measurement error in conjoint

• How much? Lots!
• Why so much? Approximating real world decisions
• Ignore it? Bias!
• How Hard to Fix? A few lines of code & estimate IRR

• Planning a survey: add one question
• Reanalyzing existing data: extrapolate

• Evidence: 13+ surveys, 9,472 respondents, 137,785 questions

Paper, slides, software, data GaryKing.org/conjointE
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