

Correcting Measurement Error Bias in Conjoint Survey Experiments¹

Katherine Clayton Yusaku Horiuchi Aaron Kaufman Gary King Mayya Komisarchik

Stanford, Dartmouth, NYUAD, Harvard, Rochester

Society for Political Methodology, 7/10/2023

¹Paper, software, slides, data: GaryKing.org/conjointE

• What's conjoint? (with easier, more applicable methods)

- What's conjoint? (with easier, more applicable methods)
- Measurement error in conjoint

- What's conjoint? (with easier, more applicable methods)
- · Measurement error in conjoint
 - · How much? Lots!

- What's conjoint? (with easier, more applicable methods)
- Measurement error in conjoint
 - · How much? Lots!
 - Why so much? Approximating real world decisions

- What's conjoint? (with easier, more applicable methods)
- Measurement error in conjoint
 - · How much? Lots!
 - Why so much? Approximating real world decisions
 - Ignore it? Bias!

- What's conjoint? (with easier, more applicable methods)
- · Measurement error in conjoint
 - How much? Lots!
 - Why so much? Approximating real world decisions
 - · Ignore it? Bias!
 - · Easy to fix? Estimate IRR & a few lines of code

- What's conjoint? (with easier, more applicable methods)
- Measurement error in conjoint
 - How much? Lots!
 - Why so much? Approximating real world decisions
 - Ignore it? Bias!
 - · Easy to fix? Estimate IRR & a few lines of code
- Evidence: 13+ surveys, 9,472 respondents, 137,785 questions

Conjoint Questions: Complicated Real World Trade Offs

Conjoint Questions: Complicated Real World Trade Offs (Ono and Burden, 2018)

Conjoint Questions: Complicated Real World Trade Offs

(Ono and Burden, 2018)

Please carefully review the two potential candidates running for election to the U.S. House of Representatives, detailed below.

	Candidate 0	Candidate 1
Race/Ethnicity	Hispanic	Asian American
Age	52	60
Favorability rating among the pub- lic	70%	34%
Position on immigrants	Favors giving citizenship or guest worker status to undocumented immigrants	Opposes giving citizenship or guest worker status to undocumented immigrants
Party affiliation	Republican Party	Democratic Party
Position on abortion	Abortion is not a private matter (pro-life)	Abortion is a private matter (pro- choice)
Position on government deficit	Wants to reduce the deficit through tax increase	Wants to reduce the deficit through tax increase
Salient personal characteristics	Really cares about people like you	Really cares about people like you
Position on national security	Wants to cut military budget and keep the U.S. out of war	Wants to maintain strong defense and increase U.S. influence
Gender	Female	Female
Policy area of expertise	Education	Foreign policy
Family	Single (divorced)	Married (no child)
Experience in public office	12 years	4 years

If you had to choose between them, which of these candidates would you vote to be a member of the U.S. House of Representatives?

Conjoint Questions: Complicated Real World Trade Offs (Ono and Burden, 2018)

Conjoint Questions: Complicated Real World Trade Offs

(Ono and Burden, 2018)

Please carefully review the two potential candidates running for election to the U.S. House of Representatives, detailed below.

	Candidate 0	Candidate 1
Race/Ethnicity	Hispanic	Asian American
Age	52	60
Favorability rating among the pub- lic	70%	34%
Position on immigrants	Favors giving citizenship or guest worker status to undocumented immigrants	Opposes giving citizenship or guest worker status to undocumented immigrants
Party affiliation	Republican Party	Democratic Party
Position on abortion	Abortion is not a private matter (pro-life)	Abortion is a private matter (pro- choice)
Position on government deficit	Wants to reduce the deficit through tax increase	Wants to reduce the deficit through tax increase
Salient personal characteristics	Really cares about people like you	Really cares about people like you
Position on national security	Wants to cut military budget and keep the U.S. out of war	Wants to maintain strong defense and increase U.S. influence
Gender	Female	Female
Policy area of expertise	Education	Foreign policy
Family	Single (divorced)	Married (no child)
Experience in public office	12 years	4 years

If you had to choose between them, which of these candidates would you vote to be a member of the U.S. House of Representatives?

• Unit of Analysis: the binary choice; *N* rows

- Unit of Analysis: the binary choice; *N* rows
- Dependent var: Candidate 0 vs 1

- Unit of Analysis: the binary choice; *N* rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)

- Unit of Analysis: the binary choice; *N* rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
 - Age: "78, 60", "60, 60", "52, 43"

- Unit of Analysis: the binary choice; *N* rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
 - Age: "78, 60", "60, 60", "52, 43"
 - Incumbency: "Incumbent, nonincumbent", or "open seat"

- Unit of Analysis: the binary choice; *N* rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
 - Age: "78, 60", "60, 60", "52, 43"
 - · Incumbency: "Incumbent, nonincumbent", or "open seat"
- Mean, SE: as usual (see intro stat class)

- Unit of Analysis: the binary choice; *N* rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
 - Age: "78, 60", "60, 60", "52, 43"
 - · Incumbency: "Incumbent, nonincumbent", or "open seat"
- Mean, SE: as usual (see intro stat class)
- Other approaches (legacy from marketing & psychology)

- Unit of Analysis: the binary choice; *N* rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
 - Age: "78, 60", "60, 60", "52, 43"
 - Incumbency: "Incumbent, nonincumbent", or "open seat"
- Mean, SE: as usual (see intro stat class)
- Other approaches (legacy from marketing & psychology)
 - · Fewer: substantive questions can be asked

- Unit of Analysis: the binary choice; *N* rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
 - Age: "78, 60", "60, 60", "52, 43"
 - · Incumbency: "Incumbent, nonincumbent", or "open seat"
- Mean, SE: as usual (see intro stat class)
- Other approaches (legacy from marketing & psychology)
 - Fewer: substantive questions can be asked
 - More: complicated methods required

- Unit of Analysis: the binary choice; *N* rows
- Dependent var: Candidate 0 vs 1
- Covariates: Attributes (randomized)
 - Age: "78, 60", "60, 60", "52, 43"
 - Incumbency: "Incumbent, nonincumbent", or "open seat"
- Mean, SE: as usual (see intro stat class)
- Other approaches (legacy from marketing & psychology)
 - Fewer: substantive questions can be asked
 - More: complicated methods required
 - · Same: measurement error corrections

Notation

- Notation
 - Attributes: $a = \{a_{\ell}, a_{-\ell}\} = \{Attribute \text{ of interest, Others}\}$

- Notation
 - Attributes: $a = \{a_{\ell}, a_{-\ell}\} = \{Attribute \text{ of interest, Others}\}$
 - Preference: $\rho_i(\mathbf{a}_\ell, \mathbf{a}_{-\ell}) \in \{0, 1\}$

- Notation
 - Attributes: $a = \{a_{\ell}, a_{-\ell}\} = \{Attribute \text{ of interest, Others}\}$
 - Preference: $\rho_i(a_\ell, a_{-\ell}) \in \{0, 1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$\rho(\mathbf{a}_{\ell}) = \underset{i}{\text{mean}} \left[\rho_i(\mathbf{a}_{\ell}) \right].$$

- Notation
 - Attributes: $a = \{a_{\ell}, a_{-\ell}\} = \{Attribute \text{ of interest, Others}\}$
 - Preference: $\rho_i(a_\ell, a_{-\ell}) \in \{0, 1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$\rho(\mathbf{a}_{\ell}) = \underset{i}{\text{mean}} \left[\rho_i(\mathbf{a}_{\ell}) \right].$$

• E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)

- Notation
 - Attributes: $a = \{a_{\ell}, a_{-\ell}\} = \{Attribute \text{ of interest, Others}\}$
 - Preference: $\rho_i(a_{\ell}, a_{-\ell}) \in \{0, 1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$\rho(\mathbf{a}_{\ell}) = \underset{i}{\text{mean}} \left[\rho_i(\mathbf{a}_{\ell}) \right].$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")

- Notation
 - Attributes: $a = \{a_{\ell}, a_{-\ell}\} = \{Attribute \text{ of interest, Others}\}$
 - Preference: $\rho_i(a_{\ell}, a_{-\ell}) \in \{0, 1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$\rho(\mathbf{a}_{\ell}) = \underset{i}{\text{mean}} \left[\rho_i(\mathbf{a}_{\ell}) \right].$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")
- Marginal Mean in conjoint survey

$$\rho(\mathbf{a}_{\ell}) = \max_{i, a_{-\ell}} \left[\rho_i(\mathbf{a}_{\ell}, a_{-\ell}) \right].$$

- Notation
 - Attributes: $a = \{a_{\ell}, a_{-\ell}\} = \{Attribute \text{ of interest, Others}\}$
 - Preference: $\rho_i(a_{\ell}, a_{-\ell}) \in \{0, 1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$\rho(\mathbf{a}_{\ell}) = \max_{i} \left[\rho_{i}(\mathbf{a}_{\ell}) \right].$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")
- · Marginal Mean in conjoint survey

$$\rho(a_{\ell}) = \max_{i,a_{-\ell}} \left[\rho_i(a_{\ell},a_{-\ell}) \right].$$

A little wacky, but convenient: Each attribute can of interest

- Notation
 - Attributes: $a = \{a_{\ell}, a_{-\ell}\} = \{Attribute \text{ of interest, Others}\}$
 - Preference: $\rho_i(a_\ell, a_{-\ell}) \in \{0, 1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$\rho(\mathbf{a}_{\ell}) = \max_{i} \left[\rho_{i}(\mathbf{a}_{\ell}) \right].$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")
- · Marginal Mean in conjoint survey

$$\rho(\mathbf{a}_{\ell}) = \max_{i, a_{-\ell}} \left[\rho_i(\mathbf{a}_{\ell}, a_{-\ell}) \right].$$

- · A little wacky, but convenient: Each attribute can of interest
- · Attributes: define the QOI

- Notation
 - Attributes: $a = \{a_{\ell}, a_{-\ell}\} = \{Attribute \text{ of interest, Others}\}$
 - Preference: $\rho_i(a_\ell, a_{-\ell}) \in \{0, 1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$\rho(\mathbf{a}_{\ell}) = \max_{i} \left[\rho_{i}(\mathbf{a}_{\ell}) \right].$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")
- Marginal Mean in conjoint survey

$$\rho(\mathbf{a}_{\ell}) = \max_{i, a_{-\ell}} \left[\rho_i(\mathbf{a}_{\ell}, a_{-\ell}) \right].$$

- · A little wacky, but convenient: Each attribute can of interest
- · Attributes: define the QOI
- · Other conjoint QOIs: linear functions of this mean

Quantities of Interest

- Notation
 - Attributes: $a = \{a_{\ell}, a_{-\ell}\} = \{Attribute \text{ of interest, Others}\}$
 - Preference: $\rho_i(a_\ell, a_{-\ell}) \in \{0, 1\}$
- Marginal Mean in traditional (non-conjoint!) survey

$$\rho(\mathbf{a}_{\ell}) = \underset{i}{\text{mean}} \left[\rho_i(\mathbf{a}_{\ell}) \right].$$

- E.g.: Mean preferring Candidate 0 (Female) to 1 (Male)
- Implicit: Other attributes set to observed (or like "Clarify")
- Marginal Mean in conjoint survey

$$\rho(\mathbf{a}_{\ell}) = \max_{i, \mathbf{a}_{-\ell}} \left[\rho_i(\mathbf{a}_{\ell}, \mathbf{a}_{-\ell}) \right].$$

- · A little wacky, but convenient: Each attribute can of interest
- · Attributes: define the QOI
- · Other conjoint QOIs: linear functions of this mean
- Casual effect: Average Marginal Component Effect (AMCE)

$$\theta(a_{\ell}, a_{\ell}') = \rho(a_{\ell}) - \rho(a_{\ell}').$$

• Choices {0,1} observed,

• Choices {0,1} observed, preferences {0,1} unobserved

• Choices {0,1} observed, preferences {0,1} unobserved

$$C_i(a) = \begin{cases} \rho_i(a) & \text{w.p. } 1 - \tau \\ 1 - \rho_i(a) & \text{w.p. } \tau \end{cases} \leftarrow \Pr(\text{swapping error})$$

Choices {0,1} observed, preferences {0,1} unobserved

$$C_i(a) = \begin{cases} \rho_i(a) & \text{w.p. } 1 - \tau \\ 1 - \rho_i(a) & \text{w.p. } \tau \end{cases} \leftarrow \text{Pr(swapping error)}$$

• Estimate τ : Ask 1 extra question

Choices {0,1} observed, preferences {0,1} unobserved

$$C_i(a) = \begin{cases} \rho_i(a) & \text{w.p. } 1 - \tau \\ 1 - \rho_i(a) & \text{w.p. } \tau \end{cases} \leftarrow \text{Pr(swapping error)}$$

• Estimate τ : Ask 1 extra question

• Choices {0,1} observed, preferences {0,1} unobserved

$$C_i(a) = \begin{cases} \rho_i(a) & \text{w.p. } 1 - \tau \\ 1 - \rho_i(a) & \text{w.p. } \tau \end{cases} \leftarrow \text{Pr(swapping error)}$$

- Estimate τ : Ask 1 extra question
 - 1. Estimate Intra-Respondent Reliability (IRR)

• Choices {0,1} observed, preferences {0,1} unobserved

$$C_i(a) = \begin{cases} \rho_i(a) & \text{w.p. } 1 - \tau \\ 1 - \rho_i(a) & \text{w.p. } \tau \end{cases} \leftarrow \text{Pr(swapping error)}$$

- Estimate τ : Ask 1 extra question
 - 1. Estimate Intra-Respondent Reliability (IRR)
 - Add one question: Q1, Q2, Q3, Q4, Q5, Q1

• Choices {0,1} observed, preferences {0,1} unobserved

$$C_i(a) = \begin{cases} \rho_i(a) & \text{w.p. } 1 - \tau \\ 1 - \rho_i(a) & \text{w.p. } \tau \end{cases} \leftarrow \text{Pr(swapping error)}$$

- Estimate τ : Ask 1 extra question
 - 1. Estimate Intra-Respondent Reliability (IRR)
 - Add one question: Q1, Q2, Q3, Q4, Q5, Q1
 - IRR = % agreement on 2 identical questions asked moments apart

• Choices {0,1} observed, preferences {0,1} unobserved

$$C_i(a) = \begin{cases} \rho_i(a) & \text{w.p. } 1 - \tau \\ 1 - \rho_i(a) & \text{w.p. } \tau \end{cases} \leftarrow \text{Pr(swapping error)}$$

- Estimate τ : Ask 1 extra question
 - 1. Estimate Intra-Respondent Reliability (IRR)
 - Add one question: Q1, Q2, Q3, Q4, Q5, Q1
 - IRR = % agreement on 2 identical questions asked moments apart
 - · No one remembers the duplicate Q

• Choices {0,1} observed, preferences {0,1} unobserved

$$C_i(a) = \begin{cases} \rho_i(a) & \text{w.p. } 1 - \tau \\ 1 - \rho_i(a) & \text{w.p. } \tau \end{cases} \leftarrow \text{Pr(swapping error)}$$

- Estimate τ : Ask 1 extra question
 - 1. Estimate Intra-Respondent Reliability (IRR)
 - Add one question: Q1, Q2, Q3, Q4, Q5, Q1
 - IRR = % agreement on 2 identical questions asked moments apart
 - · No one remembers the duplicate Q
 - · Different "considerations" (confounders) unlikely

• Choices {0,1} observed, preferences {0,1} unobserved

$$C_i(a) = \begin{cases} \rho_i(a) & \text{w.p. } 1 - \tau \\ 1 - \rho_i(a) & \text{w.p. } \tau \end{cases} \leftarrow \text{Pr(swapping error)}$$

- Estimate τ : Ask 1 extra question
 - 1. Estimate Intra-Respondent Reliability (IRR)
 - Add one question: Q1, Q2, Q3, Q4, Q5, Q1
 - IRR = % agreement on 2 identical questions asked moments apart
 - · No one remembers the duplicate Q
 - · Different "considerations" (confounders) unlikely

2. Calculate:
$$\hat{\tau} = \frac{1 - \sqrt{1 - 2(1 - IRR)}}{2}$$

$$\hat{\rho}(a) = \max_{i: A_i = a} [C_i(a)], \qquad \hat{\theta}(a, a') = \hat{\rho}(a) - \hat{\rho}(a')$$

· Standard estimators

$$\hat{\rho}(a) = \max_{i: A_i = a} \left[C_i(a) \right], \qquad \hat{\theta}(a, a') = \hat{\rho}(a) - \hat{\rho}(a')$$

• If $\tau = 0$: both unbiased (identified by randomization)

$$\hat{\rho}(a) = \max_{i: A_i = a} \left[C_i(a) \right], \qquad \hat{\theta}(a, a') = \hat{\rho}(a) - \hat{\rho}(a')$$

- If $\tau = 0$: both unbiased (identified by randomization)
- If $\tau > 0$: both biased

$$\hat{\rho}(a) = \max_{i:A_i=a} \left[C_i(a) \right], \qquad \hat{\theta}(a, a') = \hat{\rho}(a) - \hat{\rho}(a')$$

- If $\tau = 0$: both unbiased (identified by randomization)
- If $\tau > 0$: both biased
- Not like regression: error in outcome variable → bias

$$\hat{\rho}(a) = \max_{i:A_i=a} [C_i(a)], \qquad \hat{\theta}(a, a') = \hat{\rho}(a) - \hat{\rho}(a')$$

- If $\tau = 0$: both unbiased (identified by randomization)
- If $\tau > 0$: both biased
- Not like regression: error in outcome variable → bias
- Alternative estimators

$$\tilde{\rho}(a) = \frac{\hat{\rho}(a) - \tau}{1 - 2\tau}, \qquad \tilde{\theta}(a, a') = \frac{\hat{\theta}(a, a')}{1 - 2\tau},$$

· Standard estimators

$$\hat{\rho}(a) = \max_{i:A_i=a} [C_i(a)], \qquad \hat{\theta}(a, a') = \hat{\rho}(a) - \hat{\rho}(a')$$

- If $\tau = 0$: both unbiased (identified by randomization)
- If $\tau > 0$: both biased
- Not like regression: error in outcome variable → bias
- Alternative estimators

$$\tilde{\rho}(a) = \frac{\hat{\rho}(a) - \tau}{1 - 2\tau}, \qquad \tilde{\theta}(a, a') = \frac{\tilde{\theta}(a, a')}{1 - 2\tau},$$

with τ known: unbiased

$$\hat{\rho}(a) = \max_{i:A_i=a} [C_i(a)], \qquad \hat{\theta}(a, a') = \hat{\rho}(a) - \hat{\rho}(a')$$

- If $\tau = 0$: both unbiased (identified by randomization)
- If $\tau > 0$: both biased
- Not like regression: error in outcome variable → bias
- Alternative estimators

$$\tilde{\rho}(a) = \frac{\hat{\rho}(a) - \tau}{1 - 2\tau}, \qquad \tilde{\theta}(a, a') = \frac{\hat{\theta}(a, a')}{1 - 2\tau},$$

- with τ known: unbiased
- with consistent $\hat{\tau}$: Consistent, approximately unbiased

$$\hat{\rho}(a) = \max_{i: A_i = a} \left[C_i(a) \right], \qquad \hat{\theta}(a, a') = \hat{\rho}(a) - \hat{\rho}(a')$$

- If $\tau = 0$: both unbiased (identified by randomization)
- If $\tau > 0$: both biased
- Not like regression: error in outcome variable → bias
- Alternative estimators

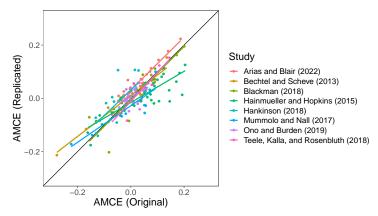
$$\tilde{\rho}(a) = \frac{\hat{\rho}(a) - \tau}{1 - 2\tau}, \qquad \tilde{\theta}(a, a') = \frac{\hat{\theta}(a, a')}{1 - 2\tau},$$

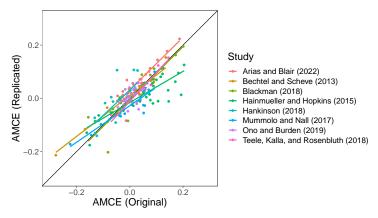
- with τ known: unbiased
- with consistent $\hat{\tau}$: Consistent, approximately unbiased
- What we need to show about τ

$$\hat{\rho}(a) = \max_{i: A_i = a} \left[C_i(a) \right], \qquad \hat{\theta}(a, a') = \hat{\rho}(a) - \hat{\rho}(a')$$

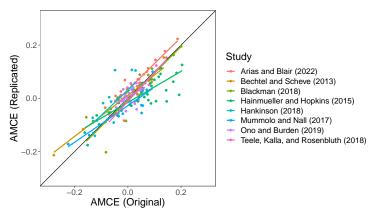
- If $\tau = 0$: both unbiased (identified by randomization)
- If $\tau > 0$: both biased
- Not like regression: error in outcome variable → bias
- Alternative estimators

$$\tilde{\rho}(a) = \frac{\hat{\rho}(a) - \tau}{1 - 2\tau}, \qquad \tilde{\theta}(a, a') = \frac{\hat{\theta}(a, a')}{1 - 2\tau},$$

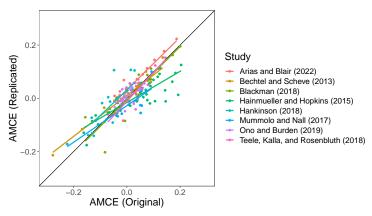

- with τ known: unbiased
- with consistent $\hat{\tau}$: Consistent, approximately unbiased
- What we need to show about τ
 - IRR small: τ large \sim bias large enough to matter

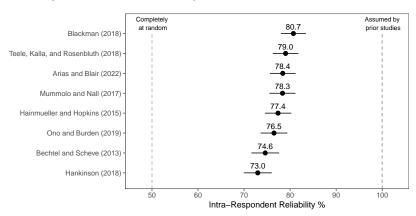

$$\hat{\rho}(a) = \max_{i:A_i=a} [C_i(a)], \qquad \hat{\theta}(a, a') = \hat{\rho}(a) - \hat{\rho}(a')$$

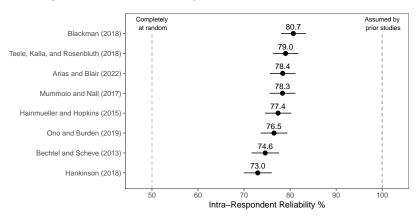
- If $\tau = 0$: both unbiased (identified by randomization)
- If $\tau > 0$: both biased
- Not like regression: error in outcome variable → bias
- Alternative estimators


$$\tilde{\rho}(a) = \frac{\hat{\rho}(a) - \tau}{1 - 2\tau}, \qquad \tilde{\theta}(a, a') = \frac{\hat{\theta}(a, a')}{1 - 2\tau},$$

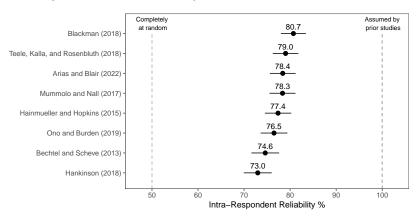
- with τ known: unbiased
- with consistent $\hat{\tau}$: Consistent, approximately unbiased
- What we need to show about τ
 - IRR small: τ large \sim bias large enough to matter
 - $\tau(a) \approx \tau$: correction is easy



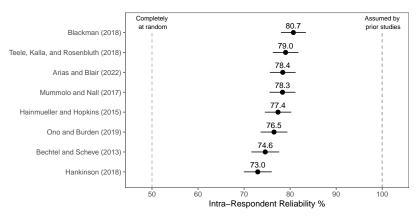

Replicated all data collection and analysis from scratch

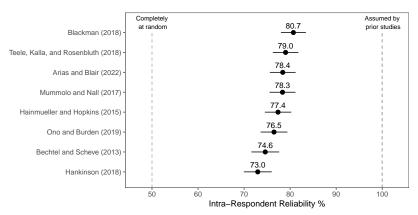


- Replicated all data collection and analysis from scratch
- Every study replicates! (Median correlation 0.9)



- Replicated all data collection and analysis from scratch
- Every study replicates! (Median correlation 0.9)
- Impressive literature, especially given crises in other fields




Add one Q: Q1, Q2, Q3, Q4, Q5, Q1; Compute IRR.

- Add one Q: Q1, Q2, Q3, Q4, Q5, Q1; Compute IRR.
- Measurement error: IRR ≈ 0.75

- Add one Q: Q1, Q2, Q3, Q4, Q5, Q1; Compute IRR.
- Measurement error: IRR $\approx 0.75 \rightsquigarrow \tau \approx 0.15$

- Add one Q: Q1, Q2, Q3, Q4, Q5, Q1; Compute IRR.
- Measurement error: IRR $\approx 0.75 \rightsquigarrow \tau \approx 0.15$
- 15% of 0s should be 1s or 1s should be 0s

IRR Doesn't Vary by Attribute Levels

• Top-down approach: Theories tested, rejected by evidence

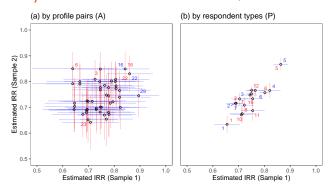
- Top-down approach: Theories tested, rejected by evidence
 - Inconsistency among attribute values

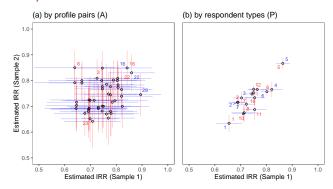
- Top-down approach: Theories tested, rejected by evidence
 - Inconsistency among attribute values
 - Complexity of question wording, attribute lists

- Top-down approach: Theories tested, rejected by evidence
 - · Inconsistency among attribute values
 - Complexity of question wording, attribute lists
 - Divergence between attribute values of the two profiles

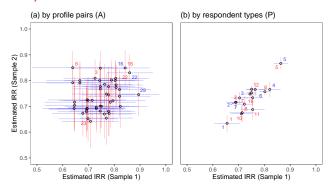
- Top-down approach: Theories tested, rejected by evidence
 - Inconsistency among attribute values
 - Complexity of question wording, attribute lists
 - Divergence between attribute values of the two profiles
- Bottom-up approach

- Top-down approach: Theories tested, rejected by evidence
 - Inconsistency among attribute values
 - Complexity of question wording, attribute lists
 - Divergence between attribute values of the two profiles
- Bottom-up approach
 - Start with conjoint with 48 unique attribute pairs

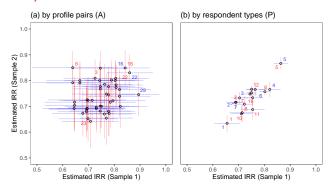

- Top-down approach: Theories tested, rejected by evidence
 - Inconsistency among attribute values
 - Complexity of question wording, attribute lists
 - Divergence between attribute values of the two profiles
- Bottom-up approach
 - Start with conjoint with 48 unique attribute pairs
 - Replicate entire experiment 50 times (twice!)

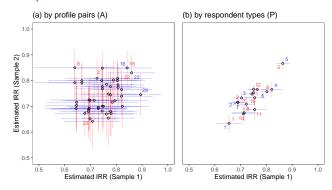

- Top-down approach: Theories tested, rejected by evidence
 - Inconsistency among attribute values
 - Complexity of question wording, attribute lists
 - Divergence between attribute values of the two profiles
- Bottom-up approach
 - Start with conjoint with 48 unique attribute pairs
 - Replicate entire experiment 50 times (twice!)
 - · Compute IRR for each of the 48 pairs

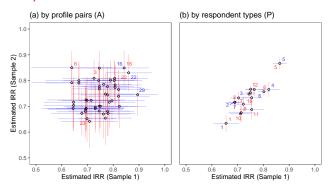
- Top-down approach: Theories tested, rejected by evidence
 - · Inconsistency among attribute values
 - · Complexity of question wording, attribute lists
 - Divergence between attribute values of the two profiles
- · Bottom-up approach
 - · Start with conjoint with 48 unique attribute pairs
 - Replicate entire experiment 50 times (twice!)
 - · Compute IRR for each of the 48 pairs
- Results:

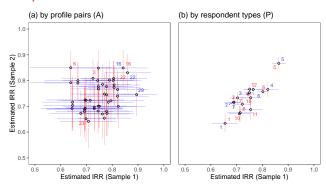

- Top-down approach: Theories tested, rejected by evidence
 - Inconsistency among attribute values
 - · Complexity of question wording, attribute lists
 - Divergence between attribute values of the two profiles
- · Bottom-up approach
 - Start with conjoint with 48 unique attribute pairs
 - Replicate entire experiment 50 times (twice!)
 - Compute IRR for each of the 48 pairs
- Results:
 - Surveys + real world trade offs: IRR plummets

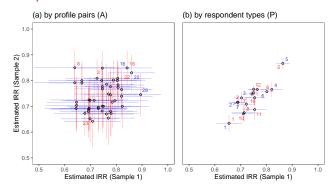
- Top-down approach: Theories tested, rejected by evidence
 - Inconsistency among attribute values
 - · Complexity of question wording, attribute lists
 - Divergence between attribute values of the two profiles
- Bottom-up approach
 - · Start with conjoint with 48 unique attribute pairs
 - Replicate entire experiment 50 times (twice!)
 - Compute IRR for each of the 48 pairs
- Results:
 - Surveys + real world trade offs: IRR plummets
 - $IRR(a) \approx IRR$ constant

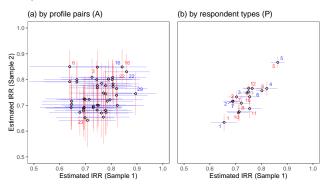


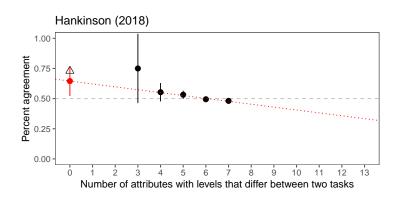

• Left Panel: IRR by Attribute

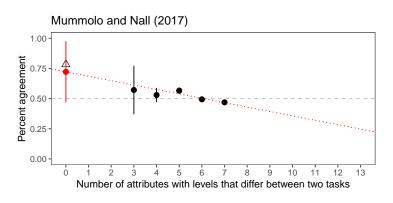

- Left Panel: IRR by Attribute
 - Mean IRR ≈ 0.75 (again); little correlation

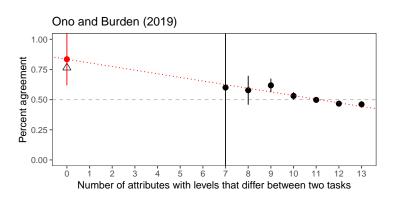

- · Left Panel: IRR by Attribute
 - Mean IRR ≈ 0.75 (again); little correlation
 - E(sig.|null) = 2.4. Actual: 3 (Sample 1) and 5 (Sample 2)

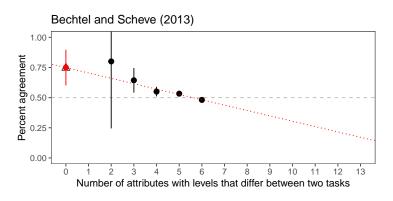

- Left Panel: IRR by Attribute
 - Mean IRR ≈ 0.75 (again); little correlation
 - E(sig.|null) = 2.4. Actual: 3 (Sample 1) and 5 (Sample 2)
 - $IRR(a) \approx IRR$

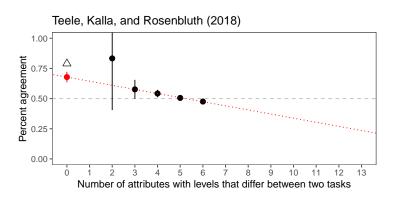

- · Left Panel: IRR by Attribute
 - Mean IRR ≈ 0.75 (again); little correlation
 - E(sig.|null) = 2.4. Actual: 3 (Sample 1) and 5 (Sample 2)
 - $IRR(a) \approx IRR$
- Right Panel: IRR by Personal Characteristics

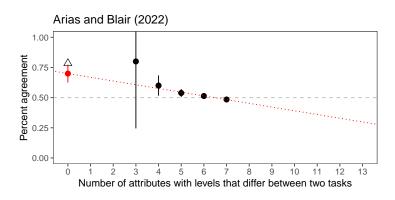

- · Left Panel: IRR by Attribute
 - Mean IRR ≈ 0.75 (again); little correlation
 - E(sig.|null) = 2.4. Actual: 3 (Sample 1) and 5 (Sample 2)
 - $IRR(a) \approx IRR$
- Right Panel: IRR by Personal Characteristics
 - Most pairs differ significantly from mean; high correlation (0.85)

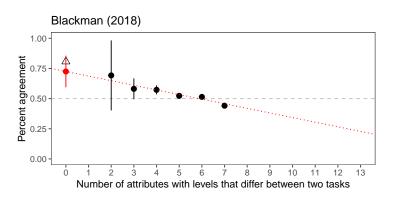


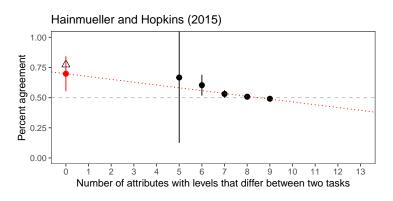

- · Left Panel: IRR by Attribute
 - Mean IRR ≈ 0.75 (again); little correlation
 - E(sig.|null) = 2.4. Actual: 3 (Sample 1) and 5 (Sample 2)
 - $IRR(a) \approx IRR$
- Right Panel: IRR by Personal Characteristics
 - Most pairs differ significantly from mean; high correlation (0.85)
 - Substance: younger, minority, male respondents have lower IRR

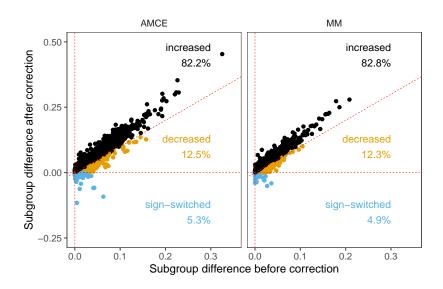


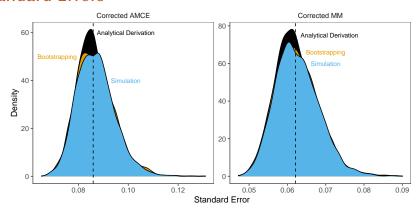

- · Left Panel: IRR by Attribute
 - Mean IRR ≈ 0.75 (again); little correlation
 - E(sig.|null) = 2.4. Actual: 3 (Sample 1) and 5 (Sample 2)
 - $IRR(a) \approx IRR$
- Right Panel: IRR by Personal Characteristics
 - Most pairs differ significantly from mean; high correlation (0.85)
 - Substance: younger, minority, male respondents have lower IRR
 - Estimate IRR separately for subgroup analysis

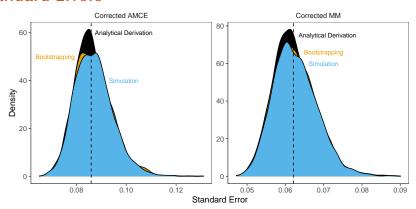


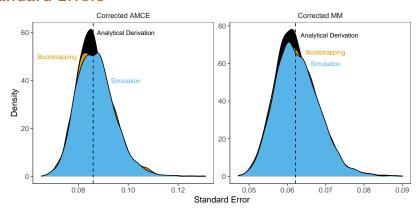


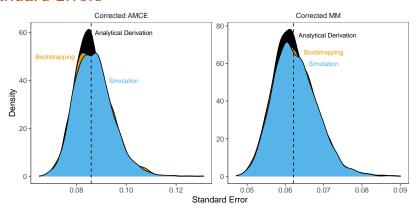


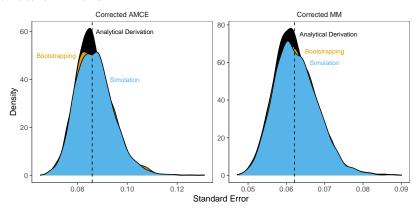







Consequences of Bias Correction in 8 Studies




• Convenient: Bootstrapping

- Convenient: Bootstrapping
- · Familiar: Clarify-like simulation

- Convenient: Bootstrapping
- Familiar: Clarify-like simulation
- Fast: Analytical derivation (790x faster)

- Convenient: Bootstrapping
- Familiar: Clarify-like simulation
- Fast: Analytical derivation (790x faster)
- Our "Projoint" software: Implements them all

Simplify methods, generalize substance: use choice-level UOA

- Simplify methods, generalize substance: use choice-level UOA
- Measurement error in conjoint

- Simplify methods, generalize substance: use choice-level UOA
- Measurement error in conjoint
 - How much? Lots!

- Simplify methods, generalize substance: use choice-level UOA
- · Measurement error in conjoint
 - · How much? Lots!
 - Why so much? Approximating real world decisions

- Simplify methods, generalize substance: use choice-level UOA
- Measurement error in conjoint
 - · How much? Lots!
 - Why so much? Approximating real world decisions
 - Ignore it? Bias!

- Simplify methods, generalize substance: use choice-level UOA
- · Measurement error in conjoint
 - How much? Lots!
 - Why so much? Approximating real world decisions
 - Ignore it? Bias!
 - Easy to Fix? Estimate IRR & a few lines of code

- Simplify methods, generalize substance: use choice-level UOA
- Measurement error in conjoint
 - How much? Lots!
 - Why so much? Approximating real world decisions
 - Ignore it? Bias!
 - Easy to Fix? Estimate IRR & a few lines of code
- Evidence: 13+ surveys, 9,472 respondents, 137,785 questions

- Simplify methods, generalize substance: use choice-level UOA
- · Measurement error in conjoint
 - · How much? Lots!
 - Why so much? Approximating real world decisions
 - Ignore it? Bias!
 - Easy to Fix? Estimate IRR & a few lines of code
- Evidence: 13+ surveys, 9,472 respondents, 137,785 questions

Paper, slides, software, data

GaryKing.org/conjointE