Correcting Measurement Error Bias in Conjoint Survey Experiments ${ }^{1}$

Katherine Clayton Yusaku Horiuchi Aaron Kaufman Gary King Mayya Komisarchik

Stanford, Dartmouth, NYUAD, Harvard, Rochester

Society for Political Methodology, 7/10/2023
${ }^{1}$ Paper, software, slides, data: GaryKing.org/conjointE

This talk

This talk

- What's conjoint? (with easier, more applicable methods)

This talk

- What's conjoint? (with easier, more applicable methods)
- Measurement error in conjoint

This talk

- What's conjoint? (with easier, more applicable methods)
- Measurement error in conjoint
- How much? Lots!

This talk

- What's conjoint? (with easier, more applicable methods)
- Measurement error in conjoint
- How much? Lots!
- Why so much? Approximating real world decisions

This talk

- What's conjoint? (with easier, more applicable methods)
- Measurement error in conjoint
- How much? Lots!
- Why so much? Approximating real world decisions
- Ignore it? Bias!

This talk

- What's conjoint? (with easier, more applicable methods)
- Measurement error in conjoint
- How much? Lots!
- Why so much? Approximating real world decisions
- Ignore it? Bias!
- Easy to fix? Estimate IRR \& a few lines of code

This talk

- What's conjoint? (with easier, more applicable methods)
- Measurement error in conjoint
- How much? Lots!
- Why so much? Approximating real world decisions
- Ignore it? Bias!
- Easy to fix? Estimate IRR \& a few lines of code
- Evidence: 13+ surveys, 9,472 respondents, 137,785 questions

Conjoint Questions: Complicated Real World Trade Offs

Conjoint Questions: Complicated Real World Trade Offs

(Ono and Burden, 2018)

Conjoint Questions: Complicated Real World Trade Offs

(Ono and Burden, 2018)
Please carefully review the two potential candidates running for election to the U.S. House of Representatives, detailed below.

Race/Ethnicity
Age
Favorability rating among the pub-
lic
Position on immigrants
Party affiliation
Position on abortion
Position on government deficit
Salient personal characteristics
Position on national security
Gender
Policy area of expertise
Family
Experience in public office

\(\left.$$
\begin{array}{ll}\text { Candidate } 0 & \text { Candidate 1 } \\
\hline \text { Hispanic } & \text { Asian American } \\
52 & 60 \\
70 \% & 34 \% \\
\text { Favors giving citizenship or guest } \\
\text { worker status to undocumented } \\
\text { immigrants }\end{array}
$$ \quad \begin{array}{l}Opposes giving citizenship or guest

worker status to undocumented

immigrants\end{array}\right]\)| Republican Party | Democratic Party
 choice) |
| :--- | :--- |
| Abortion is not a private matter
 (pro-life) | Wants to reduce the deficit through
 tax increase |
| Wants to reduce the deficit through | |
| tax increase | Really cares about people like you |
| Really cares about people like you | |
| Wants to cut military budget and | Wants to maintain strong defense
 and increase U.S. influence |
| keep the U.S. out of war | Female |
| Female | Foreign policy |
| Education | Married (no child) |
| Single (divorced) | 4 years |
| 12 years | |

If you had to choose between them, which of these candidates would you vote to be a member of the U.S. House of Representatives?

Conjoint Questions: Complicated Real World Trade Offs

(Ono and Burden, 2018)

Conjoint Questions: Complicated Real World Trade Offs

(Ono and Burden, 2018)
Please carefully review the two potential candidates running for election to the U.S. House of Representatives, detailed below.

Race/Ethnicity
Age
Favorability rating among the pub-
lic
Position on immigrants
Party affiliation
Position on abortion
Position on government deficit
Salient personal characteristics
Position on national security
Gender
Policy area of expertise
Family
Experience in public office

\(\left.$$
\begin{array}{ll}\text { Candidate } 0 & \text { Candidate 1 } \\
\hline \text { Hispanic } & \text { Asian American } \\
52 & 60 \\
70 \% & 34 \% \\
\text { Favors giving citizenship or guest } \\
\text { worker status to undocumented } \\
\text { immigrants }\end{array}
$$ \quad \begin{array}{l}Opposes giving citizenship or guest

worker status to undocumented

immigrants\end{array}\right]\)| Republican Party | Democratic Party
 choice) |
| :--- | :--- |
| Abortion is not a private matter
 (pro-life) | Wants to reduce the deficit through
 tax increase |
| Wants to reduce the deficit through | |
| tax increase | Really cares about people like you |
| Really cares about people like you | |
| Wants to cut military budget and | Wants to maintain strong defense
 and increase U.S. influence |
| keep the U.S. out of war | Female |
| Female | Foreign policy |
| Education | Married (no child) |
| Single (divorced) | 4 years |
| 12 years | |

If you had to choose between them, which of these candidates would you vote to be a member of the U.S. House of Representatives?

Simplified (but more general) Data Structure

Simplified (but more general) Data Structure

- Unit of Analysis: the binary choice; N rows

Simplified (but more general) Data Structure

- Unit of Analysis: the binary choice; N rows
- Dependent var: Candidate 0 vs 1

Simplified (but more general) Data Structure

- Unit of Analysis: the binary choice; N rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)

Simplified (but more general) Data Structure

- Unit of Analysis: the binary choice; N rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
- Age: "78, 60", "60, 60", " 52,43 "

Simplified (but more general) Data Structure

- Unit of Analysis: the binary choice; N rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
- Age: "78, 60", " 60,60 ", " 52,43 "
- Incumbency: "Incumbent, nonincumbent", or "open seat"

Simplified (but more general) Data Structure

- Unit of Analysis: the binary choice; N rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
- Age: "78, 60", "60, 60", "52, 43"
- Incumbency: "Incumbent, nonincumbent", or "open seat"
- Mean, SE: as usual (see intro stat class)

Simplified (but more general) Data Structure

- Unit of Analysis: the binary choice; N rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
- Age: "78, 60", "60, 60", "52, 43"
- Incumbency: "Incumbent, nonincumbent", or "open seat"
- Mean, SE: as usual (see intro stat class)
- Other approaches (legacy from marketing \& psychology)

Simplified (but more general) Data Structure

- Unit of Analysis: the binary choice; N rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
- Age: "78, 60", "60, 60", "52, 43"
- Incumbency: "Incumbent, nonincumbent", or "open seat"
- Mean, SE: as usual (see intro stat class)
- Other approaches (legacy from marketing \& psychology)
- Fewer: substantive questions can be asked

Simplified (but more general) Data Structure

- Unit of Analysis: the binary choice; N rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
- Age: "78, 60", "60, 60", "52, 43"
- Incumbency: "Incumbent, nonincumbent", or "open seat"
- Mean, SE: as usual (see intro stat class)
- Other approaches (legacy from marketing \& psychology)
- Fewer: substantive questions can be asked
- More: complicated methods required

Simplified (but more general) Data Structure

- Unit of Analysis: the binary choice; N rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
- Age: "78, 60", "60, 60", "52, 43"
- Incumbency: "Incumbent, nonincumbent", or "open seat"
- Mean, SE: as usual (see intro stat class)
- Other approaches (legacy from marketing \& psychology)
- Fewer: substantive questions can be asked
- More: complicated methods required
- Same: measurement error corrections

Quantities of Interest

Quantities of Interest

- Notation

Quantities of Interest

- Notation
- Attributes: $a=\left\{a_{\ell}, a_{-\ell}\right\}=\{$ Attribute of interest, Others $\}$

Quantities of Interest

- Notation
- Attributes: $a=\left\{a_{\ell}, a_{-\ell}\right\}=\{$ Attribute of interest, Others $\}$
- Preference: $\rho_{i}\left(a_{\ell}, a_{-\ell}\right) \in\{0,1\}$

Quantities of Interest

- Notation
- Attributes: $a=\left\{a_{\ell}, a_{-\ell}\right\}=\{$ Attribute of interest, Others $\}$
- Preference: $\rho_{i}\left(a_{\ell}, a_{-\ell}\right) \in\{0,1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i}\left[\rho_{i}\left(a_{\ell}\right)\right]
$$

Quantities of Interest

- Notation
- Attributes: $a=\left\{a_{\ell}, a_{-\ell}\right\}=\{$ Attribute of interest, Others $\}$
- Preference: $\rho_{i}\left(a_{\ell}, a_{-\ell}\right) \in\{0,1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i}\left[\rho_{i}\left(a_{\ell}\right)\right] .
$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)

Quantities of Interest

- Notation
- Attributes: $a=\left\{a_{\ell}, a_{-\ell}\right\}=\{$ Attribute of interest, Others $\}$
- Preference: $\rho_{i}\left(a_{\ell}, a_{-\ell}\right) \in\{0,1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i}\left[\rho_{i}\left(a_{\ell}\right)\right]
$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")

Quantities of Interest

- Notation
- Attributes: $a=\left\{a_{\ell}, a_{-\ell}\right\}=\{$ Attribute of interest, Others $\}$
- Preference: $\rho_{i}\left(a_{\ell}, a_{-\ell}\right) \in\{0,1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i}\left[\rho_{i}\left(a_{\ell}\right)\right]
$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")
- Marginal Mean in conjoint survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i, a_{-\ell}}\left[\rho_{i}\left(a_{\ell}, a_{-\ell}\right)\right]
$$

Quantities of Interest

- Notation
- Attributes: $a=\left\{a_{\ell}, a_{-\ell}\right\}=\{$ Attribute of interest, Others $\}$
- Preference: $\rho_{i}\left(a_{\ell}, a_{-\ell}\right) \in\{0,1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i}\left[\rho_{i}\left(a_{\ell}\right)\right]
$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")
- Marginal Mean in conjoint survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i, a_{-\ell}}\left[\rho_{i}\left(a_{\ell}, a_{-\ell}\right)\right]
$$

- A little wacky, but convenient: Each attribute can of interest

Quantities of Interest

- Notation
- Attributes: $a=\left\{a_{\ell}, a_{-\ell}\right\}=\{$ Attribute of interest, Others $\}$
- Preference: $\rho_{i}\left(a_{\ell}, a_{-\ell}\right) \in\{0,1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i}\left[\rho_{i}\left(a_{\ell}\right)\right]
$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")
- Marginal Mean in conjoint survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i, a_{-\ell}}\left[\rho_{i}\left(a_{\ell}, a_{-\ell}\right)\right]
$$

- A little wacky, but convenient: Each attribute can of interest
- Attributes: define the QOI

Quantities of Interest

- Notation
- Attributes: $a=\left\{a_{\ell}, a_{-\ell}\right\}=\{$ Attribute of interest, Others $\}$
- Preference: $\rho_{i}\left(a_{\ell}, a_{-\ell}\right) \in\{0,1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i}\left[\rho_{i}\left(a_{\ell}\right)\right]
$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")
- Marginal Mean in conjoint survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i, a_{-\ell}}\left[\rho_{i}\left(a_{\ell}, a_{-\ell}\right)\right]
$$

- A little wacky, but convenient: Each attribute can of interest
- Attributes: define the QOI
- Other conjoint QOIs: linear functions of this mean

Quantities of Interest

- Notation
- Attributes: $a=\left\{a_{\ell}, a_{-\ell}\right\}=\{$ Attribute of interest, Others $\}$
- Preference: $\rho_{i}\left(a_{\ell}, a_{-\ell}\right) \in\{0,1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i}\left[\rho_{i}\left(a_{\ell}\right)\right]
$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")
- Marginal Mean in conjoint survey

$$
\rho\left(a_{\ell}\right)=\operatorname{mean}_{i, a_{-\ell}}\left[\rho_{i}\left(a_{\ell}, a_{-\ell}\right)\right]
$$

- A little wacky, but convenient: Each attribute can of interest
- Attributes: define the QOI
- Other conjoint QOIs: linear functions of this mean
- Casual effect: Average Marginal Component Effect (AMCE)

$$
\theta\left(a_{\ell}, a_{\ell}^{\prime}\right)=\rho\left(a_{\ell}\right)-\rho\left(a_{\ell}^{\prime}\right)
$$

Measurement Error in Binary Choice

Measurement Error in Binary Choice

- Choices $\{0,1\}$ observed,

Measurement Error in Binary Choice

- Choices $\{0,1\}$ observed, preferences $\{0,1\}$ unobserved

Measurement Error in Binary Choice

- Choices $\{0,1\}$ observed, preferences $\{0,1\}$ unobserved

$$
C_{i}(a)=\left\{\begin{array}{ll}
\rho_{i}(a) & \text { w.p. } 1-\tau \\
1-\rho_{i}(a) & \text { w.p. } \tau
\end{array} \leftarrow \operatorname{Pr}(\text { swapping error })\right.
$$

Measurement Error in Binary Choice

- Choices $\{0,1\}$ observed, preferences $\{0,1\}$ unobserved

$$
C_{i}(a)=\left\{\begin{array}{ll}
\rho_{i}(a) & \text { w.p. } 1-\tau \\
1-\rho_{i}(a) & \text { w.p. } \tau
\end{array} \leftarrow \operatorname{Pr}(\text { swapping error })\right.
$$

- Estimate τ : Ask 1 extra question

Measurement Error in Binary Choice

- Choices $\{0,1\}$ observed, preferences $\{0,1\}$ unobserved

$$
C_{i}(a)=\left\{\begin{array}{ll}
\rho_{i}(a) & \text { w.p. } 1-\tau \\
1-\rho_{i}(a) & \text { w.p. } \tau
\end{array} \leftarrow \operatorname{Pr}(\text { swapping error })\right.
$$

- Estimate τ : Ask 1 extra question
- Extrapolate τ : no new data (to come)

Measurement Error in Binary Choice

- Choices $\{0,1\}$ observed, preferences $\{0,1\}$ unobserved

$$
C_{i}(a)=\left\{\begin{array}{ll}
\rho_{i}(a) & \text { w.p. } 1-\tau \\
1-\rho_{i}(a) & \text { w.p. } \tau
\end{array} \leftarrow \operatorname{Pr}(\text { swapping error })\right.
$$

- Estimate τ : Ask 1 extra question

1. Estimate Intra-Respondent Reliability (IRR)

- Extrapolate τ : no new data (to come)

Measurement Error in Binary Choice

- Choices $\{0,1\}$ observed, preferences $\{0,1\}$ unobserved

$$
C_{i}(a)=\left\{\begin{array}{ll}
\rho_{i}(a) & \text { w.p. } 1-\tau \\
1-\rho_{i}(a) & \text { w.p. } \tau
\end{array} \leftarrow \operatorname{Pr}(\text { swapping error })\right.
$$

- Estimate τ : Ask 1 extra question

1. Estimate Intra-Respondent Reliability (IRR)

- Add one question: Q1, Q2, Q3, Q4, Q5, Q1
- Extrapolate τ : no new data (to come)

Measurement Error in Binary Choice

- Choices $\{0,1\}$ observed, preferences $\{0,1\}$ unobserved

$$
C_{i}(a)=\left\{\begin{array}{ll}
\rho_{i}(a) & \text { w.p. } 1-\tau \\
1-\rho_{i}(a) & \text { w.p. } \tau
\end{array} \leftarrow \operatorname{Pr}(\text { swapping error })\right.
$$

- Estimate τ : Ask 1 extra question

1. Estimate Intra-Respondent Reliability (IRR)

- Add one question: Q1, Q2, Q3, Q4, Q5, Q1
- $\operatorname{IRR}=\%$ agreement on 2 identical questions asked moments apart
- Extrapolate τ : no new data (to come)

Measurement Error in Binary Choice

- Choices $\{0,1\}$ observed, preferences $\{0,1\}$ unobserved

$$
C_{i}(a)=\left\{\begin{array}{ll}
\rho_{i}(a) & \text { w.p. } 1-\tau \\
1-\rho_{i}(a) & \text { w.p. } \tau
\end{array} \leftarrow \operatorname{Pr}(\text { swapping error })\right.
$$

- Estimate τ : Ask 1 extra question

1. Estimate Intra-Respondent Reliability (IRR)

- Add one question: Q1, Q2, Q3, Q4, Q5, Q1
- $\operatorname{IRR}=\%$ agreement on 2 identical questions asked moments apart
- No one remembers the duplicate Q
- Extrapolate τ : no new data (to come)

Measurement Error in Binary Choice

- Choices $\{0,1\}$ observed, preferences $\{0,1\}$ unobserved

$$
C_{i}(a)=\left\{\begin{array}{ll}
\rho_{i}(a) & \text { w.p. } 1-\tau \\
1-\rho_{i}(a) & \text { w.p. } \tau
\end{array} \leftarrow \operatorname{Pr}(\text { swapping error })\right.
$$

- Estimate τ : Ask 1 extra question

1. Estimate Intra-Respondent Reliability (IRR)

- Add one question: Q1, Q2, Q3, Q4, Q5, Q1
- $\operatorname{IRR}=\%$ agreement on 2 identical questions asked moments apart
- No one remembers the duplicate Q
- Different "considerations" (confounders) unlikely
- Extrapolate τ : no new data (to come)

Measurement Error in Binary Choice

- Choices $\{0,1\}$ observed, preferences $\{0,1\}$ unobserved

$$
C_{i}(a)=\left\{\begin{array}{ll}
\rho_{i}(a) & \text { w.p. } 1-\tau \\
1-\rho_{i}(a) & \text { w.p. } \tau
\end{array} \leftarrow \operatorname{Pr}(\text { swapping error })\right.
$$

- Estimate τ : Ask 1 extra question

1. Estimate Intra-Respondent Reliability (IRR)

- Add one question: Q1, Q2, Q3, Q4, Q5, Q1
- $\operatorname{IRR}=\%$ agreement on 2 identical questions asked moments apart
- No one remembers the duplicate Q
- Different "considerations" (confounders) unlikely

2. Calculate: $\hat{\tau}=\frac{1-\sqrt{1-2(1-\mathrm{IRR})}}{2}$

- Extrapolate τ : no new data (to come)

Bias Due to Swapping Error

Bias Due to Swapping Error

- Standard estimators

$$
\hat{\rho}(a)=\operatorname{mean}_{i: A_{i}=a}\left[C_{i}(a)\right], \quad \hat{\theta}\left(a, a^{\prime}\right)=\hat{\rho}(a)-\hat{\rho}\left(a^{\prime}\right)
$$

Bias Due to Swapping Error

- Standard estimators

$$
\hat{\rho}(a)=\operatorname{mean}_{i: A_{i}=a}\left[C_{i}(a)\right], \quad \hat{\theta}\left(a, a^{\prime}\right)=\hat{\rho}(a)-\hat{\rho}\left(a^{\prime}\right)
$$

- If $\tau=0$: both unbiased (identified by randomization)

Bias Due to Swapping Error

- Standard estimators

$$
\hat{\rho}(a)=\operatorname{mean}_{i: A_{i}=a}\left[C_{i}(a)\right], \quad \hat{\theta}\left(a, a^{\prime}\right)=\hat{\rho}(a)-\hat{\rho}\left(a^{\prime}\right)
$$

- If $\tau=0$: both unbiased (identified by randomization)
- If $\tau>0$: both biased

Bias Due to Swapping Error

- Standard estimators

$$
\hat{\rho}(a)=\operatorname{mean}_{i: A_{i}=a}\left[C_{i}(a)\right], \quad \hat{\theta}\left(a, a^{\prime}\right)=\hat{\rho}(a)-\hat{\rho}\left(a^{\prime}\right)
$$

- If $\tau=0$: both unbiased (identified by randomization)
- If $\tau>0$: both biased
- Not like regression: error in outcome variable \leadsto bias

Bias Due to Swapping Error

- Standard estimators

$$
\hat{\rho}(a)=\operatorname{mean}_{i: A_{i}=a}\left[C_{i}(a)\right], \quad \hat{\theta}\left(a, a^{\prime}\right)=\hat{\rho}(a)-\hat{\rho}\left(a^{\prime}\right)
$$

- If $\tau=0$: both unbiased (identified by randomization)
- If $\tau>0$: both biased
- Not like regression: error in outcome variable \sim bias
- Alternative estimators

$$
\tilde{\rho}(a)=\frac{\hat{\rho}(a)-\tau}{1-2 \tau}, \quad \tilde{\theta}\left(a, a^{\prime}\right)=\frac{\hat{\theta}\left(a, a^{\prime}\right)}{1-2 \tau}
$$

Bias Due to Swapping Error

- Standard estimators

$$
\hat{\rho}(a)=\operatorname{mean}_{i: A_{i}=a}\left[C_{i}(a)\right], \quad \hat{\theta}\left(a, a^{\prime}\right)=\hat{\rho}(a)-\hat{\rho}\left(a^{\prime}\right)
$$

- If $\tau=0$: both unbiased (identified by randomization)
- If $\tau>0$: both biased
- Not like regression: error in outcome variable \sim bias
- Alternative estimators

$$
\tilde{\rho}(a)=\frac{\hat{\rho}(a)-\tau}{1-2 \tau}, \quad \tilde{\theta}\left(a, a^{\prime}\right)=\frac{\hat{\theta}\left(a, a^{\prime}\right)}{1-2 \tau}
$$

- with τ known: unbiased

Bias Due to Swapping Error

- Standard estimators

$$
\hat{\rho}(a)=\operatorname{mean}_{i: A_{i}=a}\left[C_{i}(a)\right], \quad \hat{\theta}\left(a, a^{\prime}\right)=\hat{\rho}(a)-\hat{\rho}\left(a^{\prime}\right)
$$

- If $\tau=0$: both unbiased (identified by randomization)
- If $\tau>0$: both biased
- Not like regression: error in outcome variable \sim bias
- Alternative estimators

$$
\tilde{\rho}(a)=\frac{\hat{\rho}(a)-\tau}{1-2 \tau}, \quad \tilde{\theta}\left(a, a^{\prime}\right)=\frac{\hat{\theta}\left(a, a^{\prime}\right)}{1-2 \tau}
$$

- with τ known: unbiased
- with consistent $\hat{\tau}$: Consistent, approximately unbiased

Bias Due to Swapping Error

- Standard estimators

$$
\hat{\rho}(a)=\operatorname{mean}_{i: A_{i}=a}\left[C_{i}(a)\right], \quad \hat{\theta}\left(a, a^{\prime}\right)=\hat{\rho}(a)-\hat{\rho}\left(a^{\prime}\right)
$$

- If $\tau=0$: both unbiased (identified by randomization)
- If $\tau>0$: both biased
- Not like regression: error in outcome variable \leadsto bias
- Alternative estimators

$$
\tilde{\rho}(a)=\frac{\hat{\rho}(a)-\tau}{1-2 \tau}, \quad \tilde{\theta}\left(a, a^{\prime}\right)=\frac{\hat{\theta}\left(a, a^{\prime}\right)}{1-2 \tau}
$$

- with τ known: unbiased
- with consistent $\hat{\tau}$: Consistent, approximately unbiased
- What we need to show about τ

Bias Due to Swapping Error

- Standard estimators

$$
\hat{\rho}(a)=\operatorname{mean}_{i: A_{i}=a}\left[C_{i}(a)\right], \quad \hat{\theta}\left(a, a^{\prime}\right)=\hat{\rho}(a)-\hat{\rho}\left(a^{\prime}\right)
$$

- If $\tau=0$: both unbiased (identified by randomization)
- If $\tau>0$: both biased
- Not like regression: error in outcome variable \leadsto bias
- Alternative estimators

$$
\tilde{\rho}(a)=\frac{\hat{\rho}(a)-\tau}{1-2 \tau}, \quad \tilde{\theta}\left(a, a^{\prime}\right)=\frac{\hat{\theta}\left(a, a^{\prime}\right)}{1-2 \tau}
$$

- with τ known: unbiased
- with consistent $\hat{\tau}$: Consistent, approximately unbiased
- What we need to show about τ
- IRR small: τ large \leadsto bias large enough to matter

Bias Due to Swapping Error

- Standard estimators

$$
\hat{\rho}(a)=\operatorname{mean}_{i: A_{i}=a}\left[C_{i}(a)\right], \quad \hat{\theta}\left(a, a^{\prime}\right)=\hat{\rho}(a)-\hat{\rho}\left(a^{\prime}\right)
$$

- If $\tau=0$: both unbiased (identified by randomization)
- If $\tau>0$: both biased
- Not like regression: error in outcome variable \leadsto bias
- Alternative estimators

$$
\tilde{\rho}(a)=\frac{\hat{\rho}(a)-\tau}{1-2 \tau}, \quad \tilde{\theta}\left(a, a^{\prime}\right)=\frac{\hat{\theta}\left(a, a^{\prime}\right)}{1-2 \tau}
$$

- with τ known: unbiased
- with consistent $\hat{\tau}$: Consistent, approximately unbiased
- What we need to show about τ
- IRR small: τ large \sim bias large enough to matter
- $\tau(a) \approx \tau$: correction is easy

8 Replications of Data Collection \& Analysis

8 Replications of Data Collection \& Analysis

Study

- Arias and Blair (2022)
\rightarrow Bechtel and Scheve (2013)
\rightarrow Blackman (2018)
\rightarrow Hainmueller and Hopkins (2015)
\rightarrow Hankinson (2018)
\rightarrow Mummolo and Nall (2017)
\rightarrow Ono and Burden (2019)
\rightarrow Teele, Kalla, and Rosenbluth (2018)

8 Replications of Data Collection \& Analysis

Study

- Arias and Blair (2022)
\rightarrow Bechtel and Scheve (2013)
- Blackman (2018)
\rightarrow Hainmueller and Hopkins (2015)
\rightarrow Hankinson (2018)
\rightarrow Mummolo and Nall (2017)
\rightarrow Ono and Burden (2019)
\rightarrow Teele, Kalla, and Rosenbluth (2018)
- Replicated all data collection and analysis from scratch

8 Replications of Data Collection \& Analysis

Study
\rightarrow Arias and Blair (2022)
\rightarrow Bechtel and Scheve (2013)

- Blackman (2018)
\rightarrow Hainmueller and Hopkins (2015)
\rightarrow Hankinson (2018)
\rightarrow Mummolo and Nall (2017)
\rightarrow Ono and Burden (2019)
\rightarrow Teele, Kalla, and Rosenbluth (2018)
- Replicated all data collection and analysis from scratch
- Every study replicates! (Median correlation 0.9)

8 Replications of Data Collection \& Analysis

Study

- Arias and Blair (2022)
\rightarrow Bechtel and Scheve (2013)
- Blackman (2018)
\rightarrow Hainmueller and Hopkins (2015)
\rightarrow Hankinson (2018)
\rightarrow Mummolo and Nall (2017)
\rightarrow Ono and Burden (2019)
\rightarrow Teele, Kalla, and Rosenbluth (2018)
- Replicated all data collection and analysis from scratch
- Every study replicates! (Median correlation 0.9)
- Impressive literature, especially given crises in other fields

Intra-Respondent Reliability

Intra-Respondent Reliability

Intra-Respondent Reliability

- Add one Q: Q1, Q2, Q3, Q4, Q5, Q1; Compute IRR.

Intra-Respondent Reliability

- Add one Q: Q1, Q2, Q3, Q4, Q5, Q1; Compute IRR.
- Measurement error: IRR ≈ 0.75

Intra-Respondent Reliability

- Add one Q: Q1, Q2, Q3, Q4, Q5, Q1; Compute IRR.
- Measurement error: $\operatorname{IRR} \approx 0.75 \sim \tau \approx 0.15$

Intra-Respondent Reliability

- Add one Q: Q1, Q2, Q3, Q4, Q5, Q1; Compute IRR.
- Measurement error: IRR $\approx 0.75 \sim \tau \approx 0.15$
- 15% of 0 s should be 1 s or 1 s should be 0 s

IRR Doesn't Vary by Attribute Levels

IRR Doesn't Vary by Attribute Levels

- Top-down approach: Theories tested, rejected by evidence

IRR Doesn't Vary by Attribute Levels

- Top-down approach: Theories tested, rejected by evidence
- Inconsistency among attribute values

IRR Doesn't Vary by Attribute Levels

- Top-down approach: Theories tested, rejected by evidence
- Inconsistency among attribute values
- Complexity of question wording, attribute lists

IRR Doesn't Vary by Attribute Levels

- Top-down approach: Theories tested, rejected by evidence
- Inconsistency among attribute values
- Complexity of question wording, attribute lists
- Divergence between attribute values of the two profiles

IRR Doesn't Vary by Attribute Levels

- Top-down approach: Theories tested, rejected by evidence
- Inconsistency among attribute values
- Complexity of question wording, attribute lists
- Divergence between attribute values of the two profiles
- Bottom-up approach

IRR Doesn't Vary by Attribute Levels

- Top-down approach: Theories tested, rejected by evidence
- Inconsistency among attribute values
- Complexity of question wording, attribute lists
- Divergence between attribute values of the two profiles
- Bottom-up approach
- Start with conjoint with 48 unique attribute pairs

IRR Doesn't Vary by Attribute Levels

- Top-down approach: Theories tested, rejected by evidence
- Inconsistency among attribute values
- Complexity of question wording, attribute lists
- Divergence between attribute values of the two profiles
- Bottom-up approach
- Start with conjoint with 48 unique attribute pairs
- Replicate entire experiment 50 times (twice!)

IRR Doesn't Vary by Attribute Levels

- Top-down approach: Theories tested, rejected by evidence
- Inconsistency among attribute values
- Complexity of question wording, attribute lists
- Divergence between attribute values of the two profiles
- Bottom-up approach
- Start with conjoint with 48 unique attribute pairs
- Replicate entire experiment 50 times (twice!)
- Compute IRR for each of the 48 pairs

IRR Doesn't Vary by Attribute Levels

- Top-down approach: Theories tested, rejected by evidence
- Inconsistency among attribute values
- Complexity of question wording, attribute lists
- Divergence between attribute values of the two profiles
- Bottom-up approach
- Start with conjoint with 48 unique attribute pairs
- Replicate entire experiment 50 times (twice!)
- Compute IRR for each of the 48 pairs
- Results:

IRR Doesn't Vary by Attribute Levels

- Top-down approach: Theories tested, rejected by evidence
- Inconsistency among attribute values
- Complexity of question wording, attribute lists
- Divergence between attribute values of the two profiles
- Bottom-up approach
- Start with conjoint with 48 unique attribute pairs
- Replicate entire experiment 50 times (twice!)
- Compute IRR for each of the 48 pairs
- Results:
- Surveys + real world trade offs: IRR plummets

IRR Doesn't Vary by Attribute Levels

- Top-down approach: Theories tested, rejected by evidence
- Inconsistency among attribute values
- Complexity of question wording, attribute lists
- Divergence between attribute values of the two profiles
- Bottom-up approach
- Start with conjoint with 48 unique attribute pairs
- Replicate entire experiment 50 times (twice!)
- Compute IRR for each of the 48 pairs
- Results:
- Surveys + real world trade offs: IRR plummets
- $\operatorname{IRR}(a) \approx \operatorname{IRR}$ constant

IRR Varies by Personal Characteristics, not Attributes

IRR Varies by Personal Characteristics, not Attributes

IRR Varies by Personal Characteristics, not Attributes

- Left Panel: IRR by Attribute

IRR Varies by Personal Characteristics, not Attributes

- Left Panel: IRR by Attribute
- Mean $I R R \approx 0.75$ (again); little correlation

IRR Varies by Personal Characteristics, not Attributes

- Left Panel: IRR by Attribute
- Mean $I R R \approx 0.75$ (again); little correlation
- $E($ sig.|null $)=2.4$. Actual: 3 (Sample 1) and 5 (Sample 2)

IRR Varies by Personal Characteristics, not Attributes

- Left Panel: IRR by Attribute
- Mean $I R R \approx 0.75$ (again); little correlation
- $E($ sig.|null $)=2.4$. Actual: 3 (Sample 1) and 5 (Sample 2)
- $\operatorname{IRR}(a) \approx \operatorname{IRR}$

IRR Varies by Personal Characteristics, not Attributes

- Left Panel: IRR by Attribute
- Mean $I R R \approx 0.75$ (again); little correlation
- $E($ sig.|null $)=2.4$. Actual: 3 (Sample 1) and 5 (Sample 2)
- $\operatorname{IRR}(a) \approx \operatorname{IRR}$
- Right Panel: IRR by Personal Characteristics

IRR Varies by Personal Characteristics, not Attributes

- Left Panel: IRR by Attribute
- Mean $I R R \approx 0.75$ (again); little correlation
- $E($ sig.|null $)=2.4$. Actual: 3 (Sample 1) and 5 (Sample 2)
- $\operatorname{IRR}(a) \approx \operatorname{IRR}$
- Right Panel: IRR by Personal Characteristics
- Most pairs differ significantly from mean; high correlation (0.85)

IRR Varies by Personal Characteristics, not Attributes

- Left Panel: IRR by Attribute
- Mean $I R R \approx 0.75$ (again); little correlation
- $E($ sig.|null $)=2.4$. Actual: 3 (Sample 1) and 5 (Sample 2)
- $\operatorname{IRR}(a) \approx \operatorname{IRR}$
- Right Panel: IRR by Personal Characteristics
- Most pairs differ significantly from mean; high correlation (0.85)
- Substance: younger, minority, male respondents have lower IRR

IRR Varies by Personal Characteristics, not Attributes

- Left Panel: IRR by Attribute
- Mean $I R R \approx 0.75$ (again); little correlation
- $E($ sig.|null $)=2.4$. Actual: 3 (Sample 1) and 5 (Sample 2)
- $\operatorname{IRR}(a) \approx \operatorname{IRR}$
- Right Panel: IRR by Personal Characteristics
- Most pairs differ significantly from mean; high correlation (0.85)
- Substance: younger, minority, male respondents have lower IRR
- Estimate IRR separately for subgroup analysis

Estimating IRR Without New Data

Estimating IRR Without New Data

Estimating IRR Without New Data

Mummolo and Nall (2017)

Estimating IRR Without New Data

Ono and Burden (2019)

Estimating IRR Without New Data

Bechtel and Scheve (2013)

Estimating IRR Without New Data

Teele, Kalla, and Rosenbluth (2018)

Estimating IRR Without New Data

Arias and Blair (2022)

Estimating IRR Without New Data

Blackman (2018)

Estimating IRR Without New Data

Hainmueller and Hopkins (2015)

Consequences of Bias Correction in 8 Studies

Standard Errors

Standard Errors

Standard Errors

- Convenient: Bootstrapping

Standard Errors

- Convenient: Bootstrapping
- Familiar: Clarify-like simulation

Standard Errors

- Convenient: Bootstrapping
- Familiar: Clarify-like simulation
- Fast: Analytical derivation (790x faster)

Standard Errors

- Convenient: Bootstrapping
- Familiar: Clarify-like simulation
- Fast: Analytical derivation (790x faster)
- Our "Projoint" software: Implements them all

What did he say?

What did he say?

- Simplify methods, generalize substance: use choice-level UOA

What did he say?

- Simplify methods, generalize substance: use choice-level UOA
- Measurement error in conjoint

What did he say?

- Simplify methods, generalize substance: use choice-level UOA
- Measurement error in conjoint
- How much? Lots!

What did he say?

- Simplify methods, generalize substance: use choice-level UOA
- Measurement error in conjoint
- How much? Lots!
- Why so much? Approximating real world decisions

What did he say?

- Simplify methods, generalize substance: use choice-level UOA
- Measurement error in conjoint
- How much? Lots!
- Why so much? Approximating real world decisions
- Ignore it? Bias!

What did he say?

- Simplify methods, generalize substance: use choice-level UOA
- Measurement error in conjoint
- How much? Lots!
- Why so much? Approximating real world decisions
- Ignore it? Bias!
- Easy to Fix? Estimate IRR \& a few lines of code

What did he say?

- Simplify methods, generalize substance: use choice-level UOA
- Measurement error in conjoint
- How much? Lots!
- Why so much? Approximating real world decisions
- Ignore it? Bias!
- Easy to Fix? Estimate IRR \& a few lines of code
- Evidence: 13+ surveys, 9,472 respondents, 137,785 questions

What did he say?

- Simplify methods, generalize substance: use choice-level UOA
- Measurement error in conjoint
- How much? Lots!
- Why so much? Approximating real world decisions
- Ignore it? Bias!
- Easy to Fix? Estimate IRR \& a few lines of code
- Evidence: 13+ surveys, 9,472 respondents, 137,785 questions

