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1 Introduction

The advantage of random treatment assignment in survey experiments is that modeling

and ignorability assumptions are unnecessary. However, running multiple survey exper-

iments can be expensive: if n survey respondents generate a causal estimate with ac-

ceptable uncertainty levels, n · m are usually needed to estimate m causal effects. One

way to reduce this cost is to design and administer a conjoint experiment, which enables

researchers, under certain assumptions, to estimate m causal effects with only n survey

respondents (see Green and Srinivasan, 1978; Shamir and Shamir, 1995; Hainmueller,

Hopkins, and Yamamoto, 2014). Conjoint designs are used in about 14,000 surveys a year

(Allenby, Hardt, and Rossi, 2019), have been the subject of over 100,000 articles across

academia and marketing (according to Google Scholar), and have rapidly increased in

popularity in the social sciences since Hainmueller, Hopkins, and Yamamoto (2014) pro-

vided a formal causal interpretation (see Supplementary Appendix A1).

We analyze the most commonly used conjoint design, which presents each of n re-

spondents with a choice between two “profiles” (i.e., candidates, products, etc.), each

with randomly assigned values (or “levels”) for a set of k “attributes” of the profiles. (Re-

searchers also often ask each respondent to complete several randomly assigned conjoint

questions, which we call “tasks,” to increase statistical power further.) Modern conjoint

estimators, which use no modeling assumptions, are unbiased for a specific type of mean

and causal effect that we clarify below.

Prior research shows that conjoint designs have strong external validity (Auerbach and

Thachil, 2018; Hainmueller, Hangartner, and Yamamoto, 2015) and low social desirabil-

ity bias (Horiuchi, Markovich, and Yamamoto, 2022), and that cognitive burdens do not

increase much as the number of attributes k (and tasks t) increase (Bansak, Hainmueller,

et al., 2018; Bansak, Hainmueller, et al., 2021; Jenke et al., 2021). Recent methodologi-

cal advances clarify the conjoint estimands (De la Cuesta, Egami, and Imai, 2022; Gan-

ter, 2023; Leeper, Hobolt, and Tilley, 2020; Zhirkov, 2022), how to interpret estimates

(Abramson, Koçak, and Magazinnik, 2022), and multiple testing issues (Goplerud, Imai,

and Pashley, 2022; Liu and Shiraito, 2022).
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In real-world choices about everything from voting, donating, protesting, and debat-

ing politics to shopping, parenting, and socializing, people compare a range of attributes

between options and make their decisions. Furthermore, these choices typically involve

complicated trade offs (indeed, conjoint analysis is often called “trade off analysis” in

the marketing literature). If you prefer a candidate except for their policy position on

international trade, a car except for its price, or a potential romantic partner except for

their inability to stop talking about political science research during dinner, you have a

difficult decision to make. In contrast, traditional survey research best practices, which

include asking simple, concrete questions about specific aspects of choices or attitudes,

try to sidestep these trade offs (Payne, 2014). Indeed, “[o]ne of the first things a re-

searcher learns in questionnaire construction is to avoid double-barreled questions, that

is, questions in which opinions about two objects are joined together so that respondents

must answer two questions with one answer” (Bradburn, Sudman, and Wansink, 2004,

p.142). Avoiding trade offs, however, is not possible with real-world choices, which usu-

ally makes conjoint designs more realistic and gives them all the advantages and disad-

vantages inherent in these real-world choices.

The statistical consequence of the inherent complexities in asking questions that reflect

real-world choices is measurement error (McCullough and Best, 1979). Although it is a

well-known methodological problem that can potentially bias causal inferences in any

direction by any amount, measurement error and its consequences have been ignored in

nearly all conjoint applications. As we demonstrate in this paper, even highly attentive

survey respondents produce data with substantial measurement error, which we can see

via estimates of intra-respondent reliability. When faced with two identical conjoint tasks

just moments apart, respondents select the same profile only about 75% of the time, which

is about halfway between flipping coins (50% agreement) and perfect reliability (100%)

— results which are consistent with those in other fields (Bryan et al., 2000; Mørkbak and

Olsen, 2015; Skjoldborg, Lauridsen, and Junker, 2009).

Based on thirteen surveys fielded on five survey platforms (with a total of 9,472 re-

spondents and 137,786 respondent-tasks), we replicate from scratch the data collection
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and analyses of eight major published conjoint studies in political science and estimate

the levels and types of measurement error in each. We discover an empirical pattern in

how conjoint studies generate measurement error across these analyses and a sequence of

other auxiliary studies. We then use this pattern to develop a simple statistical correction

for the resulting biases. This method can be used not only by researchers at the design

stage but also by those already analyzing the data. As we explain, everything necessary

to correct the bias in an application can be estimated via a slight modification of the stan-

dard conjoint design, a separate survey run afterward, or sometimes without new data

collection at all. In many situations, correcting the bias will make results stronger; but

sometimes, results will be weaker, or signs will flip. Either way, the correction is easy

to apply. We conclude with recommendations for conducting conjoint studies and offer

easy-to-use open-source software.

2 The Conjoint Survey

We describe the data in Section 2.1 and quantities of interest in Section 2.2. Throughout

we attempt to simplify the notation and concepts used in the literature while allowing

maximum flexibility in substantive questions to which these methods can be applied.

2.1 Data

For expository purposes, we begin with the special case of one task per respondent. We

then extend our approach to any number of tasks per respondent. (We use mnemonic

notation wherever convenient, which we highlight by underlining a character in a word

corresponding to a symbol’s meaning. We also use Greek letters for unknown quantities

and Roman letters for observed quantities.)

Consider a simple conjoint experiment where we present individual i (i = 1, . . . , N )

the task of making a choice between two options (which we refer to as “candidates” to fix

ideas) so that Ci ∈ {0, 1} is the outcome variable. The explanatory variables are randomly

assigned from an investigator-chosen vector of attributes Ai, each element of which is a

categorical variable describing the pair of profiles (candidates) together. Attributes of the
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profile-pair come in three types: Independent Attributes characterizing the two candidates

separately and unconstrained within the pair, such as race (with categories, e.g., “Black,

White,” “Asian, Black,” “White, White,” etc.) or prior elective experience (e.g., “state

legislator, not previously elected,” “mayor, state legislator,” etc.); Dependent Attributes

constrained across the two candidates in the pair, such as the probability of winning (with

values that sum to 1, such as “0.4, 0.6”, “0.75, 0.25”, or “0.5, 0.5”) or party membership in

partisan elections (e.g., “Democrat, Republican” or “Republican, Democrat”) and Pair-

level Attributes summarizing the pair of candidates together, such as the contest (e.g.,

“lower house” or “upper house” elections) or region in which the hypothetical election is

taking place (e.g., “south,” or “west”).1

Then the unit of analysis (and the randomization of attribute values) is at the level of

each respondent’s choice between two candidate profiles. We thus structure the dataset

in a familiar way with N rows, with columns coding the outcome variable as the respon-

dent’s choice and the explanatory variable as the investigator-chosen profile-pair attribute

values. Given random selection of the respondents from a population, the N rows are

independent and data analysis can be conducted without any specialized procedures for

point or uncertainty estimation. For example, we can simply compute the average pro-

portion of respondents choosing the Democrat in partisan races or the difference in this

average for contests with an open seat and a contest with an incumbent running against a

non-incumbent. Because profile-pair attributes are randomly assigned, modeling assump-

tions are rarely necessary. Uncertainty estimates such as standard errors can be computed

with classical approaches without any specialized procedures.

Researchers usually increase efficiency by giving each respondent T > 1 tasks (with

T ≈ 5). Thus, for individual i (i = 1, . . . , N ) and task t (t = 1, . . . , T ), we denote

choices as Cit ∈ {0, 1} and the vector of candidate attribute pair values as Ait. For

1Most researchers fix and ignore the effect of which candidate appears on the left vs. right when pre-
senting attributes to respondents, but this can be coded as an additional pair-level attribute. We could also
include an attribute for the names of the choices (e.g., Candidate 1, 2; Democrat, Republican; Alice, Bob; or
Tropicana, Minute Maid). Furthermore, although the order of attributes itself is not an “attribute” for each
profile pair, we can explicitly code this order presented to each respondent, as may be useful for studies
on party-label or ballot-order effects (e.g., Eshima et al., 2023). In short, there are many useful features of
conjoin designs that can be, not have not been, used to answer substantive questions.
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expository simplicity, we follow common practice by assuming independence across tasks

and respondents after conditioning on attributes and personal characteristics (although,

in practice, allowing correlation across tasks within individuals with clustered standard

errors may be useful). In this case, the unit of analysis of our simplified approach is the

respondent-task, with the data structured as N×T rows, and each row still represents one

choice. This data structure also requires no specialized uncertainty estimation and can be

used to study all three types of attributes.

Finally, we also measure a vector of exogenous personal characteristics Pi for each

respondent, such as demographics, socioeconomic status, or political or other views. Al-

though the content of Ait is controlled by the investigator, Pi is observed and cannot be

randomized but is useful for defining subgroups, within which all our methods can be

easily applied without modification.

2.2 Quantities of Interest

We assume each individual i has a preference for one of the two candidates ρi(a) ∈

{0, 1} for each possible vector of attribute values a. Even without measurement error,

preferences are “potential outcomes” and thus only observable for attribute values actually

asked of respondents; that is, ρi(Ait) is observed, but preferences ρi(a) for all a ̸= Ait are

unobservable. We also partition the attributes as a = {aℓ, a−ℓ}, where aℓ is the scalar value

of the “attribute of interest” and a−ℓ is a vector of the remaining values. (Because random

assignment makes post-treatment bias irrelevant, we can compute different quantities of

interest from the same survey by merely redefining which one is the attribute of interest,

ℓ, and applying the same methods of calculation repeatedly for different attributes.)

Most commonly used quantities of interest are linear combinations of what we call the

choice-level marginal mean (MM), given a researcher-chosen set of attribute values. MM

is a simple average of preferences over individuals and all possible values of a−ℓ for each
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individual, with the selected value of the attribute of interest aℓ held constant:2

ρ(aℓ) = mean
i,a−ℓ

[
ρi(aℓ, a−ℓ)

]
. (1)

Averaging over the possible values of the remaining attributes (instead of holding them

constant as in traditional survey analysis; King, Tomz, and Wittenberg 2000) is unusual

but is a common practice in conjoint designs because it makes estimation easier.3

Although also used as a building block for all other quantities, the choice-level MM

is of considerable substantive interest in and of itself. For example, one MM of interest is

the proportion of respondents who prefer an incumbent candidate when running against a

nonincumbent (on average over different situations), which we can create by defining aℓ

as the pair “incumbent, nonincumbent.”

Consider now three quantities of interest that can be written as functions of the choice-

level MM. First is the choice-level average marginal component effect (AMCE), which

is the change in the average preference when altering the value of the attribute of interest

from aℓ to an alternative value a′ℓ, averaged over all possible values of all other attributes,

a−ℓ. This is the simple difference between two choice-level MMs:

θ(aℓ, a
′
ℓ) = ρ(aℓ)− ρ(a′ℓ). (2)

In the incumbency example we used above, the AMCE is the causal effect of having

an incumbent candidate (running against a non-incumbent) in an electoral contest on the

respondents’ probability of choosing the incumbent minus the probability of the same

party’s candidate in an open-seat electoral contest. The choices are averaged over respon-

dents and tasks.

Second is the profile-level MM, which arises naturally when using the profile as the

unit of analysis (duplicating each observation twice in the dataset and correcting for the

2To simplify the notation in the text, we formally define a mean function: for set S with cardinality #S,
the mean over i of a function g(i) as meani∈S [g(i)] =

1
#S

∑#S
i=1 g(i). When the set S is unambiguous, we

omit it and write meani[g(i)].
3We define all quantities of interest as analogies to the commonly used sample (as opposed to the pop-

ulation) average or average treatment effect (Imbens, 2004; Imai, King, and Stuart, 2008). See Abramson,
Kocak, et al. (2023). Equation 1 can also be changed to a weighted mean to reflect different reference
populations (De la Cuesta, Egami, and Imai, 2022; Ganter, 2023).
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dependence, as is common in the literature). To define this, we first add separate nota-

tion to distinguish the attribute of interest levels chosen for the two candidate profiles by

letting aℓ = (a0, a1). Then, the profile-level MM is the proportion choosing Candidate

0 among those with level a0 of the attribute of interest for Candidate 0 — averaged over

all individuals i, all possible combinations of levels a1 for Candidate 1 (including even

values such that a1 = a0), and all other attributes a−ℓ for both candidates:

ρ̄(a0) = mean
a1

{
ρ(a0, a1)

}
. (3)

Finally, the profile-level AMCE is the difference between two profile-level MMs:

θ̄(a0, a
′
0) = ρ̄(a0)− ρ̄(a′0)

= mean
a1

{
ρ(a0, a1)

}
−mean

a1

{
ρ(a′0, a1)

}
. (4)

As the choice-level MM and AMCE are applicable to a wider array of substantive

questions, such as dependent and pair-level analyses that are excluded by profile-level

quantities, and can be used as building blocks to create other quantities, we will use these

quantities for most of our illustrations below. Our methods and results can be used in the

same ways with all four quantities of interest discussed in this section and many others.

3 Correcting Measurement Error Induced Bias

We now introduce notation for the possibility that respondents’ observed choices are not

always equal to their (unobservable) preferences, detail the biases that result from this

measurement error, and show how to correct these biases.

3.1 Observation Mechanism

Most applications of conjoint and other types of survey research explicitly acknowledge

the presence of measurement error and the resulting potential biases (Kane and Barabas,

2019; Berinsky, Margolis, and Sances, 2014; Curran, 2016; Ward and Meade, 2023).

Researchers usually try to mitigate these biases via different types of attention checks

or other filters. We follow the literature and use these checks but relax the assumption
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that those who pass a check are free of measurement error. To do this, we recognize

that conjoint data may have swapping error, where some of the respondents’ reported

answers to a binary question with attributes a reflect their (true) preferences ρi(a), but

other answers are swapped with the wrong ones 1 − ρi(a). (This can occur with any

binary outcome variable, even if not from a conjoint.) To formalize this idea, we define

each respondent’s reported choice between the two candidates, with attribute vector a, as

Ci(a) =

{
ρi(a) w.p. 1− τi(a)

1− ρi(a) w.p. τi(a),
(5)

where τi(a) is the probability of swapping error (i.e., when the respondent’s choice does

not reflect their true preference ρi(a)) and “w.p.” is standard mathematical notation for

“with probability”. We also make the reasonable assumption that some information exists

in the data, and so choices are not made by flipping coins, τ ∈ [0, 0.5). Most prior conjoint

research implicitly assumes the absence of measurement error, τi(a) = 0 for all a and i,

which we show below is not justified. (See Supplementary Appendix A2 for alternative

possible observation mechanisms.)

3.2 Consequences of Ignoring Measurement Error

As introductory linear regression textbooks commonly explain, measurement error in a

continuous outcome variable causes no coefficient bias as long as the error is random

with zero mean. This consequence is easy to see: it is equivalent to a regression with no

measurement error in the outcome variable but a higher residual error. However, swapping

error in a binary outcome variable cannot be mean zero as it swaps some zeros with ones

and ones with zeros. Thus, ignoring swapping error biases inferences. The bias induced

by swapping error cannot be ignored and also cannot be corrected by general purpose

methods for correcting measurement error bias that assume the error is mean zero (e.g.,

Blackwell, Honaker, and King, 2017).

Formally, the standard estimators of the choice-level MM, ρ(a), and AMCE, θ(a, a′),

ρ̂(a) = mean
it:Aitℓ=a

(Cit) , θ̂(a, a′) = ρ̂(a)− ρ̂(a′),

are unbiased if τit(a) = 0 for all i, t, and a. However, they are biased in the presence

of non-zero swapping error, which we show by taking the expectation over the random
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assignment of profiles and swapping error, with true potential preferences fixed:

E[ρ̂(a)] = mean
it

(E[Cit])

= mean
it

[
ρit(a)

(
1− τit(a)

)
+ (1− ρit(a))τit(a)

]
= ρ(a)− 2 ·mean

it

(
ρit(a)τit(a)

)
+ τit

̸= ρ(a) (6)

and thus

E[θ̂(a, a′)] = E[ρ̂(a)]− E[ρ̂(a′)]

= θ(a, a′) + 2
[
mean

it

(
ρit(a)τit(a)

)
−mean

it

(
ρit(a

′)τit(a)
)]

̸= θ(a, a′). (7)

When estimating the marginal mean (or average preference) or AMCE by subgroups (de-

fined by Pi), all of our results hold within each subset.

3.3 Estimating Swapping Error

As we demonstrate in Section 3.4, correcting measurement error bias is straightforward if

we have estimates of swapping error, τit(a). However, in principle, τit(a) may vary over

individuals i, tasks t, and attributes a, which would seem to require that researchers ob-

tain at least N × T estimates of the probability of swapping error. By showing below that

swapping error is mathematically related to Intra-Respondent Reliability (IRR), we have a

way to estimate one of these quantities. But estimating each of the N × T swapping error

probabilities would require a reasonably sized sample (at least, say, a hundred observa-

tions) with each respondent asked the same question twice. This approach will typically

be infeasible given research budget constraints. We solve these problems in three steps.

First, we provide extensive empirical evidence in Section 4 that within a conjoint

survey, IRR(a) is not a function of the attributes a. In other words, τit(a) ≈ τ and so

is unlikely to vary systematically with different attribute levels. This empirical finding

simplifies the estimation of swapping error probability down to a single parameter. We

find that IRR can vary somewhat across applications (and respondent characteristics),
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and so we need to estimate it for every conjoint survey. If researchers are interested in

subgroup comparisons, they also need to estimate IRR for each subgroup.

Second, Section 5 offers several easy ways of estimating IRR at the design stage or

after data is collected. Our preferred way involves repeating the first conjoint task at the

end of the task list for each individual (usually including about 5 tasks) and then cal-

culating the proportion agreement between these two identical conjoint questions. This

approach takes advantage of two unusual benefits of conjoint survey designs: (a) Ask-

ing the two questions so close together makes it unlikely that different “considerations”

(i.e., unmeasured confounders; see Zaller 1992) account for differences in respondent

choices.4 (b) Even though the repeated questions are asked only moments apart, we find

that respondents virtually never remember having been asked an identical question previ-

ously. Across all of our studies, zero out of 9,472 survey respondents reported noticing

being asked identical questions — even when prompted in open ended questions to care-

fully explain how and why they chose the profile they did (see Supplementary Appendix

A3).

Finally, these advantages of conjoint questions enable us to obtain a clearer indicator

of measurement error than is possible with traditional survey questions. The key assump-

tion required is that, conditional on preferences, the choices made in the pair of identical

questions are independent: Ci1(a) ⊥⊥ CiT (a) | ρi(a). Then, from Equation 5, we set

IRR equal to the probability that a respondent gives the same answer to the two identical

questions:

IRR = 1− 2τ(1− τ).

We then solve this expression for τ ,

τ̂ =
1−

√
1− 2(1− IRR)

2
, (8)

which we use as an estimator for the probability of swapping error.

4In contrast, the venerable literature on issue knowledge and survey response instability in the electorate
almost exclusively relies on repeated questions asked from weeks to years apart; see Achen 1975; Lazarsfeld
1948; Converse 2000; Zaller and Feldman 1992.
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3.4 Correcting Measurement Error Bias

Although only a single parameter is required for each bias correction, we do not need

to assume τit(a) = τ . Instead, as we now demonstrate, we only require the less re-

strictive assumption that swapping error probabilities are linearly unrelated to respondent

preferences: Cov
(
ρit(a), τit(a)

)
= 0, which implies that meanAit,ℓ=a

(
ρit(a)τit(a)

)
=

ρ(a)τit(a). Even when researchers cannot distinguish between these assumptions in a

particular application, this less restrictive assumption is useful in demonstrating that esti-

mated results will be robust to the independence assumption.

We begin by simplifying the bias expressions in Equations 6 and 7, respectively, as

E
[
ρ̂(a)

∣∣ Cov(ρit(a), τit(a)) = 0
]
= ρ(a) · (1− 2τ) + τ (9)

E
[
θ̂(a, a′)

∣∣ Cov(ρit(a), τit(a)) = 0
]
= θ(a, a′) · (1− 2τ) (10)

With these results, we define alternative estimators for MM and the AMCE as,

ρ̃(a) =
ρ̂(a)− τ

1− 2τ
, θ̃(a, a′) =

θ̂(a, a′)

1− 2τ
, (11)

which are unbiased if τ is known, E[ρ̃(a)] = ρ(a) and E[θ̃(a, a′)] = θ(a, a′). They are

consistent as long as an estimate of τ is consistent (Section 6 also shows that they are also

approximately unbiased with smaller mean square error). Finally, unlike logit, probit,

regression, and other fully parametric approaches, these estimators require no modeling

assumptions at all. This approach can also be used for interactions by redefining the

attribute of interest to refer to more than one element of the attribute vector.

Equations 11 show that the bias correction will always increase the absolute value

of the AMCE. Similarly, the bias correction for MM will always increase its absolute

distance from 0.5; that is, if ρ̂ < 0.5, the corrected estimate will be smaller than the

biased estimate, but if ρ̂ > 0.5, the corrected estimate will be larger. This can be seen by

solving for the difference between the corrected and uncorrected estimates as

ρ̃(a)− ρ̂(a) =
τ

1− 2τ
[2ρ̂(a)− 1],

and recalling that τit ∈ [0, 0.5). Subgroup differences of either MM or AMCE can in-

crease, decrease, or flip the signs of the estimates.
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Computing standard errors for ρ̃(a) and θ̃(a, a′) requires an extra step because of the

uncertainty in τ̂ . We show how to do this in Supplementary Appendix A4 in three different

ways that optimize for speed, convenience, or familiarity, all of which are implemented

in our open-source software. Finally, although we recommend using the more general

choice-level definition of MMs and AMCEs, our methods of correcting measurement

error bias described here are also applicable to special cases such as the profile MMs and

AMCEs.

4 Patterns in Conjoint-Induced Measurement Error

We now narrow down the necessary statistical assumptions for our measurement error

corrections by (1) replicating the data collection and analysis of eight published conjoint

studies; (2) estimating the IRR within each study; (3) revealing the lower reliability of

conjoint questions compared to traditional survey questions; (4) describing the lack of

evidence for systematic variation in IRR across attribute combinations within studies; and

(5) showing how IRR varies over the personal characteristics used for subgroup estima-

tion.

4.1 Eight Replications

We choose eight published political science conjoint studies to replicate, with a prefer-

ence for those in major journals and substantively diverse topics. The studies include

Arias and Blair (2022), Bechtel and Scheve (2013), Blackman (2018), Hainmueller and

Hopkins (2015), Hankinson (2018), Mummolo and Nall (2017), Teele, Kalla, and Rosen-

bluth (2018), and Ono and Burden (2019). These articles included conjoint about housing

developments, climate agreements, political candidates, immigrants, and others (see Sup-

plementary Appendix A5 for details).

We then fielded a series of survey experiments using U.S. samples with nationally

representative quotas based on age, gender, race, ethnicity, and region (from Lucid Mar-

ketplace; see Coppock and McClellan 2019). Although only Bechtel and Scheve (2013)

report using attention checks among the eight studies we replicate, we give conservative
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Figure 1: Eight Replications: Scatterplot of AMCEs from the original studies (plotted
horizontally) by estimates from our replications in new data (plotted vertically), color-
coded by article, along with a regression line fit to all estimates from each study.

results on IRR by dropping respondents who failed an attention check administered prior

to our conjoint task (see Supplementary Appendix A6 for details; we find little evidence

that respondent inattentiveness explains low IRR).

Most replication studies in the literature begin with the data and methods from a pub-

lished article and try to reproduce its tables and figures (King, 1995). We instead begin

at an earlier point in the replication process: For each of the eight studies, we collect new

survey responses following each article’s experimental design and rerun the same statis-

tical analysis. We do this for all 170 AMCEs computed in the eight studies (all of which

are profile AMCEs). Figure 1 presents a scatterplot of estimates of these quantities from

the original studies plotted horizontally and our replication of each AMCE from our new

data plotted vertically. The AMCEs from each study, along with a regression line fit to its

points, are color coded (see the figure legend).

Despite the differences across the survey platforms, the sampling periods, details of

survey implementation, and sample characteristics, the results in Figure 1 reveal a close

correspondence between the originally published estimates and the estimates based on

our replications of these studies. This can be seen in the distance between each of the

points and the 45-degree line, or the eight (different colored) regression lines, all also
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fairly close to the (black) 45-degree line. Indeed, the median correlation for the estimates

in a study between the published and our replicated results is a remarkable 0.9. Given

the number of replication failures across scientific fields in recent years (Gilbert et al.,

2016; Open Science Collaboration, 2015), it is comforting to see the uniformly high level

of transparency and scientific rigor achieved in the literature on conjoint-based political

science experiments displayed in Figure 1.

4.2 Estimates of Intra-Respondent Reliability

Second, we estimate the IRR for each of the eight studies. We do this by randomly assign-

ing two of the eight original studies to each of the 3,289 respondents. We standardize the

number of tasks (conjoint survey questions) per respondent across our eight replications

to five (the mean, median, and mode of the studies we replicate) and then add a sixth

conjoint task that repeats the first (randomly selected) task at the end. That is, just a few

moments after a respondent chooses between two profiles, we ask this same person the

same question a second time and see whether their answer is the same. Then, our estimate

of IRR is the proportion agreement between these first and last (repeated) responses.5

Results appear in Figure 2. The horizontal axis in Figure 2 indicates IRR, ranging

between respondents flipping coins (50%, at the left) and perfect agreement (namely,

perfect reliability) as is assumed by most conjoint applications (100%, at the right). Our

point estimates appear as dots, with 95% confidence intervals as horizontal lines. IRR for

each study is approximately halfway between flipping coins and no measurement error

with an average of 77% (and a range of point estimates from 73.0–80.7%). For IRR =

0.75, we know from Equation 8 that τ = 0.15, meaning that about 15% of reported

choices do not reflect respondent preferences (swapping 0 for 1 or 1 for 0). If these 15%

5To minimize the possibility that respondents notice that the same information is included in the first
and last tasks, we switch the profile order (i.e., between the left and right columns). (In Supplementary
Appendix A7, we report on three additional surveys we conducted to study the effect of this procedure. We
found, in two of the three surveys, that the not switching estimate was slightly smaller, small enough that
differences in our bias corrections would not be substantively meaningful.) We also gave each respondent
two different randomly selected sets of tasks, following the experimental protocol in the text, to increase
efficiency. This means that each respondent received 12 = (5+1)×2 conjoint tasks. The results from only
the first of these two sets of tasks, which was as close as possible to what the original articles used, are not
materially different from the second set.
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Figure 2: Intra-Respondent Reliability of Eight Prior Studies. Point estimates appear as
dots with 95% confidence intervals as a horizontal line.

could be chosen by an adversary, almost any type of bias can be induced; nature is not

always this unkind, but substantive conclusions should obviously be based on evidence

where possible.

4.3 Reliability Comparisons with Traditional Survey Questions

Third, we provide evidence that, as might be expected, IRR is higher for conjoint ques-

tions designed to analyze inherently complicated real world decision making than for

traditional multiple-choice survey questions with similar content abstracted from these

real world choices. Of course, we are only measuring reliability; we would expect the

usual abstract survey questions to have lower validity than conjoint designs (especially

when corrected for measurement error biases).

To do this, we designed and administered a survey with both a candidate-choice con-

joint experiment and a series of traditional questions tapping attitudes toward each of the

candidate’s attributes (i.e., various policy positions and partisanship), with the order of the

two types of questions randomized across respondents. In the conjoint experiment, for a

given attribute (e.g., “Position on economy”), each level (e.g., “We need a strong gov-

ernment to handle today’s complex economic problems” or “The free market can handle

these problems without the government being involved”) corresponds to one of the mul-
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Figure 3: Intra-Respondent Reliability of Traditional Surveys vs. Conjoint

tiple answer choices in a traditional survey question (e.g., “Which of the following two

statements comes closer to your own opinion?”). We then repeated this survey about one

week later and calculated IRR for the conjoint tasks vs. the traditional survey questions.

(See Supplementary Appendix A8 for details.)

Results appear in Figure 3: While IRR (on the horizontal axis) is 79.9% in the con-

joint experiment (at the bottom), all three survey questions have, as would be expected,

substantially higher reliability, ranging from 86.7% to 97.4%. Also as expected, all three

of the survey reliability estimates are higher than all eight of the original conjoint stud-

ies in Figure 2. These results may suggest that the lower IRR in conjoint experiments is

inherent in the more complex real world nature of the conjoint analysis.

4.4 No Reliability Variation by Attributes

We now present evidence that the reliability of conjoint survey questions does not vary

systematically with the pairs of attribute combinations (i.e., the information contained in

conjoint tables presented to the respondent). We do this from both a top-down theoretical

approach, which we describe here and provide empirical evidence for in Supplementary

Appendix A9, and a bottom-up empirical approach that we present next (with additional

information in Supplementary Appendix A10).

4.4.1 Top-down approach

We apply the literature on survey best practices to conjoint studies to study how reliability

may be reduced as a function of the content of the profile-pairs presented to respondents.
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We develop the following three hypotheses that explain IRR and test them empirically.

First, inconsistency is the level of disagreement across attributes within a profile when

interpreted from the perspective of its most prominent dimension (see Bansak and Jenke,

2023). For instance, do Democratic candidate profiles have a coherent set of liberal policy

positions? If profiles are inconsistent, we hypothesize that some respondents may become

confused, increasing cognitive demands and decreasing IRR.

Second, complexity refers to survey question wording: How many words appear to

respondents in the conjoint table describing each candidate’s attributes? How many at-

tributes of each profile are presented to respondents? How complicated is the language

used to describe attribute levels? The hypothesis here is that complex conjoint tables may

confuse respondents and decrease IRR.

Finally, divergence refers to the degree of dissimilarity between the profiles. Attribute

levels with small differences between profiles within a pair may encourage respondents to

assess options essentially at random, increasing IRR. For example, in a candidate conjoint

experiment, “moderate Democrat” versus “moderate Republican” is less divergent than

“extreme Democrat” versus “extreme Republican”; in a conjoint experiment on housing

developments, “3 units versus 5 units” is less divergent than “3 units vs 50 units.” And be-

cause attributes are randomly assigned, some attributes will have identical levels and zero

divergence. We hypothesize that respondents will have an easier time choosing between

candidates with larger differences.

As Supplementary Appendix A9 shows, through numerous survey experiments, we

find no systematic evidence that inconsistency, complexity, or divergence accounts for the

variation in IRR. On the theory that the exception proves the rule, we were able to con-

struct highly artificial and unrealistic conjoint studies that affected IRR, but not by enough

to make a difference in real cases. We also went further and studied the consequence of

attribute sets with a single (and again artificially extreme) dominant attribute and failed to

find a systematic substantive explanation for IRR there either, except in the most extreme

and unrealistic cases.

Thus, we find that in realistic conjoint experiments, with the types of attributes and
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levels used in social science applications and with variation one would see in reality, IRR

rarely varies in substantial ways as a function of the attribute levels. An advantage of

conjoint analysis is the ability of researchers to present respondents with difficult options,

which people often face in real-world shopping, dating, and voting decisions. In part

because of this difficulty, the IRR is not 100%, although it tends to be unrelated to the

attributes used in defining the profile-pairs.

4.4.2 Bottom-up approach

As a second approach, we conduct an experiment where we present respondents with a

series of six hypothetical media articles (taken from Mummolo 2016). Each profile-pair

has two attributes (source and headline); the first has three possible levels, and the second

has four, with both randomly assigned. We exclude ties (i.e., identical profiles on the left

and right), leading to a total of 48 possible combinations of profiles. To measure IRR,

we also present respondents with another six profile-pairs, identical to the first six (with

the profile appearing on the left and right flipped).6 We then collect about 50 respondents

for each of our 48 profile-pair combinations (Sample 1). To reduce uncertainty, we re-

peat the entire experiment with 100 responses for each combination in a separate survey

(Sample 2) and present the results for the samples separately to allow for sampling and

population changes. These two studies yield two IRR estimates for each combination.

(See Supplementary Appendix A10 for additional design details.)

Our estimates of IRR from these experiments appear in Figure 4, Panel (a). Each point

represents one profile-pair combination for a choice, with IRR estimated from Sample 1

plotted horizontally and Sample 2 plotted vertically. The mean in each sample is about the

same as the means for our eight replications of published articles (about 75%; see Figure

2). We include 80% confidence intervals (rather than 95% to reduce graphical clutter) in

blue for Sample 1 and red for Sample 2. Points that differ from the mean (for each sample)

at the 95% level are given a numeric code (blue for Sample 1 and red for Sample 2) so

they can be linked back to the specific profile-pair combination (listed in Supplementary

6In addition to excluding ties, we avoid showing the same conjoint table consecutively. Specifically, we
fix the first task in each set (while randomizing the order of the other five tasks) so that the last task in the
first set and the first task in the second set are always different.
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Characteristics (with a key to the numbers appearing in Table A10 in Supplementary
Appendix A11). Points that differ from the mean (for each sample) at the 95% level are
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Appendix A10).

If the IRR estimates in both samples differed only by random chance, we would expect

the samples to correlate at no more than chance levels, which is just what we find in

Panel (a) of Figure 4: the empirical correlation of the points in the graph is 0.23 with an

(insignificant) p-value for a difference from zero of 0.112. Moreover, if IRR estimates

differed from their mean only due to sampling error, we would expect to see, on average,

2.4 of these 48 points “significant” at the 95% level. In fact, we see three in Sample 1

and five in Sample 2. Given that the two samples disagree on the significance of all but

two profile-pairs (numbers 16 and 22, which appear in both red and blue), we see no

evidence for systematic patterns, at least not large enough to make a difference in our

bias corrections. Even via post hoc interpretations of the data, we have not been able to

ascertain any coherent theory that might account for the specific content of the profiles

that turned out to be significant here (see Supplementary Appendix A10).

Thus, all the evidence on this question seems to point in the same direction: If pre-

dictable differences in IRR exist as a function of the profile-pairs with randomly assigned
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attributes, they are unlikely to be large enough to matter substantively.

4.5 IRR Variation by Personal Characteristics

Finally, we use the same methodology from Panel (a) of Figure 4 to demonstrate that

IRR varies systematically over certain characteristics of respondents (P ). The results of

this analysis appear in Figure 4, Panel (b). As can be clearly seen from all the points

labeled with numbers (the key for which appears in Supplementary Appendix A11), most

of the effects differ significantly from the mean. The high correlation between the two

samples (i.e., 0.85) confirms that the association between respondent types and IRR is

indeed systematic. Although these effects vary over studies, we often find (as reported

in Supplementary Appendix A11) that younger, non-white, and male respondents tend to

have lower levels of reliability.

These results indicate that assuming constant IRR over attributes is usually justified.

However, researchers should use separate IRR estimates for descriptive and causal analy-

ses that are analyzed within subgroups defined by personal characteristics.

5 Estimating the Intra-Respondent Reliability

We propose here four methods of estimating the IRR, which is required to estimate the

swapping error parameter, τ (see Equation 8). Two are for new conjoint projects that

work via simple adjustments to the survey design (Section 5.1), while the other two are

for analyses of existing conjoint datasets where new data collection is infeasible (Section

5.2).

5.1 Estimation via New Survey Data

Conjoint studies still in the design stage can be easily modified to estimate IRR using one

of the following two procedures. The first, which we recommend for most researchers

and use in Section 4.2, is to estimate only the average IRR by adding one extra task at

the end of a conjoint survey that repeats the first task but with the order of profiles flipped

between left and right. We find no evidence that respondents notice the repetition, which
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makes this a simple, inexpensive, and widely applicable approach to estimate IRR, and to

infer swapping error.7

Estimating the overall average IRR is useful for researchers willing to make the as-

sumption we justify empirically in Section 4. Researchers who prefer not to make this

assumption can instead choose a second, more extensive procedure, by estimating IRR

for different values of the attributes. Researchers studying subgroup effects may also

wish to estimate IRR within each subgroup.

5.2 Estimation without Additional Data

We now offer two methods of estimating IRR from a pre-existing conjoint survey without

any new data collection or survey design changes. Avoiding new data collection obviously

saves costs, but it has additional benefits. These methods may be especially useful for

datasets where going back to the field may not even be informative because of changes

in respondent opinions, choices, or reliability. Of course, collecting more data is always

preferable to these approaches and should be pursued whenever feasible.

In most situations, we recommend using both of the following methods when new

data collection is impossible. The first approach is to choose a value for IRR based on

substantively similar studies for which it has already been estimated, such as some of the

articles we replicated (see Figure 2). Uncertain estimates from less similar studies can be

studied via sensitivity testing by repeating the bias correction for a range of IRR values.

The second approach involves estimating IRR directly from the original survey data.

This approach may seem impossible because the survey design includes no repeated tasks.

Although ordinary conjoint surveys typically include no pair of tasks with zero attribute-

value differences, we show here that one can accurately extrapolate to this point from

pairs of other tasks that differ by varying amounts.8

For example, Hankinson (2018), one of the studies we replicate, includes seven at-

7Although having more than one task is not necessary to apply our methods of bias correction, multiple
tasks can increase efficiency without much cost. If a researcher prefers to have only a single task, then a
few other survey questions should be used between the pair of repeated questions to estimate IRR. These
additional questions ensure respondents do not recall they are being asked the identical question twice.

8We develop this approach by adapting the methodology in Gakidou and King (2006) for estimating
mortality rates from surveys of people about their siblings.
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tributes. This means that a pair of tasks can differ in profile-pair attribute levels for a total

of 0, 1, 2, 3, 4, 5, 6, or 7 attributes. The unobserved proportion agreement in a pair of

tasks with 0 differences (which is unobserved in this dataset) is the object of our inference.

Because attribute values are assigned randomly and independently, more task pairs with

7 differences will exist than pairs with only one, for example. In fact, in this study, with

30,190 task pairs (i.e., 3,019 observations × 5 tasks × 4 ÷ 2), we only observe pairs with

differences of 3, 4, 5, 6, and 7.

In the top left panel of Figure 5, the horizontal axis is the number of attributes that

differ within task pairs, and the vertical axis is the percent agreement in profile choice.

For each observed level of difference within pairs, we plot a black dot and confidence

interval (although uncertainty is only large enough to see the intervals for the two left

dots, representing three and four attribute-value differences). Next, in this same panel, we

plot a weighted least squares regression line fit (dotted red) to these five data points (at 3,

. . . , 7). Weights are calculated from the standard errors of each of the points, which differ

because they are based on different numbers of observations. We then use the weighted

least square estimates to extrapolate to 0 on the horizontal axis, the object of our inference.

(We could extend the procedure with a more fine-grained task pair difference metric, such

as by recognizing that some levels are ordered or interval scaled.)

Our estimate for IRR, the proportion agreement with no attribute differences, is the

constant term in the regression. We plot this extrapolated estimate of the IRR along with a

confidence interval (in red) in Figure 5. As always with extrapolation, the total uncertainty

includes both sampling uncertainty (represented by the red vertical line) and model-based

uncertainty, which is not represented but is indicated to some degree by how well the

black dots fit the linear regression (King and Zeng, 2006).

Also in this top left panel is a triangle, which is our direct estimate of IRR based on

the repeated task added to our replication study. This estimate serves as an out-of-sample

validation for our extrapolated estimate. Remarkably, in this panel, the extrapolation

estimate based on no new data (the red dot) and the direct estimate based on a new sample

with the repeated task (the triangle) are quite close to each other. We then repeat this
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Figure 5: Estimating Intra-Respondent Reliability from Data without Repeated Tasks.
The red dotted line extrapolates the black dots, representing percent agreement conditional
on the number of attribute-value differences within task pairs, to the 0 difference point (see
the red dot and 95% confidence interval). The black triangle is out-of-sample validation
based on a direct estimate with new data, repeated from Figure 2.

sample procedure for all eight of the studies we replicated, and each one is close to the

direct estimate (each of which is in a separate panel in Figure 5.2). Obviously, we can
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offer no guarantee that this method will work as well in all future datasets, but it certainly

is encouraging.

We could also extend this procedure by combining the extrapolation estimate with an

estimate from one or more of our replication studies if they are substantively similar to

the study being conducted. With any of these approaches, we would need to estimate the

implied uncertainty of τ or, more simply, present uncertainty estimates of the MMs and

AMCEs conditional on τ̂ , supplemented with some sensitivity estimates.

6 Finite Sample Properties and Empirical Examples

Section 3.4 offers estimators for the choice-level MM and AMCE corrected for measure-

ment error (see Equation 11) and shows mathematically that the estimators are unbiased

when τ is known and statistically consistent when τ is consistently estimated. Section

4 shores up the key simplifying assumption in these estimators. To complement those

analyses, we first undertake a Monte Carlo simulation and show that the estimators are

approximately unbiased even when τ is estimated. Our estimators have slightly larger

standard errors due to the requirement of estimating τ (rather than assuming τ = 0 as in

previous studies). We thus also show that the mean square error (a proper combination of

bias and variance) is lower for our new corrected estimators. These results suggest that,

in applications, researchers should use our bias correction because it corrects bias (see

Equation 11). The mean square error result suggests that the slight increase in standard

errors is less of a matter of concern compared to the point estimates and the substan-

tive consequences of the corrections. We show below the pattern across estimates from

our replications of our corrections decreasing, increasing, and flipping signs of subgroup

differences.

6.1 Simulation

We begin with a population of 100,000 individuals with known true preferences, the

true marginal mean ρ(a), and AMCE θ(a, a′). We then generate 1,000 datasets of size

N = 1, 000, each via simple random sampling (with replacement). Next, we add swap-
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Figure 6: Reducing Bias and Mean Square Error in the marginal mean (MM) and Average
Marginal Component Effect (AMCE) estimates in Conjoint Experiments

ping error of sizes τ = {0.1, 0.15, 0.2} by using the observation mechanism in Equation 5.

Finally, in each simulated dataset, we compute the uncorrected estimates (used throughout

the literature) and our alternative corrected estimates for both quantities of interest. Com-

plete details and code necessary to replicate this simulation can be found in our replication

package.

We give results for bias and root mean square error (RMSE) in Figure 6, with the MM

in the first column of panels and the AMCE in the second column. In the first row, we

present the degree of bias for the uncorrected estimators (measured as deviation from the

25



horizontal dashed line at zero) for each value of τ (the degree of measurement error on the

horizontal axis) and values of the two quantities of interest (using a color-blind-friendly

palette, with values indicated in the figure legend). As anticipated by the mathemati-

cal results in Section 3, for both the marginal mean and the AMCE, bias increases as τ

increases, in different amounts depending on the size of the MM and AMCE.

The second row of panels in Figure 6 reveals that for all combinations of values of τ

and for both MMs and AMCEs, our new estimators are approximately unbiased, which

can be seen by all the lines appearing on top of one another and on top of the horizontal

dashed line indicating zero bias.

Finally, we compare the difference in RMSE for the uncorrected and corrected esti-

mators in the last row of panels. In almost all cases, the RMSE is lower for our corrected

estimator than the uncorrected one. (When the quantities of interest are only slightly dif-

ferent from the null value (i.e., MM ≈ 0.5 and AMCE ≈ 0) but the measurement error

is unusually large, the noise in the data is overwhelming the signal and bias corrections

will be quite uncertain.) Every line for all simulations with different quantities of interest

(indicated by different colors described in the figure legend) appears below the horizontal

dashed line indicating no difference. Therefore, correcting bias is always recommended

regardless of the degree of measurement error and the expected magnitude of the MMs

and AMCEs.

6.2 Empirical Examples

Equation 5 shows that the corrected estimator for the AMCE is always farther from zero

than the uncorrected one, and for the MM is always farther from 0.5. However, for differ-

ences in MMs or AMCEs among subgroups of respondents (such as comparing AMCEs

or MMs for men v. women, young v. old, or with v. without a college degree), the bias

correction can increase, decrease, or flip the signs compared to the uncorrected estimate.9

Although the only way to ascertain the bias in a new or existing study is to estimate

τ and apply our bias correction, we provide here some intuition for what might happen

9On subgroup differences or heterogeneous treatment effects in conjoint studies, see Goplerud, Imai,
and Pashley (2022), Leeper, Hobolt, and Tilley (2020), and Clayton, Ferwerda, and Horiuchi (2021).
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by studying a large number of empirical estimates from our eight replication studies (see

Section 4.1). To do this, we begin with all seven dichotomous variables used across any

of the eight original studies we replicate and then add four additional variables available

in our replication datasets. They include whether a respondent used a mobile device or a

desktop computer, an end-of-survey question measure of attentiveness, and two variables

based on time to complete the survey (above v. below the median and the top v. bottom

quartiles). With these variables, across the eight studies, we produce the differences be-

tween uncorrected and corrected estimates for 1,870 AMCEs and 2,552 MMs.

Each uncorrected subgroup difference has an arbitrary sign based on which subgroup

comes first in the difference. We resolve this ambiguity in the present analysis by always

subtracting the smaller estimate from the larger one, making all uncorrected estimates

positive. These values are plotted on the horizontal axis in each panel of Figure 7 (which

thus begins at zero on the left). The left panel gives AMCE estimates, and the right

panel plots MM estimates. The vertical axis in both panels is the bias-corrected subgroup

difference, which can be positive or negative. We have also color coded (and separated

by dashed red lines) the three resulting effects of the corrections. For both AMCEs and

MMs, we find that the bias correction increases the subgroup difference for about 82% of

the estimates, decreases it in about 12%, and switches the sign in about 5%. The size of

the effect in each category has a wide range relative to the size of the original estimate.

If the next study to be conducted is like these eight, then we might expect that correct-

ing the bias will increase the subgroup difference most of the time. However, although this

figure gives some sense of what may happen in real examples, the 4,422 estimates across

the two panels do not represent a probability distribution from which any new study will

be drawn from. The only way to know the direction of the bias, and therefore the effect of

the correction, is to follow the advice in this study, estimate τ , and make the correction.

7 Best Practices For Conjoint Analyses

Survey experiments can be greatly improved with conjoint designs if appropriately cor-

rected for measurement error. Although hypothetical conjoint experiments without mea-
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Figure 7: Consequences of Bias Correction in Eight Studies. The horizontal axis is the
positive difference between the two subgroups, and the vertical axis is the corrected value
for AMCEs (left panel) and MMs (right panel).

surement error are more efficient than typical single task randomized experiments, the

real world aspects of conjoint designs introduce more measurement error than traditional

survey questions, reducing some of the efficiency gains. Furthermore, measurement error

in conjoint analysis can induce substantial bias if ignored. Particularly when researchers

are interested in subgroup comparisons, the bias may attenuate, exaggerate, or flip signs

of the differences in MMs or AMCEs.

For all these reasons, researchers designing and fielding conjoint experiments should

understand the nature of measurement error in conjoint designs and address this issue

explicitly. In this section, we make four practical recommendations.

First, researchers should try to reduce measurement error in the design phase when-

ever feasible. To do this, they should follow best practices in standard survey design, such

as via “cognitive debriefing,” where researchers administer a draft survey to a small sam-

ple of respondents and immediately go back to the start of the survey and ask the same

respondents what they understood each question to mean. Researchers should repeat this

procedure while continuously adjusting their survey instruments, perhaps multiple times.

Conjoint analyses are more complicated to understand than traditional survey questions,
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making this standard advice especially valuable.

Second, researchers who wish to use conjoint designs other than binary choice should

conduct further measurement error studies. Our research shows how to correct measure-

ment error bias for one type of conjoint analysis, a forced binary choice, which is by far the

most commonly used in political science and marketing literatures. Other designs, such

as rating the profiles individually, ranking the profiles, or choosing a single profile out of

more than two, may also be valuable, depending on the research questions. However, we

would expect that measurement error bias to be worse in all of these other types of designs

and so researchers who wish to try these alternative question types should consider how

to measure, evaluate, and correct measurement error in those designs as well.

Finally, researchers who administer binary choice conjoint experiments should use

one of the bias correction methods proposed in this paper. Mean squared error can be

reduced by estimating IRR and applying the simple correction methods for MMs and

AMCEs (see Equation 11). Specifically, we suggest that researchers choose among four

approaches to estimating IRR (ordered by the simplicity of application):

1. If your research topic is similar enough to one or more of the studies we replicate—

in both substantive content and target population—use the corresponding estimate

of IRR from Figure 2. Because the estimates in this figure (and others we estimate)

do not vary much, choosing the wrong one may not be very consequential. Still,

one should clearly justify the choice of a particular value of IRR (e.g., 0.75).

2. You can estimate IRR from an existing conjoint without new data collection by

extrapolating patterns from existing data, as we show in Section 5.2. An estimate

from this method can also be qualitatively averaged with the first option if one of

the studies we replicated is similar to the one you are analyzing. Our software

implements these and other methods for estimating IRR.

3. If you are in the planning stage of a conjoint study, we recommend adding a repeat

of the first task presented at the end (and with two profiles and the order of the two

columns switched). This enables researchers to estimate IRR by simply comput-

ing the percent agreement between the first and last questions and averaging over
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all respondents or the relevant subgroup. To use this design to correct bias, the re-

searcher would rely on the extensive empirical evidence we offer that IRR does not

differ systematically over information contained in conjoint tables. This assump-

tion, although far less restrictive than the assumption needed for the first approach,

should still be noted.

4. Researchers may choose to estimate the level of IRR for every profile-pair, as we

did for Figure 4, Panel (a). This makes the assumptions from the first and second

approaches unnecessary. The cost of this approach, however, is the requirement

to collect a substantially larger number of observations on the order of n for each

estimate.

Although we recommend that most researchers adopt the third strategy, these researchers

can still check whether IRR varies over selected types of profile-pair combinations by

grouping them in different ways. Researchers should also use our replication packages,

which include a large number of observations for many types of studies. Examining the

replication data in greater detail may help them discover patterns of IRR related to their

research.

8 Concluding Remarks

Through empirical, theoretical, and simulation-based evidence, we show that measure-

ment error in conjoint designs can induce substantial bias in estimates of descriptive and

causal effects—on average, within subgroups, and for subgroup differences. We show

that measurement error tends to have common empirical patterns for binary choice con-

joint designs. We then use these patterns to develop easy-to-use methods to correct the

measurement error-induced biases. These bias corrections will often make effects larger,

but not in all situations. In particular, measurement error can lead to attenuation, exagger-

ation, or sign switches when researchers compare MMs or AMCEs between subgroups of

respondents.

Our approach applies only to the most common type of conjoint design with a binary

choice outcome variable. Valuable future research would include studying the types of
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measurement error, consequent biases, and possible corrections in alternative conjoint

designs, such as multiple choice outcomes, ratings, rankings, and others. The additional

demands these alternative conjoint designs place on respondents may lead to even higher

levels and more complicated forms of measurement error than for binary choice outcomes.

But, at this point, using these alternative conjoint designs without this research would put

a researcher’s results and conclusions at unnecessary risk.
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