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posts, comments, product reviews, emails, social media updates,
audio-to-text summaries, speeches, press releases, legal decisions, etc.

@ 10 minutes of worldwide email = 1 LOC equivalent

@ An essential part of discovery is classification: “one of the most
central and generic of all our conceptual exercises. ...the foundation
not only for conceptualization, language, and speech, but also for
mathematics, statistics, and data analysis. ... Without classification,
there could be no advanced conceptualization, reasoning, language,
data analysis or, for that matter, social science research.” (Bailey,
1994).

e We focus on cluster analysis: discovery through (1) classification and
(2) simultaneously inventing a classification scheme

@ (We analyze text; our methods apply more generally)
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Why Johnny Can't Classify (Optimally)

@ Bell(n) = number of ways of partitioning n objects
e Bell(2) =2 (AB, A B)

e Bell(3) =5 (ABC, ABC, ABC,ACB,ABC()

o Bell(5) =52

@ Bell(100) ~ 10?8 x Number of elementary particles in the universe
@ Now imagine choosing the optimal classification scheme by hand!

@ That we think of all this as astonishing .. .is astonishing

Gary King (Harvard, 1QSS) Quantitative Discovery from Text 3/16



Why HAL Can’t Classify Either

Gary King (Harvard, 1QSS) Quantitative Discovery from Text



Why HAL Can’t Classify Either

@ The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:

Gary King (Harvard, 1QSS) Quantitative Discovery from Text 4 /16



Why HAL Can’t Classify Either

@ The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:

e Ugly duckling theorem: every pair of documents are equally similar
~ every partition of documents is equally similar

Gary King (Harvard, 1QSS) Quantitative Discovery from Text 4 /16



Why HAL Can’t Classify Either

@ The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:
e Ugly duckling theorem: every pair of documents are equally similar
~ every partition of documents is equally similar
e No free lunch theorem: every possible clustering method performs
equally well on average over all possible substantive applications

Gary King (Harvard, 1QSS) Quantitative Discovery from Text 4 /16



Why HAL Can’t Classify Either

@ The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:
e Ugly duckling theorem: every pair of documents are equally similar
~ every partition of documents is equally similar
e No free lunch theorem: every possible clustering method performs
equally well on average over all possible substantive applications

o Existing methods:

Gary King (Harvard, 1QSS) Quantitative Discovery from Text 4 /16



Why HAL Can’t Classify Either

@ The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:
e Ugly duckling theorem: every pair of documents are equally similar
~ every partition of documents is equally similar
o No free lunch theorem: every possible clustering method performs
equally well on average over all possible substantive applications
o Existing methods:

e Many choices: model-based, subspace, spectral, grid-based, graph-
based, fuzzy k-modes, affinity propogation, self-organizing maps,. . .

Gary King (Harvard, 1QSS) Quantitative Discovery from Text 4 /16



Why HAL Can’t Classify Either

@ The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:
e Ugly duckling theorem: every pair of documents are equally similar
~ every partition of documents is equally similar
o No free lunch theorem: every possible clustering method performs
equally well on average over all possible substantive applications

o Existing methods:

e Many choices: model-based, subspace, spectral, grid-based, graph-
based, fuzzy k-modes, affinity propogation, self-organizing maps,. . .
o Well-defined statistical, data analytic, or machine learning foundations

Gary King (Harvard, 1QSS) Quantitative Discovery from Text 4 /16



Why HAL Can’t Classify Either

@ The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:
e Ugly duckling theorem: every pair of documents are equally similar
~ every partition of documents is equally similar
o No free lunch theorem: every possible clustering method performs
equally well on average over all possible substantive applications

o Existing methods:

e Many choices: model-based, subspace, spectral, grid-based, graph-
based, fuzzy k-modes, affinity propogation, self-organizing maps,. . .

o Well-defined statistical, data analytic, or machine learning foundations

e How to add substantive knowledge:

Gary King (Harvard, 1QSS) Quantitative Discovery from Text 4 /16



Why HAL Can’t Classify Either

@ The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:
e Ugly duckling theorem: every pair of documents are equally similar
~ every partition of documents is equally similar
o No free lunch theorem: every possible clustering method performs
equally well on average over all possible substantive applications

o Existing methods:

e Many choices: model-based, subspace, spectral, grid-based, graph-
based, fuzzy k-modes, affinity propogation, self-organizing maps,. . .

o Well-defined statistical, data analytic, or machine learning foundations

e How to add substantive knowledge: With few exceptions, who knows?!

Gary King (Harvard, 1QSS) Quantitative Discovery from Text 4 /16



Why HAL Can’t Classify Either

@ The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:
e Ugly duckling theorem: every pair of documents are equally similar
~ every partition of documents is equally similar
o No free lunch theorem: every possible clustering method performs
equally well on average over all possible substantive applications

o Existing methods:
e Many choices: model-based, subspace, spectral, grid-based, graph-
based, fuzzy k-modes, affinity propogation, self-organizing maps,. . .
o Well-defined statistical, data analytic, or machine learning foundations
e How to add substantive knowledge: With few exceptions, who knows?!
o The literature: little guidance on when methods apply

Gary King (Harvard, 1QSS) Quantitative Discovery from Text 4 /16



Why HAL Can’t Classify Either

@ The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:
e Ugly duckling theorem: every pair of documents are equally similar
~ every partition of documents is equally similar
o No free lunch theorem: every possible clustering method performs
equally well on average over all possible substantive applications

o Existing methods:

e Many choices: model-based, subspace, spectral, grid-based, graph-
based, fuzzy k-modes, affinity propogation, self-organizing maps,. . .
Well-defined statistical, data analytic, or machine learning foundations
How to add substantive knowledge: With few exceptions, who knows?!
The literature: little guidance on when methods apply
Deriving such guidance: difficult or impossible

Gary King (Harvard, 1QSS) Quantitative Discovery from Text 4 /16



Why HAL Can’t Classify Either

@ The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:

e Ugly duckling theorem: every pair of documents are equally similar

~ every partition of documents is equally similar
o No free lunch theorem: every possible clustering method performs
equally well on average over all possible substantive applications
o Existing methods:

e Many choices: model-based, subspace, spectral, grid-based, graph-
based, fuzzy k-modes, affinity propogation, self-organizing maps,. . .
Well-defined statistical, data analytic, or machine learning foundations
How to add substantive knowledge: With few exceptions, who knows?!
The literature: little guidance on when methods apply
Deriving such guidance: difficult or impossible
(Perhaps true by definition in unsupervised learning: If we knew the
DGP, we wouldn't be at the discovery stage.)
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If Ex Ante doesn’t work, try Ex Post

e Methods and substance must be connected (no free lunch theorem)

@ The usual approach fails: can't do it by understanding the model
e We do it ex post (by cherry-picking results)

o For discovery (our goal): No problem
o For estimation & confirmation: more difficult or biased

@ Complicated concepts are easier to define ex post:

o "l know it when | see it” (Justice Stewart's definition of obscenity)
o Anchoring Vignettes (on defining concepts by example)

@ But how to choose from an enormous list of clusterings?
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A New Strategy

@ Code text as numbers (in one or more of several ways)

@ Apply all existing clustering methods (that have been used by at least
one person other than the author) to the data — each representing
different substantive assumptions (<15 mins)

© Develop an application-independent distance metric between
clusterings

@ Create a metric space of clusterings, and a 2D projection

© Introduce the local cluster ensemble to summarize any point,
including points with no existing clustering

@ Propose a new animated visualization: use the local cluster ensemble
to explore the space of clusterings (smoothly morphing from one into
others)

~~ meaning revealed through a geography of clusterings
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Many Thousands of Clusterings, Sorted & Organized
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Application-Independent Distance Metric: Axioms

@ Clusterings with more pairwise document agreements are closer (we
prove: pairwise agreements encompass triples, quadruples, etc.)

@ Invariance: Distance is invariant to the number of documents (for any
fixed number of clusters)

© Scale: the maximum distance is set to log(num clusters)

~~ Only one measure satisfies all three (the “variation of information”)
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Evaluators’ Rate Machine Choices Better Than Their Own

@ Scale: (1) unrelated, (2) loosely related, or (3) closely related
@ Table reports: mean(scale)

Pairs from Overall Mean Evaluator 1  Evaluator 2
Random Selection 1.38 1.16 1.60
Hand-Coded Clusters 1.58 1.48 1.68
Hand-Coding 2.06 1.88 2.24
Machine 2.24 2.08 2.40

p.s. The hand-coders did the evaluation!
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Cluster Quality Experiments

Scale: mean(within clusters) — mean(between clusters)

Lautenberg Press Releases

Policy Agendas Project

Reuter's Gold Standard

[ I I I I 1
-0.3 -0.2 -0.1 0.1 0.2 0.3

(Our Method) — (Human Coders)

Lautenberg: 200 Senate Press Releases (appropriations, economy,
education, tax, veterans, ...)
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Cluster Quality Experiments

Scale: mean(within clusters) — mean(between clusters)

Lautenberg Press Releases

Policy Agendas Project

Reuter's Gold Standard

[ I I I I 1
-0.3 -0.2 -0.1 0.1 0.2 0.3

(Our Method) — (Human Coders)

Policy Agendas: 213 quasi-sentences from Bush's State of the Union
(agriculture, banking & commerce, civil rights/liberties, defense, .. .)
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Cluster Quality Experiments

Scale: mean(within clusters) — mean(between clusters)

Lautenberg Press Releases

Policy Agendas Project

Reuter's Gold Standard

[ I I I I 1
-0.3 -0.2 -0.1 0.1 0.2 0.3

(Our Method) — (Human Coders)

Reuter's: financial news (trade, earnings, copper, gold, coffee, ...); “gold
standard” for supervised learning studies
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Substantive example of a finding, using our approach

e David Mayhew's (1974) famous typology

@ Adovertising
© Credit Claiming
© Position Taking

@ We find one more: Partisan Taunting

1

e "“Senator Lautenberg Blasts Republicans as ‘Chicken Hawks
[Government Oversight]

o "“The Intolerance and discrimination from the Bush administration
against gay and lesbian Americans is astounding” [Civil Rights]

e "“John Kerry had enough conviction to sign up for the military during
wartime, unlike the Vice President, who had a deep conviction to avoid
military service” [Government Oversight]
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What do Members of Congress Do?

Substantive example of a finding, using our approach

e David Mayhew's (1974) famous typology
@ Adovertising
© Credit Claiming
© Position Taking

@ We find one more: Partisan Taunting

e "“Senator Lautenberg Blasts Republicans as ‘Chicken Hawks
[Government Oversight]

o "“The Intolerance and discrimination from the Bush administration
against gay and lesbian Americans is astounding” [Civil Rights]

e "“John Kerry had enough conviction to sign up for the military during
wartime, unlike the Vice President, who had a deep conviction to avoid
military service” [Government Oversight]

e "“The scopes trial took place in 1925. Sadly, President Bush's veto
today shows that we haven't progressed much since then.” [Healthcare]

1
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What do Members of Congress Do?

Substantive example of a finding, using our approach

e David Mayhew's (1974) famous typology

Advertising
Credit Claiming
Position Taking

@ We find one more: Partisan Taunting

Gary King

1

“Senator Lautenberg Blasts Republicans as ‘Chicken Hawks
[Government Oversight]

“The Intolerance and discrimination from the Bush administration
against gay and lesbian Americans is astounding” [Civil Rights]

“John Kerry had enough conviction to sign up for the military during
wartime, unlike the Vice President, who had a deep conviction to avoid
military service” [Government Oversight]

“The scopes trial took place in 1925. Sadly, President Bush's veto
today shows that we haven't progressed much since then.” [Healthcare]
~> Perhaps this is what it means to be a member of a political party in
the U.S.?
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Found 2 scholars analyzing lots of textual data for their work

°
@ For each: created 2 clusterings from each of 3 methods, including ours
o Created info packet on each clustering (for each cluster: exemplar

document, automated content summary)

o Asked for (3)=15 pairwise comparisons
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Found 2 scholars analyzing lots of textual data for their work

For each: created 2 clusterings from each of 3 methods, including ours

Created info packet on each clustering (for each cluster: exemplar
document, automated content summary)

Asked for (3)=15 pairwise comparisons

@ Both cases a Condorcet winner:
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More Informative Discoveries

Found 2 scholars analyzing lots of textual data for their work

For each: created 2 clusterings from each of 3 methods, including ours

Created info packet on each clustering (for each cluster: exemplar
document, automated content summary)

Asked for (3)=15 pairwise comparisons

@ Both cases a Condorcet winner:
“Immigration”:

Our Method 1 — vMF 1 — vMF 2 — Our Method 2 — K-Means 1 — K-Means 2
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More Informative Discoveries

Found 2 scholars analyzing lots of textual data for their work

For each: created 2 clusterings from each of 3 methods, including ours

Created info packet on each clustering (for each cluster: exemplar
document, automated content summary)

o Asked for (3)=15 pairwise comparisons
@ Both cases a Condorcet winner:
“Immigration”:

Our Method 1 — vMF 1 — vMF 2 — Our Method 2 — K-Means 1 — K-Means 2

"“Genetic testing”:

Our Method 1 — {Our Method 2, K-Means 1, K-means 2} — Dir Proc. 1 — Dir Proc. 2
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and availability of unstructured text
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@ Intended contributions:
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e A new approach to evaluating results in unsupervised learning

o Especially useful for the ongoing spectacular increase in the production
and availability of unstructured text

@ Future research:
o Advancing our approach: (1) >2D exploration, (2) alternative
visualizations of the space of clusterings, (3) including more methods

o Evaluating new individual methods: (1) distance from existing methods
and their averages,
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Last Points

@ Intended contributions:

e An encompassing cluster analytic approach for discovery

e A new approach to evaluating results in unsupervised learning

o Especially useful for the ongoing spectacular increase in the production
and availability of unstructured text

@ Future research:
o Advancing our approach: (1) >2D exploration, (2) alternative
visualizations of the space of clusterings, (3) including more methods

o Evaluating new individual methods: (1) distance from existing methods
and their averages, (2) usefulness of discoveries in given data sets.
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For more information:

http://GKing.Harvard.edu
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