Death by Survey Estimating Adult Mortality without Selection Bias

Emmanuela Gakidou Gary King

July 20, 2005

Emmanuela Gakidou, Gary King ()

Death by Survey

July 20, 2005 1 / 29

Sources of Mortality Data

Death by Survey

▶ < 불 ▶ 불 ∽ ९ ୯ July 20, 2005 2 / 29

Image: A mathematical states and a mathem

 Vital (and sample) registration systems (death certificates, mostly in developed countries)

- Vital (and sample) registration systems (death certificates, mostly in developed countries)
- Demographic surveillance systems (a few isolated projects)

- Vital (and sample) registration systems (death certificates, mostly in developed countries)
- Demographic surveillance systems (a few isolated projects)

• Wild guesses

(typically reported in the media, usually citing other wild guesses as authorities)

• Medical researchers

Image: Image:

- Medical researchers
- Public health researchers

- Medical researchers
- Public health researchers
- Public policy makers

- Medical researchers
- Public health researchers
- Public policy makers
- Demographers

- Medical researchers
- Public health researchers
- Public policy makers
- Demographers
- Epidemiologists

- Medical researchers
- Public health researchers
- Public policy makers
- Demographers
- Epidemiologists
- Sociologists

- Medical researchers
- Public health researchers
- Public policy makers
- Demographers
- Epidemiologists
- Sociologists
- Political scientists:

- Medical researchers
- Public health researchers
- Public policy makers
- Demographers
- Epidemiologists
- Sociologists
- Political scientists:
 - IR studies: the elite decision to go to war

- Medical researchers
- Public health researchers
- Public policy makers
- Demographers
- Epidemiologists
- Sociologists
- Political scientists:
 - IR studies: the elite decision to go to war
 - Should also study: more ultimate outcomes, like human misery or mortality

- Medical researchers
- Public health researchers
- Public policy makers
- Demographers
- Epidemiologists
- Sociologists
- Political scientists:
 - IR studies: the elite decision to go to war
 - Should also study: more ultimate outcomes, like human misery or mortality
 - The Big Problems: uncertainty and selection bias

Uncertainty in Death Estimates from Major Sources The 1990s' Ten Most Deadly Conflicts

		People Killed (in 1000s)		
Country	Year	Low	High	Range
Rwanda	1994	500	1,000	500
Angola	1992–4	100	500	400
Somalia	1991–9	48	300	252
Bosnia	1992–5	35	250	215
Liberia	1991–6	25	200	175
Burundi	1993	30	200	170
Chechnya	1994–6	30	90	60
Tajikistan	1992–9	20	120	100
Algeria	1992–9	30	100	70
Gulf war	1990–1	4.3	100	95.7

Image: Image:

	Survey

Vital registration areas (cross-hatched): mostly low conflict

Vital registration areas (cross-hatched): mostly low conflict No registration areas: much higher conflict

Death by Survey

• Parents (Brass and Hill, 1973; Hill and Trussell 1977; Timaeus 1991b, 1986)

- Parents (Brass and Hill, 1973; Hill and Trussell 1977; Timaeus 1991b, 1986)
- Siblings (Bicego 1997; Chiphangwi et al. 1992; Danel et al. 1996; Gakidou, Hogan, and Lopez 2004; Garenne and Friedberg 1997; Graham, Brass, and Snow, 1989; Shahidullah 1995; Shiferaw and Tessema 1993; Timaeus and Ali 2001; Walraven and van Dongen 1994; Wirawan and Linnan 1994)

- Parents (Brass and Hill, 1973; Hill and Trussell 1977; Timaeus 1991b, 1986)
- Siblings (Bicego 1997; Chiphangwi et al. 1992; Danel et al. 1996; Gakidou, Hogan, and Lopez 2004; Garenne and Friedberg 1997; Graham, Brass, and Snow, 1989; Shahidullah 1995; Shiferaw and Tessema 1993; Timaeus and Ali 2001; Walraven and van Dongen 1994; Wirawan and Linnan 1994)
- Spouses (Malaker 1986; Stanton, Noureddine and Hill 2000; Singh 2000; Timaeus 1991)

- Parents (Brass and Hill, 1973; Hill and Trussell 1977; Timaeus 1991b, 1986)
- Siblings (Bicego 1997; Chiphangwi et al. 1992; Danel et al. 1996; Gakidou, Hogan, and Lopez 2004; Garenne and Friedberg 1997; Graham, Brass, and Snow, 1989; Shahidullah 1995; Shiferaw and Tessema 1993; Timaeus and Ali 2001; Walraven and van Dongen 1994; Wirawan and Linnan 1994)
- Spouses (Malaker 1986; Stanton, Noureddine and Hill 2000; Singh 2000; Timaeus 1991)
- Household residents and others (Feeney 2001; Graham, Brass, and Snow, 1989)

- Demography
- Epidemiology
- Public health
- Medicine
- Sociology

- Demography numbers without statistics
- Epidemiology
- Public health
- Medicine
- Sociology

- Demography numbers without statistics
- Epidemiology good statistics in narrow areas
- Public health
- Medicine
- Sociology

- Demography numbers without statistics
- Epidemiology good statistics in narrow areas
- Public health collections of other disciplines
- Medicine
- Sociology

- Demography numbers without statistics
- Epidemiology good statistics in narrow areas
- Public health collections of other disciplines
- Medicine users, not methodological innovators
- Sociology

- Demography numbers without statistics
- Epidemiology good statistics in narrow areas
- Public health collections of other disciplines
- Medicine users, not methodological innovators
- Sociology

Several hundred articles published in:

- Demography numbers without statistics
- Epidemiology good statistics in narrow areas
- Public health collections of other disciplines
- Medicine users, not methodological innovators
- Sociology

Major global effort to collect data on adult mortality

Several hundred articles published in:

- Demography numbers without statistics
- Epidemiology good statistics in narrow areas
- Public health collections of other disciplines
- Medicine users, not methodological innovators
- Sociology

Major global effort to collect data on adult mortality

• World Health Survey (80 countries)

Several hundred articles published in:

- Demography numbers without statistics
- Epidemiology good statistics in narrow areas
- Public health collections of other disciplines
- Medicine users, not methodological innovators
- Sociology

Major global effort to collect data on adult mortality

- World Health Survey (80 countries)
- Demographic and Health Surveys (70 countries)

Several hundred articles published in:

- Demography numbers without statistics
- Epidemiology good statistics in narrow areas
- Public health collections of other disciplines
- Medicine users, not methodological innovators
- Sociology

Major global effort to collect data on adult mortality

- World Health Survey (80 countries)
- Demographic and Health Surveys (70 countries)
- Gates Grand Challenge surveys (\$20M, about to begin)

Extensive Efforts to Develop and Apply These Methods

Several hundred articles published in:

- Demography numbers without statistics
- Epidemiology good statistics in narrow areas
- Public health collections of other disciplines
- Medicine users, not methodological innovators
- Sociology

Major global effort to collect data on adult mortality

- World Health Survey (80 countries)
- Demographic and Health Surveys (70 countries)
- Gates Grand Challenge surveys (\$20M, about to begin)
- Ellison Institute Surveys (\$100M, about to begin)

Methodology

Death by Survey

・ロト ・日子・ ・ ヨト

Methodology

The Tradeoff

Death by Survey

(日) (日) (日) (日)

Vital registration: small biases but very expensive

Vital registration: small biases but very expensive Surveys: large biases but inexpensive

Vital registration: small biases but very expensive Surveys: large biases but inexpensive

• Selection the Dependent Variable: high mortality families less likely to be surveyed

Vital registration: small biases but very expensive Surveys: large biases but inexpensive

- Selection the Dependent Variable: high mortality families less likely to be surveyed
- Can biases can be corrected?

Vital registration: small biases but very expensive Surveys: large biases but inexpensive

- Selection the Dependent Variable: high mortality families less likely to be surveyed
- Can biases can be corrected?

The Constraint: Statistics with your hands tied behind your back

Vital registration: small biases but very expensive Surveys: large biases but inexpensive

- Selection the Dependent Variable: high mortality families less likely to be surveyed
- Can biases can be corrected?

The Constraint: Statistics with your hands tied behind your back

For demographers to accept: methods must be simple and transparent.

Vital registration: small biases but very expensive Surveys: large biases but inexpensive

- Selection the Dependent Variable: high mortality families less likely to be surveyed
- Can biases can be corrected?

The Constraint: Statistics with your hands tied behind your back

For demographers to accept: methods must be simple and transparent.

The Opportunity

Vital registration: small biases but very expensive Surveys: large biases but inexpensive

- Selection the Dependent Variable: high mortality families less likely to be surveyed
- Can biases can be corrected?

The Constraint: Statistics with your hands tied behind your back

For demographers to accept: methods must be simple and transparent.

The Opportunity

• Joining Demography and Statistics (through political science)

Vital registration: small biases but very expensive Surveys: large biases but inexpensive

- Selection the Dependent Variable: high mortality families less likely to be surveyed
- Can biases can be corrected?

The Constraint: Statistics with your hands tied behind your back

For demographers to accept: methods must be simple and transparent.

The Opportunity

- Joining Demography and Statistics (through political science)
- Directing public health dollars (9% of the world's economy)

Vital registration: small biases but very expensive Surveys: large biases but inexpensive

- Selection the Dependent Variable: high mortality families less likely to be surveyed
- Can biases can be corrected?

The Constraint: Statistics with your hands tied behind your back

For demographers to accept: methods must be simple and transparent.

The Opportunity

- Joining Demography and Statistics (through political science)
- Directing public health dollars (9% of the world's economy)
- Understanding the consequences of war and the causes of war

A Simplified Quantity of Interest

A Simplified Quantity of Interest

• Consider a cohort of men who turn 20 on 5/1/1980

A Simplified Quantity of Interest

- Consider a cohort of men who turn 20 on 5/1/1980
- Track the individuals for 10 years

- $\bullet\,$ Consider a cohort of men who turn 20 on 5/1/1980
- Track the individuals for 10 years
- Quantity of interest: Proportion dead between times 1 and 2

- $\bullet\,$ Consider a cohort of men who turn 20 on $5/1/1980\,$
- Track the individuals for 10 years
- Quantity of interest: Proportion dead between times 1 and 2

	d_j	Sibship
	0	1
Mortality =	1	1
	0	1
q =	1	2
7	1	2

- Consider a cohort of men who turn 20 on 5/1/1980
- Track the individuals for 10 years
- Quantity of interest: Proportion dead between times 1 and 2

- Consider a cohort of men who turn 20 on 5/1/1980
- Track the individuals for 10 years
- Quantity of interest: Proportion dead between times 1 and 2

		d_j	M_j	Sibship
Deaths $\sum_{i=1}^{N} (S_{i})$	Sibship Mortality) _j	0	1/3	1
Mortality = $\frac{Deaths}{"Births"} = \frac{2z_{J=1}}{"Births"}$	"Births"	1	1/3	1
		0	1/3	1
$a = \frac{\sum_{j=1}^{N} d_j}{\sum_{j=1}^{N} d_j} = \frac{\sum_{j=1}^{N} d_j}{\sum_{j=1}^{N} d_j}$	<i>¶_j</i>	1	2/2	2
" N N		1	2/2	2

- Consider a cohort of men who turn 20 on 5/1/1980
- Track the individuals for 10 years
- Quantity of interest: Proportion dead between times 1 and 2

	d_j	M_j	Sibship
Mortolity – Deaths $\sum_{j=1}^{N} (\text{Sibship Mortality})_j$	0	1/3	1
Mortality = $\frac{\text{Deaths}}{\text{"Births"}} = \frac{\sum_{j=1}^{n} (\text{Births"})^{j}}{\text{"Births"}}$	1	1/3	1
	0	1/3	1
$a = \frac{\sum_{j=1}^{N} d_j}{\sum_{j=1}^{N} M_j}$	1	2/2	2
" N N	1	2/2	2

• Applied as estimators to (time 1) samples: unbiased

	Survey

Vital registration data

d_j	M_j	Sibship
0	1/3	1
1	1/3	1
0	1/3	1
1	2/3	2
1	2/3	2
0	2/3	2
1	2/2	3
1	2/2	3

Vital registration data

d_j	M_j	Sibship
0	1/3	1
1	1/3	1
0	1/3	1
1	2/3	2
1	2/3	2
0	2/3	2
1	2/2	3
1	2/2	3

(Unobserved at time 2)

Vital registration data

d_j	M_{j}	Sibship	
0	1/3	1	
1	1/3	1	
0	1/3	1	
1	2/3	2	
1	2/3	2	
0	2/3	2	
1	2/2	3	
1	2/2	3	

Data available to sample at time 2

di	M_i
0	1/3
0	1/3
0	2/3

(Unobserved at time 2)

Vital registration data

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d_j	M_j	Sibship
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1/3	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1/3	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1/3	1
0 2/3 2 1 2/2 3	1	2/3	2
1 2/2 3	1	2/3	2
· · · · · · · · · · · · · · · · · · ·	0	2/3	2
1 2/2 3	1	2/2	3
	1	2/2	3

(Unobserved at time 2)

Data available to sample at time 2

di	M_i
0	1/3
0	1/3
0	2/3

• Each respondent reports on entire sibship

()

Vital registration data

d_j	M_{j}	Sibship
0	1/3	1
1	1/3	1
0	1/3	1
1	2/3	2
1	2/3	2
0	2/3	2
1	2/2	3
1	2/2	3

(Unobserved at time 2)

Data available to sample at time 2

di	M_i
0	1/3
0	1/3
0	2/3

- Each respondent reports on entire sibship
- High mortality sibships: underrepresented

Vital registration data

d_j	M_{j}	Sibship
0	1/3	1
1	1/3	1
0	1/3	1
1	2/3	2
1	2/3	2
0	2/3	2
1	2/2	3
1	2/2	3

(Unobserved at time 2)

Data available to sample at time 2

di	M_i
0	1/3
0	1/3
0	2/3

- Each respondent reports on entire sibship
- High mortality sibships: underrepresented
- No sibships with 0 survivors

Vital registration data

d_j	M_{j}	Sibship
0	1/3	1
1	1/3	1
0	1/3	1
1	2/3	2
1	2/3	2
0	2/3	2
1	2/2	3
1	2/2	3

(Unobserved at time 2)

Data available to sample at time 2

di	Mi
0	1/3
0	1/3
0	2/3

- Each respondent reports on entire sibship
- High mortality sibships: underrepresented
- No sibships with 0 survivors
- Some families counted more than once

		irvey

 $\dot{q} =$

$$\dot{q} = rac{\mathsf{Reported Deaths}}{\mathsf{Reported "Births"}} =$$

$$\dot{q} = rac{\text{Reported Deaths}}{\text{Reported "Births"}} = rac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i}$$

$$\dot{q} = \frac{\text{Reported Deaths}}{\text{Reported "Births"}} = \frac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i}$$

Estimator is biased downward:

$$\dot{q} = \frac{\text{Reported Deaths}}{\text{Reported "Births"}} = \frac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i}$$

Estimator is biased downward:

• High mortality sibships: underrepresented

$$\dot{q} = rac{\text{Reported Deaths}}{\text{Reported "Births"}} = rac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i}$$

Estimator is biased downward:

- High mortality sibships: underrepresented
- Sibships with 0 survivors: not represented

$$\dot{q} = rac{\text{Reported Deaths}}{\text{Reported "Births"}} = rac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i}$$

Estimator is biased downward:

- High mortality sibships: underrepresented
- Sibships with 0 survivors: not represented
- Sample includes *n* "survivors" by design

Deat		

$$\check{q} =$$

$$\check{q} = \frac{\text{Reported Deaths } -0}{\text{Reported "Births" } -n}$$

$$\check{q} = \frac{\text{Reported Deaths } -0}{\text{Reported "Births"} - n} = \frac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i - n}$$

Standard = Naive, omitting self-reports:

$$\check{q} = \frac{\text{Reported Deaths } -0}{\text{Reported "Births" } -n} = \frac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i - n}$$

• Contributing biases:

$$\check{q} = \frac{\text{Reported Deaths } -0}{\text{Reported "Births" } -n} = \frac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i - n}$$

- Contributing biases:
 - High mortality sibships underrepresented: downward bias

$$\check{q} = \frac{\text{Reported Deaths } -0}{\text{Reported "Births" } -n} = \frac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i - n}$$

- Contributing biases:
 - High mortality sibships underrepresented: downward bias
 - Sibships with 0 survivors not represented: downward bias

$$\check{q} = \frac{\text{Reported Deaths } -0}{\text{Reported "Births"} -n} = \frac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i - n}$$

- Contributing biases:
 - High mortality sibships underrepresented: downward bias
 - Sibships with 0 survivors not represented: downward bias
 - Respondents (always alive) are not counted: upward bias

$$\check{q} = \frac{\text{Reported Deaths } -0}{\text{Reported "Births" } -n} = \frac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i - n}$$

- Contributing biases:
 - High mortality sibships underrepresented: downward bias
 - Sibships with 0 survivors not represented: downward bias
 - Respondents (always alive) are not counted: upward bias
 - Multiply counting of the same siblings, overrepresenting low mortality families: downward bias

Standard = Naive, omitting self-reports:

$$\check{q} = \frac{\text{Reported Deaths } -0}{\text{Reported "Births" } -n} = \frac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i - n}$$

- Contributing biases:
 - High mortality sibships underrepresented: downward bias
 - Sibships with 0 survivors not represented: downward bias
 - Respondents (always alive) are not counted: upward bias
 - Multiply counting of the same siblings, overrepresenting low mortality families: downward bias

A little miracle occurs

Standard = Naive, omitting self-reports:

$$\check{q} = \frac{\text{Reported Deaths } -0}{\text{Reported "Births" } -n} = \frac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} B_i - n}$$

- Contributing biases:
 - High mortality sibships underrepresented: downward bias
 - Sibships with 0 survivors not represented: downward bias
 - Respondents (always alive) are not counted: upward bias
 - Multiply counting of the same siblings, overrepresenting low mortality families: downward bias

A little miracle occurs

Trussell and Rodriguez (1990) prove: if mortality is independent of sibship size, all biases cancel: \check{q} is unbiased.

Is mortality independent of sibship size?

Is mortality independent of sibship size?

Peru	2000	Guinea	1999
Indonesia	1997	Zimbabwe	1994
Burkina Faso	1998	Nepal	1996
Benin	1996	Cameroon	1998
Peru	1996	Cote D'Ivoire	1994
Nigeria	1999	Togo	1998
Philippines	1998	Eritrea	1995
Chad	1997	Ethiopia	2000
Brazil	1996	Zimbabwe	1999
Indonesia	1994	Colombia	1995
Senegal	1999	Zambia	1996
Philippines	1993	Uganda	1995
Mali	1996	Madagascar	1997
Tanzania	1996		

< m

()

Is mortality independent of sibship size? No!

		Correlation			Correlation
Peru	2000	0.97	Guinea	1999	0.80
Indonesia	1997	0.96	Zimbabwe	1994	0.76
Burkina Faso	1998	0.95	Nepal	1996	0.75
Benin	1996	0.95	Cameroon	1998	0.75
Peru	1996	0.95	Cote D'Ivoire	1994	0.75
Nigeria	1999	0.93	Togo	1998	0.74
Philippines	1998	0.93	Eritrea	1995	0.70
Chad	1997	0.93	Ethiopia	2000	0.71
Brazil	1996	0.92	Zimbabwe	1999	0.69
Indonesia	1994	0.91	Colombia	1995	0.52
Senegal	1999	0.90	Zambia	1996	0.47
Philippines	1993	0.88	Uganda	1995	-0.06
Mali	1996	0.86	Madagascar	1997	-0.19
Tanzania	1996	0.82			

Death by Survey

• No assumption about sibship size and mortality.

- No assumption about sibship size and mortality.
- Two problems addressed separately:

- No assumption about sibship size and mortality.
- Two problems addressed separately:
 - Underrepresentation of high mortality families

- No assumption about sibship size and mortality.
- Two problems addressed separately:
 - Underrepresentation of high mortality families
 - Onrepresentation of families with zero survivors

Deat		

(Temporarily assuming no families with 0 survivors)

Image: Image:

(Temporarily assuming no families with 0 survivors)

• Sibship mortality: $M_i = \frac{\text{"Births"} - \text{Survivors}}{\text{"Births"}}$

(Temporarily assuming no families with 0 survivors)

• Sibship mortality:
$$M_i = \frac{\text{"Births"} - \text{Survivors}}{\text{"Births"}} = \frac{B_i - S_i}{B_i}$$

- Sibship mortality: $M_i = \frac{\text{"Births"} \text{Survivors}}{\text{"Births"}} = \frac{B_i S_i}{B_i}$
- Sampling sibships at time 1: proportional to "Births" (B_i)

- Sibship mortality: $M_i = \frac{\text{"Births"} \text{Survivors}}{\text{"Births"}} = \frac{B_i S_i}{B_i}$
- Sampling sibships at time 1: proportional to "Births" (B_i)
- Sampling sibships at time 2: proportional to Survivors (S_i)

- Sibship mortality: $M_i = \frac{\text{"Births"} \text{Survivors}}{\text{"Births"}} = \frac{B_i S_i}{B_i}$
- Sampling sibships at time 1: proportional to "Births" (B_i)
- Sampling sibships at time 2: proportional to Survivors (S_i)
- Estimation at time 1: simple average is unbiased

- Sibship mortality: $M_i = \frac{\text{"Births"} \text{Survivors}}{\text{"Births"}} = \frac{B_i S_i}{B_i}$
- Sampling sibships at time 1: proportional to "Births" (B_i)
- Sampling sibships at time 2: proportional to Survivors (S_i)
- Estimation at time 1: simple average is unbiased
- Estimation at time 2:

- Sibship mortality: $M_i = \frac{\text{"Births"} \text{Survivors}}{\text{"Births"}} = \frac{B_i S_i}{B_i}$
- Sampling sibships at time 1: proportional to "Births" (B_i)
- Sampling sibships at time 2: proportional to Survivors (S_i)
- Estimation at time 1: simple average is unbiased
- Estimation at time 2:
 - Weight sample from $\propto S_i$ to $\propto B_i$ by: $W_i = B_i/S_i$

- Sibship mortality: $M_i = \frac{\text{"Births"} \text{Survivors}}{\text{"Births"}} = \frac{B_i S_i}{B_i}$
- Sampling sibships at time 1: proportional to "Births" (B_i)
- Sampling sibships at time 2: proportional to Survivors (S_i)
- Estimation at time 1: simple average is unbiased
- Estimation at time 2:
 - Weight sample from $\propto S_i$ to $\propto B_i$ by: $W_i = B_i/S_i$
 - The weighted average is unbiased:

$$\frac{\sum_{i=1}^{n} W_i M_i}{\sum_{i=1}^{n} W_i}$$

- Sibship mortality: $M_i = \frac{\text{"Births"} \text{Survivors}}{\text{"Births"}} = \frac{B_i S_i}{B_i}$
- Sampling sibships at time 1: proportional to "Births" (B_i)
- Sampling sibships at time 2: proportional to Survivors (S_i)
- Estimation at time 1: simple average is unbiased
- Estimation at time 2:
 - Weight sample from $\propto S_i$ to $\propto B_i$ by: $W_i = B_i/S_i$
 - The weighted average is unbiased:

$$\frac{\sum_{i=1}^{n} W_i M_i}{\sum_{i=1}^{n} W_i}$$

• This portion of the problem is solved exactly

- Sibship mortality: $M_i = \frac{\text{"Births"} \text{Survivors}}{\text{"Births"}} = \frac{B_i S_i}{B_i}$
- Sampling sibships at time 1: proportional to "Births" (B_i)
- Sampling sibships at time 2: proportional to Survivors (S_i)
- Estimation at time 1: simple average is unbiased
- Estimation at time 2:
 - Weight sample from $\propto S_i$ to $\propto B_i$ by: $W_i = B_i/S_i$
 - The weighted average is unbiased:

$$\frac{\sum_{i=1}^{n} W_i M_i}{\sum_{i=1}^{n} W_i}$$

- This portion of the problem is solved exactly
- Weights are common; quantities of interest that serve as their own weights are not.

Correcting for Families with 0 Survivors

Death by Survey

Correcting for Families with 0 Survivors

 Missing information: ζ, number of siblings in families with zero survivors

Correcting for Families with 0 Survivors

- Missing information: ζ, number of siblings in families with zero survivors
- Mortality estimator, if we had an estimator for ζ :

$$\hat{q} = \frac{\sum_{i=1}^{n} M_i W_i + \hat{\zeta}}{\sum_{i=1}^{n} W_i + \hat{\zeta}}.$$

- Missing information: ζ, number of siblings in families with zero survivors
- Mortality estimator, if we had an estimator for ζ :

$$\hat{q} = \frac{\sum_{i=1}^{n} M_i W_i + \hat{\zeta}}{\sum_{i=1}^{n} W_i + \hat{\zeta}}.$$

• Direct information in our data about families without survivors: None

- Missing information: ζ, number of siblings in families with zero survivors
- Mortality estimator, if we had an estimator for ζ :

$$\hat{q} = \frac{\sum_{i=1}^{n} M_i W_i + \hat{\zeta}}{\sum_{i=1}^{n} W_i + \hat{\zeta}}.$$

- Direct information in our data about families without survivors: None
- Approach: we extrapolate from families with survivors

- Missing information: ζ, number of siblings in families with zero survivors
- Mortality estimator, if we had an estimator for ζ :

$$\hat{q} = \frac{\sum_{i=1}^{n} M_i W_i + \hat{\zeta}}{\sum_{i=1}^{n} W_i + \hat{\zeta}}.$$

- Direct information in our data about families without survivors: None
- Approach: we extrapolate from families with survivors
- Thus, this part of the answer is more uncertain

Cote D'Ivoire 94

Indonesia 94

э

Monte Carlo Simulation Setup: Create 27 Populations

• Average mortality: low (0.1), medium (0.2), high (0.3)

- Average mortality: low (0.1), medium (0.2), high (0.3)
- Average fertility levels: low (Kazakstan, 2.56), medium (Turkey, 3.07), high (Kenya, 4.26 children)

- Average mortality: low (0.1), medium (0.2), high (0.3)
- Average fertility levels: low (Kazakstan, 2.56), medium (Turkey, 3.07), high (Kenya, 4.26 children)
- Correlation(sibship size, mortality): positive, zero, negative

- Average mortality: low (0.1), medium (0.2), high (0.3)
- Average fertility levels: low (Kazakstan, 2.56), medium (Turkey, 3.07), high (Kenya, 4.26 children)
- Correlation(sibship size, mortality): positive, zero, negative

For each, create 1,000 data sets, each with n = 1,000 randomly drawn time 2 survey respondents

Bias

Death by Survey

Root Mean Square Error

July 20, 2005 23 / 29

• Most bias reduction is due to weighting

- Most bias reduction is due to weighting
 - 72% of bias corrected on average

- Most bias reduction is due to weighting
 - 72% of bias corrected on average
 - Largest reduction in countries with high positive correlations, high fertility, and low mortality (leading to fewest deaths in families with 0 survivors)

- Most bias reduction is due to weighting
 - 72% of bias corrected on average
 - Largest reduction in countries with high positive correlations, high fertility, and low mortality (leading to fewest deaths in families with 0 survivors)
- Weighting plus extrapolation for families with 0 survivors: 92% corrected

	Surve	

• Weighted average = Unweighted average in an appropriate pseudo-sample

- Weighted average = Unweighted average in an appropriate pseudo-sample
- Arbitrarily choose: "Survivors" = n

- Weighted average = Unweighted average in an appropriate pseudo-sample
- Arbitrarily choose: "Survivors" = n
- Each survivor counts for D_i/S_i deaths in the pseudo-sample

- Weighted average = Unweighted average in an appropriate pseudo-sample
- Arbitrarily choose: "Survivors" = n
- Each survivor counts for D_i/S_i deaths in the pseudo-sample
- Thus, compute: "Deaths" = $\sum_{i=1}^{n} (D_i/S_i) + \hat{\zeta}$

- Weighted average = Unweighted average in an appropriate pseudo-sample
- Arbitrarily choose: "Survivors" = n
- Each survivor counts for D_i/S_i deaths in the pseudo-sample
- Thus, compute: "Deaths" = $\sum_{i=1}^{n} (D_i/S_i) + \hat{\zeta}$
- Thus, an equivalent expression for \hat{q} :

$$\hat{q} = \frac{\text{Deaths}}{\text{Deaths} + \text{Survivors}} = \frac{\left[\sum_{i=1}^{n} (D_i/S_i) + \hat{\zeta}\right]}{\left[\sum_{i=1}^{n} (D_i/S_i) + \hat{\zeta}\right] + n},$$

)eat		

• Drop females with no male siblings

Death by Survey

- Drop females with no male siblings
- Each female respondent represents $R_i = (S_i/B_i)/(S_i^f/B_i^f)$ males in the pseudo-sample (the sibship survival rate ratio)

- Drop females with no male siblings
- Each female respondent represents $R_i = (S_i/B_i)/(S_i^f/B_i^f)$ males in the pseudo-sample (the sibship survival rate ratio)
- So set: "Survivors" = "males" + "females"

- Drop females with no male siblings
- Each female respondent represents $R_i = (S_i/B_i)/(S_i^f/B_i^f)$ males in the pseudo-sample (the sibship survival rate ratio)
- So set: "Survivors" = "males" + "females" = $n_m + \sum_{i=1}^{n_f} R_i$

- Drop females with no male siblings
- Each female respondent represents $R_i = (S_i/B_i)/(S_i^f/B_i^f)$ males in the pseudo-sample (the sibship survival rate ratio)
- So set: "Survivors" = "males" + "females" = $n_m + \sum_{i=1}^{n_f} R_i$
- Example: if male survival is twice females, each female represents two males in the pseudo-sample; so R = 2.

- Drop females with no male siblings
- Each female respondent represents $R_i = (S_i/B_i)/(S_i^f/B_i^f)$ males in the pseudo-sample (the sibship survival rate ratio)
- So set: "Survivors" = "males" + "females" = $n_m + \sum_{i=1}^{n_f} R_i$
- Example: if male survival is twice females, each female represents two males in the pseudo-sample; so R = 2.
- Calculate:

"Deaths" =
$$\sum_{i=1}^{n_m} \frac{D_i}{S_i} + \sum_{i'=1}^{n_f} R_{i'} \frac{D_{i'}}{S_{i'}} + \hat{\zeta}$$

- Drop females with no male siblings
- Each female respondent represents $R_i = (S_i/B_i)/(S_i^f/B_i^f)$ males in the pseudo-sample (the sibship survival rate ratio)
- So set: "Survivors" = "males" + "females" = $n_m + \sum_{i=1}^{n_f} R_i$
- Example: if male survival is twice females, each female represents two males in the pseudo-sample; so R = 2.
- Calculate:

"Deaths" =
$$\sum_{i=1}^{n_m} \frac{D_i}{S_i} + \sum_{i'=1}^{n_f} R_{i'} \frac{D_{i'}}{S_{i'}} + \hat{\zeta}$$

• The estimator is still Deaths/(Deaths + Survivors).

- Drop females with no male siblings
- Each female respondent represents $R_i = (S_i/B_i)/(S_i^f/B_i^f)$ males in the pseudo-sample (the sibship survival rate ratio)
- So set: "Survivors" = "males" + "females" = $n_m + \sum_{i=1}^{n_f} R_i$
- Example: if male survival is twice females, each female represents two males in the pseudo-sample; so R = 2.
- Calculate:

"Deaths"
$$= \sum_{i=1}^{n_m} \frac{D_i}{S_i} + \sum_{i'=1}^{n_f} R_{i'} \frac{D_{i'}}{S_{i'}} + \hat{\zeta}$$

- The estimator is still Deaths/(Deaths + Survivors).
- Can also survey parents, neighbors, teachers, coworkers, etc.

- Drop females with no male siblings
- Each female respondent represents $R_i = (S_i/B_i)/(S_i^f/B_i^f)$ males in the pseudo-sample (the sibship survival rate ratio)
- So set: "Survivors" = "males" + "females" = $n_m + \sum_{i=1}^{n_f} R_i$
- Example: if male survival is twice females, each female represents two males in the pseudo-sample; so R = 2.
- Calculate:

"Deaths" =
$$\sum_{i=1}^{n_m} \frac{D_i}{S_i} + \sum_{i'=1}^{n_f} R_{i'} \frac{D_{i'}}{S_{i'}} + \hat{\zeta}$$

- The estimator is still Deaths/(Deaths + Survivors).
- Can also survey parents, neighbors, teachers, coworkers, etc.
- May also estimate maternal mortality, the mortality of parents from data on (adult) children, sisters, etc.

Person-Year Quantities

Death by Survey

◆ □ ▶ ◆ 🗇

• Thus far, all quantities defined for a fixed cohort

- Thus far, all quantities defined for a fixed cohort
- Men who turn 20 on 5/1/1980, followed for 10 years

- Thus far, all quantities defined for a fixed cohort
- Men who turn 20 on 5/1/1980, followed for 10 years
- Demographers define person-years, counting any fraction of time a respondent spends in the designated cohort and time interval.

- Thus far, all quantities defined for a fixed cohort
- Men who turn 20 on 5/1/1980, followed for 10 years
- Demographers define person-years, counting any fraction of time a respondent spends in the designated cohort and time interval.
- A man who turns 20 on 5/1/1985 counts as half a respondent

- Thus far, all quantities defined for a fixed cohort
- Men who turn 20 on 5/1/1980, followed for 10 years
- Demographers define person-years, counting any fraction of time a respondent spends in the designated cohort and time interval.
- A man who turns 20 on 5/1/1985 counts as half a respondent
- All the methods we discussed generalize to person-years

Death by Survey

Image: A math a math

Required parts of the new estimator

Required parts of the new estimator

a weight variable: constructed without external information

Required parts of the new estimator

- **()** a weight variable: constructed without external information
- 2 an extrapolation, riskier but apparently reasonable

Required parts of the new estimator

- **()** a weight variable: constructed without external information
- 2 an extrapolation, riskier but apparently reasonable

Required parts of the new estimator

- a weight variable: constructed without external information
- 2 an extrapolation, riskier but apparently reasonable

Future research

Reducing recall bias, such as via prompting questions, the time of last contact with (and physical distance to) relatives

Required parts of the new estimator

a weight variable: constructed without external information

2 an extrapolation, riskier but apparently reasonable

- Reducing recall bias, such as via prompting questions, the time of last contact with (and physical distance to) relatives
- Reducing temporal recall, such as by using memorable events such as wars, famines, etc.

Required parts of the new estimator

() a weight variable: constructed without external information

2 an extrapolation, riskier but apparently reasonable

- Reducing recall bias, such as via prompting questions, the time of last contact with (and physical distance to) relatives
- Reducing temporal recall, such as by using memorable events such as wars, famines, etc.
- Validation of surveys in areas with valid vital registration systems or established demographic surveillance.

Required parts of the new estimator

() a weight variable: constructed without external information

2 an extrapolation, riskier but apparently reasonable

- Reducing recall bias, such as via prompting questions, the time of last contact with (and physical distance to) relatives
- Reducing temporal recall, such as by using memorable events such as wars, famines, etc.
- Validation of surveys in areas with valid vital registration systems or established demographic surveillance.
- Extensive applications worldwide

Required parts of the new estimator

a weight variable: constructed without external information

2 an extrapolation, riskier but apparently reasonable

- Reducing recall bias, such as via prompting questions, the time of last contact with (and physical distance to) relatives
- Reducing temporal recall, such as by using memorable events such as wars, famines, etc.
- Validation of surveys in areas with valid vital registration systems or established demographic surveillance.
- Extensive applications worldwide
- Ideally, a new subfield within IR predicting mortality and human misery with war and the predictors of war.

http://GKing.Harvard.edu

