Quantitative Discovery of Qualitative Information:
 A General Purpose Document Clustering Methodology

Gary King
Institute for Quantitative Social Science
Harvard University

Talk at BAE Systems, 9/9/2010
Joint work with Justin Grimmer (Harvard \rightsquigarrow Stanford)

A Method for Conceptualization

- Systematic method for computer-assisted conceptualization from text

A Method for Conceptualization

- Systematic method for computer-assisted conceptualization from text
- Conceptualization through Classification: "one of the most central and generic of all our conceptual exercises. ... the foundation not only for conceptualization, language, and speech, but also for mathematics, statistics, and data analysis.... Without classification, there could be no advanced conceptualization, reasoning, language, data analysis or,for that matter, social science research." (Bailey, 1994).

A Method for Conceptualization

- Systematic method for computer-assisted conceptualization from text
- Conceptualization through Classification: "one of the most central and generic of all our conceptual exercises. ... the foundation not only for conceptualization, language, and speech, but also for mathematics, statistics, and data analysis.... Without classification, there could be no advanced conceptualization, reasoning, language, data analysis or,for that matter, social science research." (Bailey, 1994).
- We focus on Cluster Analysis: simultaneously 1) invent categories and 2) assign documents to categories

A Method for Conceptualization

- Systematic method for computer-assisted conceptualization from text
- Conceptualization through Classification: "one of the most central and generic of all our conceptual exercises. ... the foundation not only for conceptualization, language, and speech, but also for mathematics, statistics, and data analysis.... Without classification, there could be no advanced conceptualization, reasoning, language, data analysis or,for that matter, social science research." (Bailey, 1994).
- We focus on Cluster Analysis: simultaneously 1) invent categories and 2) assign documents to categories
- (We focus on texts, our methods apply more broadly)

Why Johnny Can't Classify (Optimally)

Why Johnny Can't Classify (Optimally)

- Clustering seems easy; its not!

Why Johnny Can't Classify (Optimally)

- Clustering seems easy; its not!
- $\operatorname{Bell}(n)=$ number of ways of partitioning n objects

Why Johnny Can't Classify (Optimally)

- Clustering seems easy; its not!
- $\operatorname{Bell}(n)=$ number of ways of partitioning n objects
- Bell(2) $=2$ (AB, A B)

Why Johnny Can't Classify (Optimally)

- Clustering seems easy; its not!
- $\operatorname{Bell}(n)=$ number of ways of partitioning n objects
- Bell(2) $=2$ (AB, A B)
- Bell(3) $=5$ (ABC, AB C, A BC, AC B, A B C)

Why Johnny Can't Classify (Optimally)

- Clustering seems easy; its not!
- $\operatorname{Bell}(n)=$ number of ways of partitioning n objects
- Bell(2) $=2$ (AB, A B)
- Bell(3) $=5$ (ABC, AB C, A BC, AC B, A B C)
- Bell $(5)=52$

Why Johnny Can't Classify (Optimally)

- Clustering seems easy; its not!
- $\operatorname{Bell}(n)=$ number of ways of partitioning n objects
- Bell(2) $=2$ (AB, A B)
- Bell(3) $=5$ (ABC, AB C, A BC, AC B, A B C)
- Bell $(5)=52$
- $\operatorname{Bell}(100) \approx$

Why Johnny Can't Classify (Optimally)

- Clustering seems easy; its not!
- $\operatorname{Bell}(n)=$ number of ways of partitioning n objects
- Bell(2) $=2(\mathrm{AB}, \mathrm{A} B)$
- Bell(3) $=5$ (ABC, AB C, A BC, AC B, A B C)
- Bell $(5)=52$
- $\operatorname{Bell}(100) \approx 10^{28} \times$ Number of elementary particles in the universe

Why Johnny Can't Classify (Optimally)

- Clustering seems easy; its not!
- $\operatorname{Bell}(n)=$ number of ways of partitioning n objects
- Bell $(2)=2(A B, A B)$
- Bell(3) $=5$ (ABC, AB C, A BC, AC B, A B C)
- Bell $(5)=52$
- Bell $(100) \approx 10^{28} \times$ Number of elementary particles in the universe
- Now imagine choosing the optimal classification scheme by hand!

Why Johnny Can't Classify (Optimally)

- Clustering seems easy; its not!
- $\operatorname{Bell}(n)=$ number of ways of partitioning n objects
- Bell $(2)=2(A B, A B)$
- Bell(3) $=5$ (ABC, AB C, A BC, AC B, A B C)
- Bell $(5)=52$
- Bell $(100) \approx 10^{28} \times$ Number of elementary particles in the universe
- Now imagine choosing the optimal classification scheme by hand!
- Its no surprise that automated algorithms can help, but which algorithms?

Why HAL Can't Classify Either

Why HAL Can't Classify Either

- Large quantitative literature on cluster analysis

Why HAL Can't Classify Either

- Large quantitative literature on cluster analysis
- The Goal - an optimal application-independent cluster analysis method - is mathematically impossible:

Why HAL Can't Classify Either

- Large quantitative literature on cluster analysis
- The Goal - an optimal application-independent cluster analysis method - is mathematically impossible:
- No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications

Why HAL Can't Classify Either

- Large quantitative literature on cluster analysis
- The Goal - an optimal application-independent cluster analysis method - is mathematically impossible:
- No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications
- Existing methods:

Why HAL Can't Classify Either

- Large quantitative literature on cluster analysis
- The Goal - an optimal application-independent cluster analysis method - is mathematically impossible:
- No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications
- Existing methods:
- Many choices: model-based, subspace, spectral, grid-based, graphbased, fuzzy k-modes, affinity propagation, self-organizing maps,...

Why HAL Can't Classify Either

- Large quantitative literature on cluster analysis
- The Goal - an optimal application-independent cluster analysis method - is mathematically impossible:
- No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications
- Existing methods:
- Many choices: model-based, subspace, spectral, grid-based, graphbased, fuzzy k-modes, affinity propagation, self-organizing maps,...
- Well-defined statistical, data analytic, or machine learning foundations

Why HAL Can't Classify Either

- Large quantitative literature on cluster analysis
- The Goal - an optimal application-independent cluster analysis method - is mathematically impossible:
- No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications
- Existing methods:
- Many choices: model-based, subspace, spectral, grid-based, graphbased, fuzzy k-modes, affinity propagation, self-organizing maps,...
- Well-defined statistical, data analytic, or machine learning foundations
- How to add substantive knowledge: With few exceptions, unclear

Why HAL Can't Classify Either

- Large quantitative literature on cluster analysis
- The Goal - an optimal application-independent cluster analysis method - is mathematically impossible:
- No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications
- Existing methods:
- Many choices: model-based, subspace, spectral, grid-based, graphbased, fuzzy k-modes, affinity propagation, self-organizing maps,...
- Well-defined statistical, data analytic, or machine learning foundations
- How to add substantive knowledge: With few exceptions, unclear
- The literature: little guidance on when methods apply

Why HAL Can't Classify Either

- Large quantitative literature on cluster analysis
- The Goal - an optimal application-independent cluster analysis method - is mathematically impossible:
- No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications
- Existing methods:
- Many choices: model-based, subspace, spectral, grid-based, graphbased, fuzzy k-modes, affinity propagation, self-organizing maps,...
- Well-defined statistical, data analytic, or machine learning foundations
- How to add substantive knowledge: With few exceptions, unclear
- The literature: little guidance on when methods apply
- Deriving such guidance: difficult or impossible

Why HAL Can't Classify Either

- Large quantitative literature on cluster analysis
- The Goal - an optimal application-independent cluster analysis method - is mathematically impossible:
- No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications
- Existing methods:
- Many choices: model-based, subspace, spectral, grid-based, graphbased, fuzzy k-modes, affinity propagation, self-organizing maps,...
- Well-defined statistical, data analytic, or machine learning foundations
- How to add substantive knowledge: With few exceptions, unclear
- The literature: little guidance on when methods apply
- Deriving such guidance: difficult or impossible
- Deep problem in cluster analysis literature: no way to know which method will work ex ante

Why HAL Can't Classify Either

- Large quantitative literature on cluster analysis
- The Goal - an optimal application-independent cluster analysis method - is mathematically impossible:
- No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications
- Existing methods:
- Many choices: model-based, subspace, spectral, grid-based, graphbased, fuzzy k-modes, affinity propagation, self-organizing maps,...
- Well-defined statistical, data analytic, or machine learning foundations
- How to add substantive knowledge: With few exceptions, unclear
- The literature: little guidance on when methods apply
- Deriving such guidance: difficult or impossible
- Deep problem in cluster analysis literature: no way to know which method will work ex ante
- No surprise: everyone's tried cluster analysis; very few are satisfied

If Ex Ante doesn't work, try Ex Post

If Ex Ante doesn't work, try Ex Post

- Methods and substance must be connected (no free lunch theorem)

If Ex Ante doesn't work, try Ex Post

- Methods and substance must be connected (no free lunch theorem)
- The usual approach fails: hard to do it by understanding the model

If Ex Ante doesn't work, try Ex Post

- Methods and substance must be connected (no free lunch theorem)
- The usual approach fails: hard to do it by understanding the model
- We do it ex post (by qualitative choice). For example:

If Ex Ante doesn't work, try Ex Post

- Methods and substance must be connected (no free lunch theorem)
- The usual approach fails: hard to do it by understanding the model
- We do it ex post (by qualitative choice). For example:
- Create long list of clusterings; choose the best

If Ex Ante doesn't work, try Ex Post

- Methods and substance must be connected (no free lunch theorem)
- The usual approach fails: hard to do it by understanding the model
- We do it ex post (by qualitative choice). For example:
- Create long list of clusterings; choose the best
- Too hard for mere humans!

If Ex Ante doesn't work, try Ex Post

- Methods and substance must be connected (no free lunch theorem)
- The usual approach fails: hard to do it by understanding the model
- We do it ex post (by qualitative choice). For example:
- Create long list of clusterings; choose the best
- Too hard for mere humans!
- An organized list will make the search possible

If Ex Ante doesn't work, try Ex Post

- Methods and substance must be connected (no free lunch theorem)
- The usual approach fails: hard to do it by understanding the model
- We do it ex post (by qualitative choice). For example:
- Create long list of clusterings; choose the best
- Too hard for mere humans!
- An organized list will make the search possible
- E.g.,: consider two clusterings that differ only because one document (of many) moves from category 5 to 6

If Ex Ante doesn't work, try Ex Post

- Methods and substance must be connected (no free lunch theorem)
- The usual approach fails: hard to do it by understanding the model
- We do it ex post (by qualitative choice). For example:
- Create long list of clusterings; choose the best
- Too hard for mere humans!
- An organized list will make the search possible
- E.g.,: consider two clusterings that differ only because one document (of many) moves from category 5 to 6
- The Question: How to organize all those clusterings?

Our Idea: Meaning Through Geography

Set of clusterings

Our Idea: Meaning Through Geography

Set of clusterings \approx

A list of unconnected addresses

Our Idea: Meaning Through Geography

Set of clusterings \approx

A list of unconnected addresses

Our Idea: Meaning Through Geography

Set of clusterings \approx

A list of unconnected addresses

\rightsquigarrow We develop a (conceptual) geography of clusterings

A New Strategy

Make it easy to choose best clustering from millions of choices

A New Strategy

Make it easy to choose best clustering from millions of choices
(1) Code text as numbers (in one or more of several ways)

A New Strategy

Make it easy to choose best clustering from millions of choices
(1) Code text as numbers (in one or more of several ways)
(2) Apply all clustering methods we can find to the data - each representing different (unstated) substantive assumptions ($<15 \mathrm{mins}$)

A New Strategy

Make it easy to choose best clustering from millions of choices
(1) Code text as numbers (in one or more of several ways)
(2) Apply all clustering methods we can find to the data - each representing different (unstated) substantive assumptions ($<15 \mathrm{mins}$)
(3) Too much for a person to understand, but organization will help)

A New Strategy

Make it easy to choose best clustering from millions of choices
(1) Code text as numbers (in one or more of several ways)
(2) Apply all clustering methods we can find to the data - each representing different (unstated) substantive assumptions ($<15 \mathrm{mins}$)
3 (Too much for a person to understand, but organization will help)
(9) Develop an application-independent distance metric between clusterings, a metric space of clusterings, and a 2-D projection

A New Strategy

Make it easy to choose best clustering from millions of choices
(1) Code text as numbers (in one or more of several ways)
(2) Apply all clustering methods we can find to the data - each representing different (unstated) substantive assumptions ($<15 \mathrm{mins}$)
3 (Too much for a person to understand, but organization will help)
(9) Develop an application-independent distance metric between clusterings, a metric space of clusterings, and a 2-D projection
(3) "Local cluster ensemble" creates a new clustering at any point, based on weighted average of nearby clusterings

A New Strategy

Make it easy to choose best clustering from millions of choices
(1) Code text as numbers (in one or more of several ways)
(2) Apply all clustering methods we can find to the data - each representing different (unstated) substantive assumptions ($<15 \mathrm{mins}$)
3 (Too much for a person to understand, but organization will help)
(9) Develop an application-independent distance metric between clusterings, a metric space of clusterings, and a 2-D projection
© "Local cluster ensemble" creates a new clustering at any point, based on weighted average of nearby clusterings
(0) A new animated visualization to explore the space of clusterings (smoothly morphing from one into others)

A New Strategy

Make it easy to choose best clustering from millions of choices
(1) Code text as numbers (in one or more of several ways)
(2) Apply all clustering methods we can find to the data - each representing different (unstated) substantive assumptions ($<15 \mathrm{mins}$)
(3) (Too much for a person to understand, but organization will help)
(9) Develop an application-independent distance metric between clusterings, a metric space of clusterings, and a 2-D projection
© "Local cluster ensemble" creates a new clustering at any point, based on weighted average of nearby clusterings
(6) A new animated visualization to explore the space of clusterings (smoothly morphing from one into others)
(3) \rightsquigarrow Millions of clusterings, easily comprehended (takes about 10-15 minutes to choose a clustering with insight)

Many Thousands of Clusterings, Sorted \& Organized

You choose one (or more), based on insight, discovery, useful information,...

Space of Clusterings

Application-Independent Distance Metric: Axioms

Application-Independent Distance Metric: Axioms

- Metric based on 3 assumptions

Application-Independent Distance Metric: Axioms

- Metric based on 3 assumptions
(1) Distance between clusterings: a function of the pairwise document agreements (pairwise agreements \Rightarrow triples, quadruples, etc.)

Application-Independent Distance Metric: Axioms

- Metric based on 3 assumptions
(1) Distance between clusterings: a function of the pairwise document agreements (pairwise agreements \Rightarrow triples, quadruples, etc.)
(2) Invariance: Distance is invariant to the number of documents (for any fixed number of clusters)

Application-Independent Distance Metric: Axioms

- Metric based on 3 assumptions
(1) Distance between clusterings: a function of the pairwise document agreements (pairwise agreements \Rightarrow triples, quadruples, etc.)
(2) Invariance: Distance is invariant to the number of documents (for any fixed number of clusters)
(3) Scale: the maximum distance is set to \log (num clusters)

Application-Independent Distance Metric: Axioms

- Metric based on 3 assumptions
(1) Distance between clusterings: a function of the pairwise document agreements (pairwise agreements \Rightarrow triples, quadruples, etc.)
(2) Invariance: Distance is invariant to the number of documents (for any fixed number of clusters)
(3) Scale: the maximum distance is set to \log (num clusters)
- \rightsquigarrow Only one measure satisfies all three (the "variation of information")

Application-Independent Distance Metric: Axioms

- Metric based on 3 assumptions
(1) Distance between clusterings: a function of the pairwise document agreements (pairwise agreements \Rightarrow triples, quadruples, etc.)
(2) Invariance: Distance is invariant to the number of documents (for any fixed number of clusters)
(3) Scale: the maximum distance is set to \log (num clusters)
- \rightsquigarrow Only one measure satisfies all three (the "variation of information")
- Meila (2007): derives same metric using different axioms (lattice theory)

Evaluating Performance

Evaluating Performance

- Goals:

Evaluating Performance

- Goals:
- Validate Claim: computer-assisted conceptualization outperforms human conceptualization

Evaluating Performance

- Goals:
- Validate Claim: computer-assisted conceptualization outperforms human conceptualization
- Demonstrate: new experimental designs for cluster evaluation

Evaluating Performance

- Goals:
- Validate Claim: computer-assisted conceptualization outperforms human conceptualization
- Demonstrate: new experimental designs for cluster evaluation
- Inject human judgement: relying on insights from survey research

Evaluating Performance

- Goals:
- Validate Claim: computer-assisted conceptualization outperforms human conceptualization
- Demonstrate: new experimental designs for cluster evaluation
- Inject human judgement: relying on insights from survey research
- We now present three evaluations

Evaluating Performance

- Goals:
- Validate Claim: computer-assisted conceptualization outperforms human conceptualization
- Demonstrate: new experimental designs for cluster evaluation
- Inject human judgement: relying on insights from survey research
- We now present three evaluations
- Cluster Quality \Rightarrow RA coders

Evaluating Performance

- Goals:
- Validate Claim: computer-assisted conceptualization outperforms human conceptualization
- Demonstrate: new experimental designs for cluster evaluation
- Inject human judgement: relying on insights from survey research
- We now present three evaluations
- Cluster Quality \Rightarrow RA coders
- Informative discoveries \Rightarrow Experienced scholars analyzing texts

Evaluating Performance

- Goals:
- Validate Claim: computer-assisted conceptualization outperforms human conceptualization
- Demonstrate: new experimental designs for cluster evaluation
- Inject human judgement: relying on insights from survey research
- We now present three evaluations
- Cluster Quality \Rightarrow RA coders
- Informative discoveries \Rightarrow Experienced scholars analyzing texts
- Discovery \Rightarrow You're the judge

Evaluation 1: Cluster Quality

Evaluation 1: Cluster Quality

- What Are Humans Good For?

Evaluation 1: Cluster Quality

- What Are Humans Good For?
- They can't: keep many documents \& clusters in their head

Evaluation 1: Cluster Quality

- What Are Humans Good For?
- They can't: keep many documents \& clusters in their head
- They can: compare two documents at a time

Evaluation 1: Cluster Quality

- What Are Humans Good For?
- They can't: keep many documents \& clusters in their head
- They can: compare two documents at a time
- \Longrightarrow Cluster quality evaluation: human judgement of document pairs

Evaluation 1: Cluster Quality

- What Are Humans Good For?
- They can't: keep many documents \& clusters in their head
- They can: compare two documents at a time
- \Longrightarrow Cluster quality evaluation: human judgement of document pairs
- Experimental Design to Assess Cluster Quality

Evaluation 1: Cluster Quality

- What Are Humans Good For?
- They can't: keep many documents \& clusters in their head
- They can: compare two documents at a time
- \Longrightarrow Cluster quality evaluation: human judgement of document pairs
- Experimental Design to Assess Cluster Quality
- automated visualization to choose one clustering

Evaluation 1: Cluster Quality

- What Are Humans Good For?
- They can't: keep many documents \& clusters in their head
- They can: compare two documents at a time
- \Longrightarrow Cluster quality evaluation: human judgement of document pairs
- Experimental Design to Assess Cluster Quality
- automated visualization to choose one clustering
- many pairs of documents

Evaluation 1: Cluster Quality

- What Are Humans Good For?
- They can't: keep many documents \& clusters in their head
- They can: compare two documents at a time
- \Longrightarrow Cluster quality evaluation: human judgement of document pairs
- Experimental Design to Assess Cluster Quality
- automated visualization to choose one clustering
- many pairs of documents
- for coders: (1) unrelated, (2) loosely related, (3) closely related

Evaluation 1: Cluster Quality

- What Are Humans Good For?
- They can't: keep many documents \& clusters in their head
- They can: compare two documents at a time
- \Longrightarrow Cluster quality evaluation: human judgement of document pairs
- Experimental Design to Assess Cluster Quality
- automated visualization to choose one clustering
- many pairs of documents
- for coders: (1) unrelated, (2) loosely related, (3) closely related
- Quality $=$ mean(within cluster) - mean(between clusters)

Evaluation 1: Cluster Quality

- What Are Humans Good For?
- They can't: keep many documents \& clusters in their head
- They can: compare two documents at a time
- \Longrightarrow Cluster quality evaluation: human judgement of document pairs
- Experimental Design to Assess Cluster Quality
- automated visualization to choose one clustering
- many pairs of documents
- for coders: (1) unrelated, (2) loosely related, (3) closely related
- Quality $=$ mean(within cluster) - mean(between clusters)
- Bias results against ourselves by not letting evaluators choose clustering

Evaluation 1: Cluster Quality

- What Are Humans Good For?
- They can't: keep many documents \& clusters in their head
- They can: compare two documents at a time
- \Longrightarrow Cluster quality evaluation: human judgement of document pairs
- Experimental Design to Assess Cluster Quality
- automated visualization to choose one clustering
- many pairs of documents
- for coders: (1) unrelated, (2) loosely related, (3) closely related
- Quality $=$ mean(within cluster) - mean(between clusters)
- Bias results against ourselves by not letting evaluators choose clustering

Evaluation 1: Cluster Quality

Evaluation 1: Cluster Quality

Lautenberg: 200 Senate Press Releases (appropriations, economy, education, tax, veterans, ...)

Evaluation 1: Cluster Quality

Policy Agendas: 213 quasi-sentences from Bush's State of the Union (agriculture, banking \& commerce, civil rights/liberties, defense, ...)

Evaluation 1: Cluster Quality

Reuter's: financial news (trade, earnings, copper, gold, coffee, ...); "gold standard" for supervised learning studies

Evaluation 2: More Informative Discoveries

Evaluation 2: More Informative Discoveries

- Found 2 scholars analyzing lots of textual data for their work

Evaluation 2: More Informative Discoveries

- Found 2 scholars analyzing lots of textual data for their work - Created 6 clusterings:

Evaluation 2: More Informative Discoveries

- Found 2 scholars analyzing lots of textual data for their work
- Created 6 clusterings:
- 2 clusterings selected with our method (biased against us)

Evaluation 2: More Informative Discoveries

- Found 2 scholars analyzing lots of textual data for their work
- Created 6 clusterings:
- 2 clusterings selected with our method (biased against us)
- 2 clusterings from each of 2 other methods (varying tuning parameters)

Evaluation 2: More Informative Discoveries

- Found 2 scholars analyzing lots of textual data for their work
- Created 6 clusterings:
- 2 clusterings selected with our method (biased against us)
- 2 clusterings from each of 2 other methods (varying tuning parameters)
- Created info packet on each clustering (for each cluster: exemplar document, automated content summary)

Evaluation 2: More Informative Discoveries

- Found 2 scholars analyzing lots of textual data for their work
- Created 6 clusterings:
- 2 clusterings selected with our method (biased against us)
- 2 clusterings from each of 2 other methods (varying tuning parameters)
- Created info packet on each clustering (for each cluster: exemplar document, automated content summary)
- Asked for $\binom{6}{2}=15$ pairwise comparisons

Evaluation 2: More Informative Discoveries

- Found 2 scholars analyzing lots of textual data for their work
- Created 6 clusterings:
- 2 clusterings selected with our method (biased against us)
- 2 clusterings from each of 2 other methods (varying tuning parameters)
- Created info packet on each clustering (for each cluster: exemplar document, automated content summary)
- Asked for $\binom{6}{2}=15$ pairwise comparisons
- User chooses \Rightarrow only care about the one clustering that wins

Evaluation 2: More Informative Discoveries

- Found 2 scholars analyzing lots of textual data for their work
- Created 6 clusterings:
- 2 clusterings selected with our method (biased against us)
- 2 clusterings from each of 2 other methods (varying tuning parameters)
- Created info packet on each clustering (for each cluster: exemplar document, automated content summary)
- Asked for $\binom{6}{2}=15$ pairwise comparisons
- User chooses \Rightarrow only care about the one clustering that wins
- Both cases a Condorcet winner:

Evaluation 2: More Informative Discoveries

- Found 2 scholars analyzing lots of textual data for their work
- Created 6 clusterings:
- 2 clusterings selected with our method (biased against us)
- 2 clusterings from each of 2 other methods (varying tuning parameters)
- Created info packet on each clustering (for each cluster: exemplar document, automated content summary)
- Asked for $\binom{6}{2}=15$ pairwise comparisons
- User chooses \Rightarrow only care about the one clustering that wins
- Both cases a Condorcet winner:
"Immigration":
Our Method $1 \rightarrow$ vMF $1 \rightarrow$ vMF $2 \rightarrow$ Our Method $2 \rightarrow$ K-Means $1 \rightarrow$ K-Means 2

Evaluation 2: More Informative Discoveries

- Found 2 scholars analyzing lots of textual data for their work
- Created 6 clusterings:
- 2 clusterings selected with our method (biased against us)
- 2 clusterings from each of 2 other methods (varying tuning parameters)
- Created info packet on each clustering (for each cluster: exemplar document, automated content summary)
- Asked for $\binom{6}{2}=15$ pairwise comparisons
- User chooses \Rightarrow only care about the one clustering that wins
- Both cases a Condorcet winner:
"Immigration":
Our Method $1 \rightarrow$ vMF $1 \rightarrow$ vMF $2 \rightarrow$ Our Method $2 \rightarrow$ K-Means $1 \rightarrow$ K-Means 2
"Genetic testing":

Evaluation 3: What Do Members of Congress Do?

Evaluation 3: What Do Members of Congress Do?

- David Mayhew's (1974) famous typology

Evaluation 3: What Do Members of Congress Do?

- David Mayhew's (1974) famous typology
- Advertising

Evaluation 3: What Do Members of Congress Do?

- David Mayhew's (1974) famous typology
- Advertising
- Credit Claiming

Evaluation 3: What Do Members of Congress Do?

- David Mayhew's (1974) famous typology
- Advertising
- Credit Claiming
- Position Taking

Evaluation 3: What Do Members of Congress Do?

- David Mayhew's (1974) famous typology
- Advertising
- Credit Claiming
- Position Taking
- Data: 200 press releases from Frank Lautenberg's office (D-NJ)

Evaluation 3: What Do Members of Congress Do?

- David Mayhew's (1974) famous typology
- Advertising
- Credit Claiming
- Position Taking
- Data: 200 press releases from Frank Lautenberg's office (D-NJ)
- Apply our method

Example Discovery

Example Discovery

Red point: a clustering by Affinity Propagation-Cosine (Dueck and Frey 2007)

Example Discovery

Red point: a clustering by Affinity Propagation-Cosine (Dueck and Frey 2007)
Close to:
Mixture of von Mises-Fisher distributions (Banerjee et. al. 2005)

Example Discovery

Space between methods:

Example Discovery

Space between methods:

Example Discovery

Space between methods: local cluster ensemble

Example Discovery

Example Discovery

> Found a region with particularly insightful clusterings

Example Discovery

Mixture:

0.39 Hclust-Canberra-McQuitty
0.30 Spectral clustering Random Walk (Metrics 1-6)
0.13 Hclust-Correlation-Ward
0.09 Hclust-Pearson-Ward

Example Discovery

Mixture:

0.39 Hclust-Canberra-McQuitty
0.30 Spectral clustering Random Walk (Metrics 1-6)
0.13 Hclust-Correlation-Ward
0.09 Hclust-Pearson-Ward
0.05 Kmediods-Cosine

Example Discovery

Example Discovery

Mayhew

Example Discovery

> Credit Claiming, Pork: "Sens. Frank R. Lautenberg (D-NJ) and Robert Menendez (D-NJ) announced that the U.S. Department of Commerce has awarded a $\$ 100,000$ grant to the South Jersey Economic Development District"

Credit Claiming
Pork

Example Discovery

> Credit Claiming, Legislation: "As the Senate begins its recess, Senator Frank Lautenberg today pointed to a string of victories in Congress on his legislative agenda during this work period"

Credit Claiming
Pork

Mayhew Credit Claiming

Example Discovery

> Advertising: "Senate Adopts Lautenberg/Menendez Resolution Honoring Spelling Bee Champion from New Jersey"

Pork

Mayhew Credit Claiming
Legislation

Example Discovery: Partisan Taunting

Partisan Taunting:
 "Republicans Selling Out Nation on Chemical Plant Security"

Credit Claiming
Advertising
Pork

Mayhew Credit Claiming

Example Discovery: Partisan Taunting

Credit Claiming
Pork

Mayhew Credit Claiming
Legislation

Example Discovery: Partisan Taunting

> Definition: Explicit, public, and negative attacks on another political party or its members

Credit Claiming
Advertising
Pork

Mayhew $\begin{gathered}\text { Cređit Claiming } \\ \text { Legislation }\end{gathered}$

Example Discovery: Partisan Taunting

> Definition: Explicit, public, and negative attacks on another political party or its members Taunting ruins deliberation

Advertising

Pork

Mayhew Creait Claiming
Partisan Taunting

In Sample Illustration of Partisan Taunting

Taunting ruins deliberation

- "Senator Lautenberg Blasts Republicans as 'Chicken Hawks' " [Government Oversight]

Sen. Lautenberg on Senate Floor 4/29/04

In Sample Illustration of Partisan Taunting

Taunting ruins deliberation

- "Senator Lautenberg Blasts Republicans as 'Chicken Hawks’ " [Government Oversight]
- "The scopes trial took place in 1925. Sadly, President Bush's veto today shows that we haven't progressed much since then" [Healthcare]

Sen. Lautenberg on Senate Floor 4/29/04

In Sample Illustration of Partisan Taunting

Taunting ruins deliberation

Sen. Lautenberg on Senate Floor 4/29/04

- "Senator Lautenberg Blasts Republicans as 'Chicken Hawks' " [Government Oversight]
- "The scopes trial took place in 1925. Sadly, President Bush's veto today shows that we haven't progressed much since then" [Healthcare]
- "Every day the House Republicans dragged this out was a day that made our communities less safe." [Homeland Security]

Out of Sample Confirmation of Partisan Taunting

- Discovered using 200 press releases; 1 senator.

Out of Sample Confirmation of Partisan Taunting

- Discovered using 200 press releases; 1 senator.
- Confirmed using 64,033 press releases; 301 senator-years.

Out of Sample Confirmation of Partisan Taunting

- Discovered using 200 press releases; 1 senator.
- Confirmed using 64,033 press releases; 301 senator-years.
- Apply supervised learning method: measure proportion of press releases a senator taunts other party

Out of Sample Confirmation of Partisan Taunting

- Discovered using 200 press releases; 1 senator.
- Confirmed using 64,033 press releases; 301 senator-years.
- Apply supervised learning method: measure proportion of press releases a senator taunts other party

Out of Sample Confirmation of Partisan Taunting

- Discovered using 200 press releases; 1 senator.
- Confirmed using 64,033 press releases; 301 senator-years.
- Apply supervised learning method: measure proportion of press releases a senator taunts other party

Advancing the Objective of Discovery

Quantitative methods for conceptualization: aiding discovery

Advancing the Objective of Discovery

Quantitative methods for conceptualization: aiding discovery

- Few formal methods designed explicitly for conceptualization

Advancing the Objective of Discovery

Quantitative methods for conceptualization: aiding discovery

- Few formal methods designed explicitly for conceptualization
- Belittled: "Tom Swift and His Electric Factor Analysis Machine" (Armstrong 1967)

Advancing the Objective of Discovery

Quantitative methods for conceptualization: aiding discovery

- Few formal methods designed explicitly for conceptualization
- Belittled: "Tom Swift and His Electric Factor Analysis Machine" (Armstrong 1967)
- Evaluation methods measure progress in discovery

For more information (on adding zooming out to the human ability to zoom in)

http://GKing.Harvard.edu

