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The widely used methods for estimating adult mortality rates from sample survey responses about 
the survival of siblings, parents, spouses, and others depend crucially on an assumption that, as we 
demonstrate, does not hold in real data. We show that when this assumption is violated so that the mor-
tality rate varies with sibship size, mortality estimates can be massively biased. By using insights from 
work on the statistical analysis of selection bias, survey weighting, and extrapolation problems, we 
propose a new and relatively simple method of recovering the mortality rate with both greatly reduced 
potential for bias and increased clarity about the source of necessary assumptions.

emographers, social scientists, actuaries, public policy makers, and medical and public 
health researchers need accurate mortality data for many practical and research purposes. 
Yet, only a minority of the world’s countries have complete vital registration systems, and 
demographic surveillance systems are only occasionally feasible and then only in a few iso-
lated areas. These problems have generated extensive efforts to develop and apply methods 
of estimating mortality rates from sample surveys of relatives or acquaintances. Hundreds 
of applications of these methods have appeared in demography, epidemiology, sociology, 
public health, and medicine, with scholars creating and using methods to estimate mortality 
(and other vital rates) from information collected about deaths from household residents 
(Feeney 2001; Graham, Brass, and Snow 1989), siblings (Bicego 1997; Chiphangwi et al. 
1992; Danel et al. 1996; Gakidou, Hogan, and Lopez 2004; Garenne and Friedberg 1997; 
Graham et al. 1989; Shahidullah 1995; Shiferaw and Tessema 1993; Walraven and van Don-
gen 1994; Wirawan and Linnan 1994; Zaba, Timœus, and Ali 2001), parents (Brass and Hill 
1973; Hill and Trussell 1977; Timœus 1986, 1991a; Timœus and Jasseh 2004), and spouses 
(Malaker 1986; Singh 2000; Stanton, Noureddine, and Hill 2000; Timœus 1991b).

The Demographic and Health Surveys (DHS) program has invested heavily in collect-
ing complete birth histories of nationally representative samples of women. This program 
has produced child mortality estimates for a large number of countries without vital or 
sample registration systems since the 1980s. Some relevant data for measuring adult mor-
tality are also being collected through many household surveys, such as the DHS and the 
World Health Survey, through modules on sibling survival. However accurate these surveys 
may be, current methods of using this information suffer from selection bias. The task now 
is to develop a method that uses these data to produce accurate estimates, at which point 
the incentives may be in place to begin to collect more extensive and accurate information 
on the survival of adult relatives.

Collecting data from a single survey of those who are alive only at the end of a pe-
riod of interest makes the method inexpensive and thus feasible, but it leads to a serious 

*Emmanuela Gakidou, Research Associate, Institute for Quantitative Social Science, Harvard University. 
Gary King, David Florence Professor of Government, Department of Government, Harvard University, Institute 
for Quantitative Social Science, 1737 Cambridge Street, Cambridge, MA 02138; E-mail: King@Harvard.Edu. 
Data and software to replicate the results presented in this article are available at http://GKing.Harvard.edu. We 
thank Andrew Gelman, Michel Gillot, Ken Hill, Ian Timœus, and Langche Zeng for helpful comments, and the 
National Institutes of Aging (P01 AG17625-01) and the National Science Foundation (SES-0318275, IIS-9874747) 
for research support.



570 Demography, Volume 43-Number 3, August 2006

selection bias problem: individuals from high-mortality families are less likely to appear 
in a survey as respondents. The current literature approaches this issue by making a math-
ematical assumption that avoids selection bias only if the assumption holds empirically. 
We show that this assumption—that mortality does not differ by sibship size—is violated 
in practice in most available data sets. We therefore develop a new approach that avoids 
this assumption altogether by dividing the task into a component that can be corrected ex-
actly via weighting and one that requires extrapolation from observable patterns. We offer 
theoretical, simulation, and empirical evidence that the new method is to be preferred in all 
known situations to the existing approach in the literature.

We introduce our method by way of a running example using data on sibling survival 
to estimate mortality. The same approach can be used to estimate mortality rates from 
other relatives and, in specialized cases, from acquaintances, friends, and neighbors. The 
method also applies to estimating rates of emigration and immigration (Zaba 1986) and 
other quantities of interest.

ProBABility oF DEAth iN A cohort

Preliminary Notation

Let j (j = 1, . . . , N) denote an index for an individual in a population of interest at Time 
1. Denote by Bj the number of siblings in the family of respondent j (including respondent 
j) at the beginning of the period (or born into the group at Time 1), by Sj the number of 
siblings in the family of respondent j who survive to Time 2, and by Dj the number who 
die between Times 1 and 2, so that Bj = Sj + Dj . The proportion of those who die in this 
family is the mortality rate, calculated as Mj = Dj / Bj = (Bj – Sj) / Bj . This notation thus 
applies to a cohort in which all group members begin at Time 1 at the same age (such 
as 40-year-old men in Uganda) and end in Time 2 at the same age (as, e.g., 45-year-old 
Ugandan men) if they do not die in the interval between Times 1 and 2.  In the section 
Generalizations later in this article, we turn from cohort quantities to more practically 
useful period quantities.

We are interested in drawing a single sample of survivors at Time 2 to infer the mortal-
ity rate or other quantities from the full (unobserved) sample of interest at Time 1. That is, 
all the methods discussed in this article require only a single cross-sectional survey taken 
at the end of the period of interest, which we refer to as Time 2. For convenience, we as-
sume the absence of measurement error. Of course, in applications, researchers will need 
to follow all the standard techniques of survey design, such as pretesting and cognitive 
debriefing, to avoid recall bias and other potential sources of error, none of which are ad-
dressed by the methods discussed here. 

Quantity of interest
We now define the quantity of interest q, the probability of death (or the proportion of those 
in the population who die) for people in the interval from Time 1 to Time 2. To do this in 
an informative way, we first define dj as 1 if individual j dies between Time 1 and 2 and as 
0 if j survives. The quantity of interest can be expressed in three equivalent ways:
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Eq. (1) is perhaps the most obvious definition of the mortality rate. The second defines 
q for information collected at the family level or with one respondent per family  
(f  = 1, . . . , F ), where Bf and Df are the numbers of births and deaths among the siblings 
of family f, respectively, and ΣF

f = 1 Bf = N. The third is defined for the family mortality rate 
at the individual level for all individuals in the population.

If it were possible to draw a random sample from individuals at Time 1, the first and 
the third definitions would provide unbiased and consistent estimators; the second would 
be consistent if one could sample families (or one person from each family) at Time 1. 
All three estimators are biased when applied to a sample drawn at Time 2; our goal is to 
develop an estimator without these biases.

To be clear about the notation, each individual who is surveyed provides information 
about members of his or her entire sibship or, in other words, family-level information 
about B, S, and M (e.g., Mj = Mj ′ = Mf = Df / Bf for all j and j ′ that are members of the 
same sibship f ). Thus, if we could sample at Time 1, each draw of an individual would be 
equivalent to a draw of a family selected with probability proportional to Bj . For example, a 
family with five siblings is represented in the population with five times the frequency, and 
thus has five times the sampling weight, as a family with one sibling. The problem posed 
here is to estimate q from the biased random sample of those surviving to Time 2 rather 
than the definition, which refers to the full population at Time 1.

Existing Mortality Estimators
We now define in our notation two existing estimators of mortality from the sample avail-
able at Time 2. To do this, we introduce index i (i = 1, . . . , n) for respondents who have 
survived to Time 2 and thus appear in the Time 2 sample and are observed (n ≤ N).

The first existing estimator is what we refer to as the naive estimator and is merely the 
ratio of the total number of deaths to births reported by the survey respondents:
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This estimator has an obvious and massive selection bias problem because respondents from 
families with high mortality are underrepresented in the sample. Respondents from families 
with no survivors have zero probability of making it into the sample and so are not counted. 
In addition, by design, every sample contains information on n people (the respondents 
themselves) about whom we have no uncertainty and thus learn nothing, since they would 
not have been selected unless they survived. As a result of the selection bias problem, the 
naive estimator will, under most circumstances, underestimate the true mortality rate.

Second is the standard estimator. This approach eliminates data that contain no infor-
mation by omitting self-reports from the denominator (no modification of the numerator is 
necessary because it is zero for all survey respondents):
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Trussell and Rodríguez (1990) pointed out three sources of bias in this method: the respon-
dent (who is, of course, always alive) is not counted, which biases mortality estimates up-
ward; the mortality experience of the respondent’s siblings may be counted multiple times 
if they are all interviewed, and so families with low mortality may be overrepresented, 
causing mortality to be underestimated; and families with no survivors are not represented 
in the sample, which will bias mortality estimates downward.  Trussell and Rodríguez then 
proved the remarkable result that if mortality does not vary with sibship size these biases 
cancel out and q̌  is itself unbiased.

The assumption is critical: the estimator q̌  will be biased when applied to data in which 
any predictable relationship exists between sibship size and mortality. A causal relationship 
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between these two variables may be the reason for the relationship, but even a noncausal, 
spurious relationship will generate bias. Thus, bias would result if mortality is positively 
correlated with sibship size—for example, if people in high-mortality areas have more chil-
dren than those in low-mortality areas, or if children in large families have fewer resources 
and thus higher mortality than those in smaller families. Bias would also result in the re-
verse situation in which mortality is negatively correlated with sibship size. Any correlation 
between fertility and mortality, no matter the reason, will generate bias.

Although this unbiasedness condition likely applies only to real data in rare instances 
(Zaba and David 1996), Trussell and Rodríguez’s mathematical result demonstrating un-
biasedness when this condition holds is nonetheless vitally important. It demonstrates that 
there exist conditions under which it is possible to infer mortality in a population from a 
sample selected in a biased but convenient way. And what is more important, once an as-
sumption is highlighted and clarified, it is often possible to eliminate it altogether, a task 
to which we now turn.

our Estimator
We now build an estimator that requires no assumption about the relationship between 
fertility and mortality. The key is to recognize that sampling only at Time 2 generates two 
separate problems. The first is that selecting respondents at Time 2 with equal probability is 
equivalent to sampling families proportional to Si (the number of siblings surviving to Time 
2 for person i) rather than Bi (the number of siblings at Time 1 for person i). Fortunately, 
both Si and Bi are known for all observations sampled, and so to return to the desired Bi 
weighting, we replace the simple average of Mj in Eq. (3) with the weighted average of Mi, 
using weight Wi = Bi / Si . That is, the first part of our estimator, which applies to families 
with at least some survivors, is
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The weighting solves this portion of the problem with no uncertainty except for the usual 
sampling variability and measurement error. That is, using weights, as we suggest in Eq. (6), 
means that the first problem with Time 2 sampling vanishes (so that the estimate is exactly 
equal to the quantity of interest) in a census, in a sample as n increases, or on average for 
any fixed sample size.

The second problem with the sample drawn at Time 2 is that families with no sur-
vivors (Si = 0) are not represented, and so weighting to recover the full information is 
impossible. To be more precise, the missing information is the total number of siblings in 
families with zero survivors, which we denote with ζ and which needs to be added to both 
the numerator and denominator of the weighted average because for this group, Bi = Di . 
With an estimator for ζ, which we denote as ζ̂ , our estimator of the mortality rate will be
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Before discussing how to estimate ζ, we offer an alternative interpretation of Eq. (7) 
that is useful for intuition and for later generalizations. Thus far we have distinguished 
between two overlapping groups: the original population that is followed between Times 
1 and 2 and the respondents who are drawn randomly at Time 2 from those who have 
survived. If we could apply one of the simple expressions in Eqs. (1)–(3) to the original 
population, we would recover the quantity of interest q because, of course, this is how 
we define q. If instead we had a random sample from this original population and could 
elicit information about each person’s mortality during Times 1 and 2 and about his or her 
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 sibship, applying Eq. (1), q = ΣN
j = 1 dj / N, to the sample would yield an unbiased estimate 

of q.
Because bias would result if we applied the same uncorrected estimator to the observed 

Time 2 sample (and we do not observe the Time 1 population or a sample from it), we 
construct a pseudo-sample of the Time 1 respondents from the information in our Time 2 
sample. The pseudo-sample contains data that would not result in bias when we apply the 
estimators in Eqs. (1)–(3). We do this by rewriting Eq. (7) as
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where deaths and survivors in Eq. (8) refer to the totals in the pseudo-sample. Note that this 
equation is the sample analogue to Eq. (1) applied to the population.

So far, the only constraint we have put on the pseudo-sample is that the simple esti-
mators would yield unbiased estimates, but this constrains only the ratio in Eq. (8) to be 
correct, not deaths or survivors alone or their sum. To make real calculations, we need to 
constrain one of these (although the specific constraint is arbitrary and will not affect our 
estimate of q). Thus, we add the arbitrary constraint that the number of survivors in the 
pseudo-sample equals the number of respondents in our observed Time 2 sample so that 
survivors = n.

The remaining task is to compute the number of deaths in the pseudo-sample, adjusted 
to be relative to the fixed number of survivors. Eq. (9) shows how to do this by decomposing 
the number of deaths into the sum of two parts: deaths = ( / ) ˆD Si ii

n +∑ = ζ1 . To get the first 
component, we need to know the number of deaths for each survivor, which is Di / Si, and 
to add these up for all n survivors. The second component is the number of deaths in fami-
lies with zero survivors, ζ. The Time 2 sample reveals the first component directly, and we 
need to estimate the second. 

We now turn to estimating ζ, the final task of this section.1 Although no certain or 
directly estimable information about ζ exists in a sample drawn at Time 2, informative 
statistical information does appear to exist. We thus extrapolate to these quantities from in-
formation in the sample. To do this, we first compute the total number of deaths in the Time 
1 pseudo-sample from families with s survivors (for s = 1, 2, . . .) and fit a model predict-
ing this with s. We then use the same model to extrapolate these back to the (unobserved) 
number of deaths from families with s = 0 survivors, which gives us an estimate of ζ.

One approach is to regress the log of total deaths from families with s survivors in the 
Time 1 pseudo-sample on a quadratic function of s for s = 1, . . . , 7. (We exclude death 
proportions from s > 7 because in our data sets they are based on too few respondents 
and are thus noisier and less useful for extrapolating all the way back to s = 0.) That is,  
we run a linear regression of Y D Ss i ii S s≡ ln( ){ : }=∑  for s = 1, . . . , 7 on a constant, s, and 
s2, yielding

ˆ ˆ ˆ ˆ .Y s ss =α α α0 1 2
2+ +   (10)

1. We might think about factoring this number as ζ τ= F , where τ τ= b bb∑  is the expected number of 
siblings in families without survivors, and F is the number of families. However, although we could estimate τ  
from data collected at Time 2, the only way to estimate F from survey data would be to have some idea of how 
many people were interviewed from the same sibship. Establishing which survey respondents are from the same 
sibship is infeasible in most contexts and requires data that are not collected in any major national survey. We will 
therefore attempt to estimate ζ directly without this or any other decomposition.
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We then transform the constant term, α̂0 (which is the predicted value of the number of 
deaths in the pseudo-sample for s = 0), to obtain an estimate of ζ.2

Although we chose this simple quadratic model because it seemed to fit our real data 
well, nothing can guarantee that an extrapolation (i.e., an inference outside the range of 
observable data) will always be accurate (King and Zeng 2006). It is always possible that 
total deaths given s follow a completely different pattern for the unobserved point when s 
= 0 than for the observed points when s > 0. What makes us somewhat optimistic are ex-
periments, discussed later in the section Empirical Evidence, with data from 24 countries 
in which we set aside data we observe in each country and try to predict them from the 
rest of the observed data in that country; these experiments work out well in a wide range 
of countries. For example, we fairly accurately predict the number of deaths from families 
with one survivor (s = 1) using only the data on deaths for families with more than one 
survivor (s > 1). We also predict accurately the number of deaths from families with two 
survivors (s = 2) using deaths observed at s = {1, 3, 4, 5, 6, 7} and so on.

We made several choices based on empirical evidence, and so these may need to be 
changed for other applications. For example, we chose a quadratic form because it was the 
most parsimonious model that fit our data well. We also dropped families with more than 
seven children in fitting the quadratic model because of data sparseness. Yet we know that 
the tails of quadratic formulas are sensitive to outliers and thus will not always be appropri-
ate, and families with more than seven children may add important information in countries 
with higher mortality. Other possible approaches include using different functional forms 
following the strategy we adopted, using distributional assumptions (as in Zaba and David 
1996), or collecting additional information outside the sample, such as reports from moth-
ers or others on the number of deaths in sibships with zero survivors.

To emphasize the uncertain nature of extrapolation, we briefly discuss another ap-
proach, which is to regress the log of deaths in the observed sample, ln(Σ{i:S = s}Di), rather 
than the pseudo-sample, ln(S{i:S = s}Di / Si), on a quadratic function of the number of sur-
vivors, s. This approach would appear wrong except that the last observed point before 
extrapolation occurs at Si = 1, where the two are equivalent. This approach is slightly closer 
to the observed data than the approach we described above, and we still may be extrapolat-
ing to the number of deaths in the Time 1 pseudo-sample. We find that this approach fits 
the data slightly better, and so we usually stick with it, but which approach to use in any 
particular instance is, of course, an important substantive judgment.

Our ultimate estimator for the mortality rate from a cohort sample is then Eq. (7) with 
this estimate for ζ from the quadratic extrapolation substituted in. The uncertainties in 
this approach are due to sampling error, which vanishes as the sample size increases, and 
specification uncertainty due to the model used for the extrapolation necessary to estimate 
ζ. Because the samples that are typically available are large, normally only the latter is a 
significant concern.

An advantage of our approach is that it isolates the piece of the problem that is not 
amenable to direct statistical estimation so that the extrapolation model cannot affect 
inferences about families with survivors. The same extrapolation issue in our estimator 
exists in both previously used approaches, the only differences being that the extrapola-
tion is hidden in other calculations in those approaches, does not adapt to changes in the 
observed data, and affects inferences about all families. Of course, the necessity of ex-
trapolation is a property of the problem of estimating mortality via a survey rather than a 

2. One might think that we could merely exponentiate the constant term, eα̂, to remove the log scale, but this 
procedure is biased because the expected value of the log (which the regression estimates) is not equal to the log 
of the expected value (which this calculation would produce). A better procedure is either to simulate or to use the 
simple analytical solution based on the expected value of a log-normal density: e ˆ ˆα σ+ 2 2, where σ̂  is the standard 
error of the regression (see King, Tomz, and Wittenberg 2000).
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property of any one method. Standard errors or confidence intervals that are intended to 
represent these uncertainties in the current approach other than model dependence can be 
computed via bootstrapping. We should expect model dependence to be larger in groups 
for which ζ is likely to be the largest, such as groups with high mortality rates and low 
fertility rates.

SiMulAtioN EViDENcE
We now compare the naive and standard estimators with our new estimator in the usual 
way by evaluating bias and mean square error. We do this by Monte Carlo simulation. We 
create 27 scenarios by cross-classifying all combinations of low (0.1), medium (0.2), and 
high (0.3) average mortality rates, with average fertility levels approximately representing 
Kenya (4.26 children), Turkey (3.07), and Kazakstan (2.56), and positive, zero, and negative 
correlations between family size and mortality. For each of these 27 scenarios, we create 
1,000 data sets, each with n = 1,000 randomly drawn Time 2 survey respondents. For each 
data set, we compute each of the three estimators and evaluate bias and mean square error. 
We then quantify how much each of the two corrections contributes to the bias reduction 
in our estimator.

Bias
The degree of bias is defined for estimator q̂  as Bias ( ˆ) ( ˆ )q E q= −q , where E( )⋅  takes the 
average over repeated samples. We approximate this quantity and the bias for the other 
two estimators by subtracting the true mortality from the mortality estimated from each of 
the 1,000 data sets and then averaging. Figure 1 portrays these results. The three graphs 
in this figure portray data from positive (left graph), zero (middle graph), and negative 
(right graph) correlations between sibship size and mortality. True mortality is displayed 
horizontally and bias in an estimator is shown vertically, with a line drawn to denote zero 
bias. Higher fertility levels are represented with bigger symbols.

In all three graphs, we denote our estimator by a closed circle, all 27 of which are 
fairly near the zero-bias line. The deviation from zero bias is due only to estimating ζ, 
since it requires extrapolation. The other portion of the estimator is an exact correc-
tion (so that if we knew the true ζ and used it, our estimator would be exactly on the 
zero-bias line). As expected, bias in the naive estimator, which we denote in the graph 
by an asterisk, is always well below the line, indicating that it underestimates mortal-
ity, no matter what the correlation is. Finally, we plot the bias in the standard estimator 
widely used in the literature with a triangle. When sibship size is positively correlated 
with mortality, the standard estimator markedly overestimates mortality (note the positive 
bias portrayed above the line for all triangles in the left graph). When sibship size and 
mortality are negatively correlated (portrayed in the right graph), the standard estimator is 
substantially biased in the opposite direction, indicating that it underestimates mortality. 
As expected, when the assumptions of the technique happen to hold in the data (i.e., when 
sibship size and mortality are uncorrelated, as in the middle graph) the standard estimator 
is unbiased. 

For all three estimators, the absolute level of bias increases to some degree with the 
true level of mortality. This pattern exists because higher average mortality normally signi-
fies a larger number of deaths and variance in the possible numbers of deaths from families 
with zero survivors, which is information that is not directly represented in the sample.

Bias in the standard estimator and our approach do not appear to increase or decrease 
systematically with different fertility levels. In contrast, the naive estimator is clearly 
worse with lower levels of fertility (the smaller asterisks appear lower on the graph, indi-
cating larger absolute bias) because in these situations, the apparent information from the 
respondent’s self-reports of their own (lack of) mortality represent a larger fraction of the 
data used in the naive estimator.
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Mean Square Error

When approximate unbiasedness is used as a criterion in statistical inference, it pays to 
check that unbiasedness is not being achieved at a cost in higher variance. For this pur-
pose, mean square error is normally used. The mean square error is the squared difference 
between the estimator and the truth, and it factors into the squared bias plus the variance. 
For example, the mean square error of our estimator q̂ is

MSE( ˆ) ( ˆ )q E q q= −



2

= +V q Bias q( ˆ) ( ˆ) .2  (11)

We follow convention in presenting the results in terms of the square root of mean square 
error (or RMSE) because it is on the scale of mortality.

Figure 1. Bias in Mortality Estimates: Simulations Drawn With Three Levels of Mortality (0.1, 0.2, 
and 0.3) and Three Different Relationships Between Mortality and Fertility (positive cor-
relation, zero correlation, and negative correlation)
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The results are presented in Figure 2, which is organized as Figure 1 is in terms 
of graphs, sizes, and symbols to represent correlation, average fertility, and estimators, 
 respectively. In these graphs, RMSE is on the vertical axis, where symbols higher on the 
graph indicate larger values of RMSE and an inferior estimator. The results here parallel 
those for bias: the naive estimator has the highest (worst) RMSE for all scenarios. Our 
estimator has lower RMSE than the other two for negative and positive correlations. Only 
when the standard estimator’s assumption of zero correlation happens to hold, as in the 
middle graph, does the standard estimator have about the same RMSE as our approach.

Because we cannot know ex ante what the correlation is between sibship size and mor-
tality, our estimator, which does not require an assumption about this relationship, is clearly 
a better choice for real applications than the standard approach. In statistical language, we 
say that the new estimator “dominates” the standard approach.

Figure 2. Root Mean Square Error (RMSE) in Mortality Estimates: Simulations Drawn With Three 
Levels of Mortality (0.1, 0.2, and 0.3) and Three Different Relationships Between Mortality 
and Fertility (positive correlation, zero correlation, and negative correlation)
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Sources of Bias reduction

Now that we have established the advantages of our estimator in simulated data, we brief-
ly show how much bias is reduced by each of the two corrections it includes. Table 1 lists 
the absolute bias of the naive estimator for each of our 27 data sets, each randomly drawn 
from a different set of starting parameters. The penultimate column of the table shows 
the percentage reduction in bias from the naive estimator via weighting without correct-
ing for families with zero survivors. Clearly, weighting eliminates most of the bias, with 
only 27.5% of the bias left, on average, and never more than half of the bias left. This 

Table 1. Percentage Bias Remaining Relative to the Absolute Bias in the Naive Estimator: Our 
Estimator Without Correcting for Families With No Survivors (i.e., with weighting only), 
q̂0, and With Full Corrections, q̂

	 	 Bias	Remaining	as	a	
	

Naive
	 Percentage	of			

Absolute
	 the	Naive	Estimator	 	______________________

Correlation	 Fertility	 Mortality	 Bias	 q̂0	 q̂

Negative	 High	 Low	 0.03	 25.9	 9.5
Negative	 High	 Medium	 0.05	 27.4	 13.9
Negative	 High	 High	 0.08	 31.1	 17.4
Negative		 Medium	 Low	 0.03	 29.2	 16.5
Negative	 Medium	 Medium	 0.07	 33.4	 6.0
Negative	 Medium	 High	 0.10	 41.5	 7.0
Negative	 Low	 Low	 0.05	 35.7	 12.5
Negative	 Low	 Medium	 0.08	 40.3	 3.3
Negative	 Low	 High	 0.13	 46.3	 7.1

Zero	 High	 Low	 0.02	 19.8	 8.3
Zero	 High	 Medium	 0.05	 21.2	 11.3
Zero	 High	 High	 0.07	 23.5	 14.7
Zero	 Medium	 Low	 0.03	 23.6	 13.5
Zero	 Medium	 Medium	 0.06	 27.7	 2.6
Zero	 Medium	 High	 0.09	 32.1	 7.7
Zero	 Low	 Low	 0.04	 30.7	 11.9
Zero	 Low	 Medium	 0.08	 35.7	 0.2
Zero	 Low	 High	 0.12	 40.1	 9.5

Positive	 High	 Low	 0.02	 10.8	 4.6
Positive	 High	 Medium	 0.04	 15.9	 8.9
Positive	 High	 High	 0.07	 12.8	 8.0
Positive	 Medium	 Low	 0.03	 14.7	 5.9
Positive	 Medium	 Medium	 0.06	 19.4	 1.7
Positive	 Medium	 High	 0.09	 21.5	 4.2
Positive	 Low	 Low	 0.04	 23.7	 6.1
Positive	 Low	 Medium	 0.07	 28.8	 0.1
Positive	 Low	 High	 0.11	 28.9	 7.2

Average	 	 	 0.06	 27.5	 8.1



Estimating Adult Mortality Without Selection Bias 579

 weighting-only correction produces the largest reduction in bias in settings where the 
percentage of families with zero survivors is the lowest—that is, in populations with high 
fertility and low mortality—and where there is a positive correlation between sibship size 
and mortality. Although most of the bias is eliminated by weighting alone in all simulated 
data sets, correcting also for families with zero survivors adds significantly to the bias 
reduction. The final column of the table demonstrates this by showing our full estimator, 
which both weights and corrects for families with zero survivors.  As shown in this col-
umn, the bias is now reduced, on average, to only about 8% of the naive estimator’s bias.

EMPiricAl EViDENcE
Unfortunately, publicly available data do not exist to make extensive validation tests. It 
would be ideal to be able to compare estimates based on survey data to a gold standard, 
such as mortality calculated from a reliable vital registration system, but these data are not 
available. The DHS, for example, are conducted in countries with incomplete or nonexis-
tent vital registration systems. In this section, we therefore focus on two empirical issues 
that are nevertheless crucial.

First, we estimate in real data the correlation between sibship size and mortality. If 
this correlation is always near zero, then the method used in the literature would pose little 
risk of bias. To estimate this correlation, we apply our estimator of mortality separately to 
survey respondents with two siblings, three siblings, and so on, so that estimating ζ is not 
necessary. Then we simply compute the zero-order correlation between mortality, q̂ , and 
sibship size, B. We apply this procedure in 27 separate DHS surveys covering 24 countries. 
The countries, the year in which the survey was conducted, and the estimated correlation 
appear in Table 2.

Table 2 demonstrates unambiguously that mortality is not empirically independent of 
sibship size, as the standard estimator assumes. In the vast majority of surveys, the correla-
tion is very high, often above .90. In two surveys, the correlation is negative. Any devia-
tion from a zero correlation invalidates the standard estimator, but this table does not even 
suggest a tendency toward a zero correlation.

Table 2. Correlations Between Sibship Size and Mortality in 27 Country-Years
Country	 Year	 Coefficient	 Country	 Year	 Coefficient

Peru	 2000	 0.97	 Guinea	 1999	 0.80

Indonesia	 1997	 0.96	 Zimbabwe	 1994	 0.76

Burkina	Faso	 1998	 0.95	 Nepal	 1996	 0.75

Benin	 1996	 0.95	 Cameroon	 1998	 0.75

Peru	 1996	 0.95	 Cote	D’Ivoire	 1994	 0.75

Nigeria	 1999	 0.93	 Togo	 1998	 0.74

Philippines	 1998	 0.93	 Eritrea	 1995	 0.70

Chad	 1997	 0.93	 Ethiopia	 2000	 0.71

Brazil	     1996	 0.92	 Zimbabwe	 1999	 0.69

Indonesia	 1994	 0.91	 Colombia	 1995	 0.52

Senegal	 1999	 0.90	 Zambia	 1996	 0.47

Philippines	 1993	 0.88	 Uganda	 1995	 –0.06

Mali	 1996	 0.86	 Madagascar	 1997	 –0.19

Tanzania	 1996	 0.82



580 Demography, Volume 43-Number 3, August 2006

Finally, we offer empirical evidence that our procedure for estimating ζ (the number of 
deaths in families with zero survivors) works well. The estimation weights in q̂ eliminate 
all bias from information obtained from families with one or more survivors, and so any 
bias that remains is solely a function of bias in estimating ζ , making it the crucial remaining 
source of uncertainty in estimating deaths by survey.

Figure 3 demonstrates that the quadratic model we use to estimate ζ fits the observed 
data in 27 different surveys from 24 different countries well. This finding provides con-
siderable confidence, although not proof, that the only unobserved point would fit well too 
and thus that ζ̂ is probably accurate. We go another step and withhold one observed data 
point at a time to see how accurately we can predict the data point with the remainder of 
the observed data points; the highly accurate fit of the data in Figure 3 is, of course, a good 
indication that this exercise (which we do not show here) also reveals high-quality predic-
tions. Finally, although one should not make too much of a close fit of a model with three 
parameters to seven data points, the fact that the estimated relationship between sibship 
size and mortality is highly similar across this long list of diverse countries estimated inde-
pendently is additional evidence that we have found a persistent, stable pattern that may be 
useful in extrapolating to deaths in families with zero survivors. (Indeed, although we do 
not pursue it here, a hierarchical model that shrinks these patterns toward a common mean 
or geographic neighbors might improve these estimates further.)

gENErAliZAtioNS

Maternal Mortality, orphan Studies, and other Family Data

In the section Probability of Death in a Cohort, we assumed that respondents are asked 
about their siblings. However, the same sample typically includes respondents with infor-
mation about relatives who are not in their group. For example, if we are interested in the 
male mortality rate, our procedure requires asking males about their male siblings. How-
ever, asking females about their male siblings would provide additional valuable informa-
tion about the same quantity. We now develop a method to improve our estimator by using 
this readily available, additional information. Without loss of generality, we continue with 
this example and assume the quantity of interest is the male mortality rate. We use all the 
notation we used earlier to refer to information about males from either male or female 
respondents and add other notation when necessary.

In this alternative data collection scheme, each male respondent reporting about his 
male siblings in the Time 2 sample still counts for Di / Si deaths in the Time 1 pseudo-sam-
ple. The information reported by our female respondents must be treated somewhat differ-
ently.  Females without male siblings convey no information about the male mortality rate 
and thus should be dropped. We might think about using the information provided by the 
remaining female respondents in the same way as we do with male respondents. However, 
this would assume that the mortality rate of the male siblings of females who survive to 
Time 2 and appear in our sample is the same as the mortality rate of male siblings of males 
who also appear in our sample. If instead, for example, males in families with many female 
siblings have lower mortality rates than males in families with fewer female siblings, then 
using the additional information provided by randomly selected surviving females would 
introduce a new form of selection bias.

Fortunately, we can use a weighting mechanism that is analogous to that in our original 
estimator to avoid this selection bias. The procedure is to weight the sample of females in 
the same proportion as the males they represent and then to apply the original weight to 
transform the result to the Time 1 pseudo-sample. To do this, we need to define deaths and 
survivors in Eq. (8).

We first fix the number of survivors to be the number of male respondents, nm, plus the 
number of female respondents nf, weighted to represent an equivalent sample of males. To 
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Figure 3. Quadratic Models Fit to Sibship Size (on x-axis), by Logged Proportion of Deaths (on 
y-axis), for 27 Country-Years
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do the latter, we first compute the number of males in the pseudo-sample represented by 
each female respondent sampled at Time 2, which is the ratio of the survival rate for males 
to the survival rate for females: R S B S Bi i i

f f
i i

= ( ) ( ), where S
i

f  and B
i

f  are the numbers 
of female siblings who survive and are born into the cohort, respectively, as reported by 
female respondents. In other words, if male survival is twice that of females, then each 
 female who is interviewed informs us about two males and thus needs to be weighted 
with R = 2. If male and female survival rates are the same, then R = 1 and no weighting is 
needed. Then we define

survivors= n Rm i
i

n f

+∑
=1

.   (12)

Finally, for each survivor, we determine the number of deaths in the Time 1 pseudo-
sample, which is Di / Si for each male respondent and Ri(Di / Si) for each female respondent, 
as well as ζ, which is not represented in the sample. Thus, we write

deaths=
= =
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where we use i (i = 1, . . . , nm) for male respondents and i′ (i′ = 1, . . . , nf) for female 
 respondents.

To improve estimates of male mortality, we can ask females about their brothers, as 
in the example here, and we can gather information about male mortality from parents. A 
similar approach can be used to estimate maternal mortality or the mortality of parents from 
data on (adult) children or sisters (Timœus 1991a).

From cohort to Period Estimation
For simplicity, we have until now presented our approach using quantities of interest 
defined for a cohort of people with fixed attributes, such as 20- to 40-year-old women, 
defined over the same interval of time, say 1980–2000. However, unless we draw a 
 special sample that includes only 20-year-old women who were all born on the same day, 
our surveys will include many women who are at least 20 and no older than 40 for only 
part of the 20 years from 1980 to 2000. The cohort approach would not make use of this 
information. This problem is typically addressed in demographic studies by counting 
person-years and measuring period, rather than cohort, quantities (Preston, Heuveline, 
and Guillot 2001). If a woman turned 20 in 1990, we could include her in the sample by 
simply counting her as contributing “half of a respondent” to the sample because she was 
at risk of dying in the right age range for only 10 years, whereas those who were 20 years 
old in 1980 were at risk for 20 years. Any portion of a person’s life for which he or she 
is not at risk of dying at age 20–40 and between Time 1 and 2 is thus removed from the 
sample and not counted, but those who appear in the sample for part of the period would 
contribute to our estimates. Following person-years in this way means that we are esti-
mating the mortality of the period defined by the interval from Time 1 to Time 2 and are 
not following a specific cohort over this interval.

To formalize this idea, we first define Bj
* as the person-years lived and for simplicity, 

define the period of interest as one year (or we could equivalently refer to person-years 
lived as person-periods lived). The new quantity of interest, denominated in person-years, 
is thus

q
M
B

jj
N

jj
N

*
*

* ,= =

=

1

1

∑

∑
  (14)
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where M j
* is the number of deaths in the family of respondent j (including j) in the group 

of interest, divided by the number of people who contribute any positive number of person-
years to the analysis in family j in the group of interest. 

Our conditional estimator is then

ˆ
ˆ

ˆ ,*
* *

q M W
W

i ii
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ii
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= =
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ζ

ζ
1

1

  (15)

where in the denominator, ζ* is the total number of person-years lived in families with zero 
survivors and W B Sj j j

* *=  denotes an alternative weight. The numerator of the conditional 
estimator is thus identical to that in Eq. (7), whereas the denominator is now the total 
 number of person-years. One additional quantity, ζ*, needs to be extrapolated from the 
sample, which we do in the same manner as for ζ, except that the variable being predicted 
by s is the total number of person-years in families with s survivors.

coNcluDiNg rEMArKS
The approach to estimating adult mortality from data on sibling survival described herein 
requires only a single representative cross-sectional survey with questions about the re-
spondents’ sibship size and survival histories. As with any inferential task, a larger data set 
is always better, or at least not worse, than a smaller one. For mortality estimation, larger 
sample sizes are especially useful when applied to cohorts or countries with low mortality 
rates, but no special features of the methods employed require data sets that are any larger 
than usual.

The method of estimation has two required features. The first is a weight variable that 
can be constructed from the variables that are already being collected and without any 
additional information. This is an unusual situation because although weighting functions 
are used often in statistics, weights are normally constructed using external information, 
such as sampling strata; with our approach the weight is constructed directly from the 
variables of interest. The second required feature is an estimate of the number of people 
who have died in families with zero survivors. This is information not represented di-
rectly in the sample and is available either by assumption (as in the standard approach) or, 
as we suggest, by extrapolation from observed patterns in the data. Although the weight-
ing is an exact correction, the extrapolation is by its nature more risky. It is, however, the 
only portion of the estimator that contains uncertainty beyond that typically involved in 
sample surveys.

For applied work, researchers should easily be able to substitute the approach intro-
duced here for the standard method and its variants that are presently used in the literature. 
Unless a researcher happened to be certain that sibship sizes in a particular data set were 
unrelated to mortality, which seems unlikely in practice, the new approach would generally 
be preferable. Although the simulation presented here applies to a wide range of countries 
and types of mortality and fertility patterns, it will not apply to all; in those situations, it 
would be sufficiently easy to rerun our simulation with other parameter values. 

The idea of using information on family members to estimate mortality rates of groups 
of which the respondent is a member can be extended to other, less well-defined groups 
based on, for example, surveys of neighbors, teachers, and coworkers.  This seems like 
valuable information that would be easy to collect in most sample surveys, but then the 
equivalent of sibship size would not be known and thus would need to be estimated by other 
means, such as the numbers of friends and contacts or network centrality.
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