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1 List of Clustering Methods

We summarize here the types of different clustering algorithms included in our applications and

software. Existing algorithms are most often described as either statistical and algorithmic. The

statistical models are primarily mixture models, including a large variety of finite mixture models

(Fraley and Raftery, 2002; Banerjee et al., 2005; Quinn et al., 2006), infinite mixture models based

on the Dirichlet process prior (Blei and Jordan, 2006), and mixture models (Blei, Ng and Jordan,

2003). The algorithmic approaches include methods that partition the documents directly, those

that create a hierarchy of clusterings, and those which add an additional step to the clustering pro-

cedure. The methods include some which identify an exemplar document for each cluster (Kaufman

and Rousseeuw, 1990; Frey and Dueck, 2007) and those which do not (Schrodt and Gerner, 1997;

Shi and Malik, 2000; Ng, Jordan and Weiss, 2002; von Luxburg, 2007). The hierarchical methods

can be further sub-divided into agglomerative (Hastie, Tibshirani and Friedman, 2001), divisive

(Kaufman and Rousseeuw, 1990), and other hybrid methods (Gan, Ma and Wu, 2007). To use in

our program, we obtain a flat partition of the documents from hierachical clustering methods. A

final group includes methods which group words and documents together simulatenously (Dhillon,

2003) and those which embed the documents into lower dimensional space and then cluster (Ko-

honen, 2001). Some methods implicitly define a distance metric among documents but, for those

that do not, we include many ways to measure the similarity between pairs documents, which is an

input to a subset of the clustering methods used here. These include standard measures of distance

(Manhattan, Euclidean), angular based measures of similarity (cosine), and many others.

Our software is written modularly so that new approaches can easily be included.

Table 1: Clustering Methods and Distance Metrics Available
in Our Program

Method Name Metric/Estimation/Tuning Parameter Varied Citation
k-means Manhattan Forgy (1965)
k-means Euclidean
k-means Minkowksi (p=4)
k-means Maximum
k-means Canberra
k-means Cosine
k-means Correlation
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Method Name Metric Name Citation
k-means Binary
k-means Spearman’s Ranked-Correlation
k-means Kendall
k-means Random Forest Distance
Fuzzy k-means Manhattan Gath and Geva (1989)
Fuzzy k-means Euclidean
Fuzzy k-means Minkowksi (p=4)
Fuzzy k-means Maximum
Fuzzy k-means Canberra
Fuzzy k-means Cosine
Fuzzy k-means Correlation
Fuzzy k-means Binary
Fuzzy k-means Spearman’s Ranked-Correlation
Fuzzy k-means Kendall
Fuzzy k-means Random Forest Distance
Trimmed k-means Manhattan Cuesta-Albertos, Gordaliza and Matran (1997)
Trimmed k-means Euclidean
Trimmed k-means Minkowksi (p=4)
Trimmed k-means Maximum
Trimmed k-means Canberra
Trimmed k-means Cosine
Trimmed k-means Correlation
Trimmed k-means Binary
Trimmed k-means Spearman’s Ranked-Correlation
Trimmed k-means Kendall
Trimmed k-means Random Forest Distance
k Harmonic-means Manhattan Zhang, Hsu and Dayal (1999)
k Harmonic-means Euclidean
k Harmonic-means Minkowksi (p=4)
k Harmonic-means Maximum
k Harmonic-means Canberra
k Harmonic-means Cosine
k Harmonic-means Correlation
k Harmonic-means Binary
k Harmonic-means Spearman’s Ranked-Correlation
k Harmonic-means Kendall
k Harmonic-means Random Forest Distance
k-medoids Manhattan Kaufman and Rousseeuw (1990)
k-medoids Euclidean
k-medoids Minkowksi (p=4)
k-medoids Maximum
k-medoids Canberra
k-medoids Cosine
k-medoids Correlation
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Method Name Metric Name Citation
k-medoids Binary
k-medoids Spearman’s Ranked-Correlation
k-medoids Kendall
k-medoids Random Forest Distance
Affinity Propagation Manhattan Frey and Dueck (2007)
Affinity Propagation Euclidean
Affinity Propagation Minkowksi (p=4)
Affinity Propagation Maximum
Affinity Propagation Canberra
Affinity Propagation Cosine
Affinity Propagation Correlation
Affinity Propagation Binary
Affinity Propagation Spearman’s Ranked-Correlation
Affinity Propagation Kendall
Affinity Propagation Random Forest Distance
Affinity Propagation Encoding Metrics
Maximum Entropy Clustering Euclidean (Varying β values) Karayiannis (1994)
Agglomerative Hierarchical Manhattan (Link = Ward) McQuitty (1966)
Agglomerative Hierarchical Euclidean (Link = Ward)
Agglomerative Hierarchical Minkowski (Link =Ward)
Agglomerative Hierarchical Maximum (Link =Ward)
Agglomerative Hierarchical Canberra (Link =Ward)
Agglomerative Hierarchical Cosine (Link =Ward)
Agglomerative Hierarchical Correlation (Link =Ward)
Agglomerative Hierarchical Binary (Link =Ward)
Agglomerative Hierarchical Spearman Ranked-Correlation (Link =Ward)
Agglomerative Hierarchical Kendall (Link =Ward)
Agglomerative Hierarchical Random Forest Distance (Link =Ward)
Agglomerative Hierarchical Manhattan (Link = Single)
Agglomerative Hierarchical Euclidean (Link = Single)
Agglomerative Hierarchical Minkowski (Link =Single)
Agglomerative Hierarchical Maximum (Link =Single)
Agglomerative Hierarchical Canberra (Link =Single)
Agglomerative Hierarchical Cosine (Link =Single)
Agglomerative Hierarchical Correlation (Link =Single)
Agglomerative Hierarchical Binary (Link =Single)
Agglomerative Hierarchical Spearman Ranked-Correlation (Link =Single)
Agglomerative Hierarchical Kendall (Link =Single)
Agglomerative Hierarchical Random Forest Distance (Link =Single)
Agglomerative Hierarchical Manhattan (Link = Complete)
Agglomerative Hierarchical Euclidean (Link = Complete)
Agglomerative Hierarchical Minkowski (Link =Complete)
Agglomerative Hierarchical Maximum (Link =Complete)
Agglomerative Hierarchical Canberra (Link =Complete)
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Method Name Metric Name Citation
Agglomerative Hierarchical Cosine (Link =Complete)
Agglomerative Hierarchical Correlation (Link =Complete)
Agglomerative Hierarchical Binary (Link =Complete)
Agglomerative Hierarchical Spearman Ranked-Correlation (Link =Complete)
Agglomerative Hierarchical Kendall (Link =Complete)
Agglomerative Hierarchical Random Forest Distance (Link =Complete)
Agglomerative Hierarchical Manhattan (Link = Average)
Agglomerative Hierarchical Euclidean (Link = Average)
Agglomerative Hierarchical Minkowski (Link =Average)
Agglomerative Hierarchical Maximum (Link =Average)
Agglomerative Hierarchical Canberra (Link =Average)
Agglomerative Hierarchical Cosine (Link =Average)
Agglomerative Hierarchical Correlation (Link =Average)
Agglomerative Hierarchical Binary (Link =Average)
Agglomerative Hierarchical Spearman Ranked-Correlation (Link =Average)
Agglomerative Hierarchical Kendall (Link =Average)
Agglomerative Hierarchical Random Forest Distance (Link =Average)
Agglomerative Hierarchical Manhattan (Link = McQuitty)
Agglomerative Hierarchical Euclidean (Link = McQuitty)
Agglomerative Hierarchical Minkowski (Link =McQuitty)
Agglomerative Hierarchical Maximum (Link =McQuitty)
Agglomerative Hierarchical Canberra (Link =McQuitty)
Agglomerative Hierarchical Cosine (Link =McQuitty)
Agglomerative Hierarchical Correlation (Link =McQuitty)
Agglomerative Hierarchical Binary (Link =McQuitty)
Agglomerative Hierarchical Spearman Ranked-Correlation (Link =McQuitty)
Agglomerative Hierarchical Kendall (Link =McQuitty)
Agglomerative Hierarchical Random Forest Distance (Link =McQuitty)
Agglomerative Hierarchical Manhattan (Link = Median)
Agglomerative Hierarchical Euclidean (Link = Median)
Agglomerative Hierarchical Minkowski (Link =Median)
Agglomerative Hierarchical Maximum (Link =Median)
Agglomerative Hierarchical Canberra (Link =Median)
Agglomerative Hierarchical Cosine (Link =Median)
Agglomerative Hierarchical Correlation (Link =Median)
Agglomerative Hierarchical Binary (Link =Median)
Agglomerative Hierarchical Spearman Ranked-Correlation (Link =Median)
Agglomerative Hierarchical Kendall (Link =Median)
Agglomerative Hierarchical Random Forest Distance (Link =Median)
Agglomerative Hierarchical Manhattan (Link = Centroid)
Agglomerative Hierarchical Euclidean (Link = Centroid)
Agglomerative Hierarchical Minkowski (Link =Centroid)
Agglomerative Hierarchical Maximum (Link =Centroid)
Agglomerative Hierarchical Canberra (Link =Centroid)
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Method Name Metric Name Citation
Agglomerative Hierarchical Cosine (Link =Centroid)
Agglomerative Hierarchical Correlation (Link =Centroid)
Agglomerative Hierarchical Binary (Link =Centroid)
Agglomerative Hierarchical Spearman Ranked-Correlation (Link =Centroid)
Agglomerative Hierarchical Kendall (Link =Centroid)
Agglomerative Hierarchical Random Forest Distance (Link =Centroid)
Model-Based Hierarchical Fraley (1998)
Proximus Manhattan Koyuturk, Graham and Ramakrishnan (2005)
Proximus Euclidean
Proximus Minkowksi (p=4)
Proximus Maximum
Proximus Canberra
Proximus Cosine
Proximus Correlation
Proximus Binary
Proximus Spearman’s Ranked-Correlation
Proximus Kendall
Proximus Random Forest Distance
ROCK Manhattan Guha, Rastogi and Shim (2000)
ROCK Euclidean
ROCK Minkowksi (p=4)
ROCK Maximum
ROCK Canberra
ROCK Cosine
ROCK Correlation
ROCK Binary
ROCK Spearman’s Ranked-Correlation
ROCK Kendall
ROCK Random Forest Distance
Divisive Hierarchical Manhattan Kaufman and Rousseeuw (1990)
Divisive Hierarchical Euclidean
Divisive Hierarchical Minkowksi (p=4)
Divisive Hierarchical Maximum
Divisive Hierarchical Canberra
Divisive Hierarchical Cosine
Divisive Hierarchical Correlation
Divisive Hierarchical Binary
Divisive Hierarchical Spearman’s Ranked-Correlation
Divisive Hierarchical Kendall
Divisive Hierarchical Random Forest Distance
DISMEA Manhattan Gan, Ma and Wu (2007)
DISMEA Euclidean
DISMEA Minkowksi (p=4)
DISMEA Maximum
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Method Name Metric Name Citation
DISMEA Canberra
DISMEA Cosine
DISMEA Correlation
DISMEA Binary
DISMEA Spearman’s Ranked-Correlation
DISMEA Kendall
DISMEA Random Forest Distance
Fuzzy Manhattan ?)
Fuzzy Euclidean
Fuzzy Minkowksi (p=4)
Fuzzy Maximum
Fuzzy Canberra
Fuzzy Cosine
Fuzzy Correlation
Fuzzy Binary
Fuzzy Spearman’s Ranked-Correlation
Fuzzy Kendall
Fuzzy Random Forest Distance
QTCLust Varying Radii Heyer, Kruglyak and Yooseph (1999)
Self-Organizing Map Hexagon Kohonen (2001)
Self-Organizing Map Square
Self-Organizing Tree Euclidean Brock et al. (2008)
Self-Organizing Tree Correlation
Unnormalized Spectral Manhattan von Luxburg (2007); Schrodt and Gerner (1997)
Unnormalized Spectral Euclidean
Unnormalized Spectral Euclidean
Unnormalized Spectral Minkowski (p=4)
Unnormalized Spectral Maximum
Unnormalized Spectral Canberra
Unnormalized Spectral Cosine
Unnormalized Spectral Correlation
Unnormalized Spectral Binary
Unnormalized Spectral Spearman’s Ranked-Correlation
Unnormalized Spectral Kendall
Unnormalized Spectral Random Forest Distance
Meila and Shi Spectral Manhattan Meila and Shi (2001)
Meila and Shi Spectral Euclidean
Meila and Shi Spectral Minkowski (p=4)
Meila and Shi Spectral Maximum
Meila and Shi Spectral Canberra
Meila and Shi Spectral Cosine
Meila and Shi Spectral Correlation
Meila and Shi Spectral Binary
Meila and Shi Spectral Spearman’s Ranked-Correlation
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Method Name Metric Name Citation
Meila and Shi Spectral Kendall
Meila and Shi Spectral Random Forest Distance
Ng, Jordan, Weiss Spectral Manhattan Ng, Jordan and Weiss (2002)
Ng, Jordan, Weiss Spectral Euclidean
Ng, Jordan, Weiss Spectral Minkowski (p=4)
Ng, Jordan, Weiss Spectral Maximum
Ng, Jordan, Weiss Spectral Canberra
Ng, Jordan, Weiss Spectral Cosine
Ng, Jordan, Weiss Spectral Correlation
Ng, Jordan, Weiss Spectral Binary
Ng, Jordan, Weiss Spectral Spearman’s Ranked-Correlation
Ng, Jordan, Weiss Spectral Kendall
Ng, Jordan, Weiss Spectral Random Forest Distance
Shi-Malik Spectral Manhattan Shi and Malik (2000)
Shi-Malik Spectral Euclidean
Shi-Malik Spectral Minkowski (p = 4)
Shi-Malik Spectral Maximum
Shi-Malik Spectral Canberra
Shi-Malik Spectral Cosine
Shi-Malik Spectral Correlation
Shi-Malik Spectral Binary
Shi-Malik Spectral Spearman’s Ranked-Correlation
Shi-Malik Spectral Kendall
Shi-Malik Spectral RandomForest Distance
Dirichlet Process, Multinomial Variational Approximation Blei and Jordan (2006)
Dirichlet Process, Normals Variational Approximation ?)
Mixture, Multinomials EM Algorithm Gelman et al. (2003)
Mixture, Multinomials Variational Approximation
Mixture, von-Mises Fisher EM Algorithm Banerjee et al. (2005)
Mixture, von-Mises Fisher Variational Approximation
Mixture of Normals EM-algorithm Fraley and Raftery (2002)
Mixture of Normals Variational Approximation
Co-clustering Mutual Information NA Dhillon, Mallela and Modha (2003)
Co-clustering (SVD) NA Dhillon (2003)
LLAhclust LLA Lerman (1991)
LLAhclust tippet
LLAhclust average
LLAhclust complete
LLAhclust fisher
LLAhclust uniform
LLAhclust normal
LLAhclust maximum
CLUES Euclidean Wang, Qiu and Zamar (2007)
CLUES Correlation
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Method Name Metric Name Citation
bclust Manhattan Leisch (1999)
bclust Euclidean
bclust Minkowksi (p=4)
bclust Maximum
bclust Canberra
bclust Cosine
bclust Correlation
bclust Binary
bclust Spearman’s Ranked-Correlation
bclust Kendall
bclust Random Forest Distance
c-shell euclidean Rajesh (1996)
c-shell manhattan
Latent-Dirichlet Allocation Variational Approximation Blei, Ng and Jordan (2003)
Expressed Agenda Model Variational Approximation Grimmer (2010)

2 Extensions of the Clustering Space

Here we describe two methods for extending beyond the space that we constructed.

First, we consider a way of randomly sampling clusterings from the entire Bell space. When

desired, a researcher could then add some of these to the original set of clusterings and rerun the

same visualization. To do this, we developed a two step method of taking a uniform random draw

from the set of all possible clusterings. First, sample the number of clusters K from a multinomial

distribution with probability Stirling(K, N)/Bell(N) where Stirling(K, N) is the number of ways

to partition N objects into K clusters (i.e., known as the Stirling number of the second kind).

Second, conditional on K, obtain a random clustering by sampling the cluster assignment for each

document i from a multinomial distribution, with probability 1/K for each cluster assignment. If

each of the K clusters does not contain at least one document, reject it and take another draw (see

Pitman, 1997).

A second approach to expanding the space beyond the existing algorithms directly extends the

existing space by drawing larger concentric hulls containing the convex hull of the existing solutions.

To do this, we define a Markov chain on the set of partitions, starting with a chain on the boundaries

of the existing solutions. To do this, consider a clustering of the data cj . Define C(cj) as the set
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of clusterings that differ by exactly by one document: a clustering c
′
j ∈ C(cj) if and only if one

document belongs to a different cluster in c
′
j than in cj . Our first Markov chain takes a uniform

sample from this set of partitions. Therefore, if cj′ ∈ C(cj) (and cj is in the “interior” of the set

of partitions) then p(cj′ |cj) = 1
NK where N are the number of documents and K is the number of

clusters. If cj′ /∈ C(cj) then p(cj′ |cj) = 0. To ensure that the Markov chain proceeds outside the

existing hull, we add a rejection step: For all cj′ ∈ C(cj) p(cj
′ |cj) = 1

NK I(cj′ /∈ Convex Hull). This

ensures that the algorithm explores the parts of the Bell space that are not already well described

by the included clusterings. To implement this strategy, we use a three stage process applied to each

clustering ck: First, we select a cluster to edit with probability Nj

N for each cluster j in clustering

ck. Conditional on selecting cluster j we select a document to move with probability 1
Nj

. Then, we

move the document to one of the other K − 1 clusters or to a new cluster, so the document will be

sent to a new clustering with probability 1
K .

3 Insights from Partisan Taunting

Examples from Lautenberg’s press releases and contemporary political discourse suggests new in-

sights into Congressional behavior. Partisan taunting creates the possibilty of negative credit

claiming: when members of Congress undermine the opposing party’s efforts to claim credit for

federal funds. For example, the DCCC issued a press release accusing Mary Bono Mack (R-CA,45)

of acting “hypocritically” for announcing “$40 million for two long-awaited improvement projects

to I-10, even though she voted against the improvements”. Partisan taunting also allows mem-

bers of a party to claim credit for legislative work even when no reform actually occurred. Both

Democrats and Republican caucuses regularly issue statements, blaming inaction in the Congress

on the other party. For example a June 27, 2007 press release from the Senate Democratic caucus

reads, “Senate Republicans blocked raising the minimum wage”.

Partisan taunting is also an important element of position taking, allowing members of Congress

to juxtapose their own position against the other party’s. Senator Lautenberg used this strategy in a

press release when he “filed an amendment to rename the ‘Tax Reconciliation Act of 2005,’ to reflect

the true impact the legislation will have on the nation if allowed to pass. Senator Lautenberg’s

amendment would change the name of the measure to ‘More Tax Breaks for the Rich and More
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Debt for Our Grandchildren Deficit Expansion Reconciliation Act of 2006.’ The Republican bill

would provide more tax cuts to the wealthiest Americans while saddling our grandchildren with

additional debt.”

Partisan taunting also overlaps the category of advertising, which occurs in Lautenberg’s press

release when he “Expresses Shock Over President Bush’s Mock Search for Weapons of Mass De-

struction”. While devoid of policy content, this statement allows Lautenberg to appear as a sober

statesman next to a juvenille administration joke.

4 Technical Details

4.1 Defining The Distance Between Clusterings

Each cluster method j (j = 1, . . . , J) produces a partition (or “clustering”) of the documents with

Kj clusters assumed (or estimated). Denote by cikj an indicator of whether (or the extent to

which) document i is assigned to cluster k under method j. For “hard” cluster algorithms (those

that assign a document to only one cluster), cikj ∈ {0, 1}; for “soft” methods, cikj ∈ [0, 1]; and for

both
∑Kj

k=1 cikj = 1 for all k and j. The Kj-vector denoting document i’s cluster membership from

method j is given by cij and is an element of the Kj−1 dimensional simplex. Then we characterize

a full clustering for method j with the N ×Kj matrix cj .

Our distance metric builds on entropy, a function H that maps from the proportion of documents

in each category to a measure of information in the documents. For clustering cj , define its entropy

as (Mackay, 2003; Shannon, 1949),

H(cj) = −
K∑

k=1

N∑
i=1

cijk

N
log

(
N∑

i=1

cijk

N

)

= −
K∑

k=1

pj(k) log pj(k) = H(pj(1), pj(2), . . . , pj(K)) = H(pj)

define the proportion of documents assigned to the kth category as
∑N

i=1
cijk

N = pj(k) and denote

as pj = (pj(1), . . . , pj(K)) the vector describing the proportion of documents assigned to each

category.

We now develop a measure of distance between clusterings based upon a (rescaled) measure of

pairwise disagreements. Denote by d(cj , cj
′ ) our candidate measure of the distance between two
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clusterings. Define pair(cj , cj′ ) as the number of documents in the same cluster in cj but not in

cj′ plus the pairs of documents in cj
′ not in cj . The pair function is more refined than higher

order functions: it includes the information in all higher order subsets, such as triples, quadruples,

etc. This is well-known, but we offer a simple proof by contradiction here. Suppose, by way of

contradiction, that clustering cj and cz agree on all pairs, but disagree on some larger subset m.

This implies there exists a group of documents c1j , . . . , cmj grouped in the same cluster in cj but

not grouped in cz. But for this to be true, then there must be at least m pair differences between

the two clusterings, contradicting our assumption that there are no pairwise disagreements. Note

that the converse is not true: Two clusterings could agree about all subsets of size m > 2 but

disagree about the pairs of documents that belong together.

We use three assumptions to derive the properties of our distance metric. First, we assume that

the distance metric should be based upon the number of pairwise disagreements (encoded in the

pair function). We extract two properties of our metric directly from this assumption. First, denote

the maximum possible distance between clusterings as that which produces the maximum number

of pairwise disagreements about the cluster in which the two documents belong. Denote c(1, N)

as the clustering where all N documents are placed into one cluster and c(N,N) the clustering

where all N documents are placed into N individual clusters. Then the maximum possible pairwise

disagreements is between c(1, N) and c(N,N). (Note that c(1, N) implies
(
N
2

)
pairs, while c(N,N)

implies 0 pairs, implying
(
N
2

)
disagreements, the largest possible disagreement.) In addition, for

each clustering cj ,

pair(c(1, N), c(N,N)) = pair(c(1, N), cj) + pair(c(N,N), cj). (4.1)

Our second property extracted from the focus on pairwise disagreements ensures that partitions

with smaller distances are actually more similar — have fewer pairwise disagreements — than

other partitions with larger distances. Define the meet between two clusterings cj and ck as a new

(compromise) clustering, denoted cj × ck, which assigns pairs of documents to the same cluster if

both of the component clusterings agree they belong in the same cluster. If the two clusterings

disagree, then the pair of documents are not assigned to the same cluster. A general property of a
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meet is that it lies “between” two clusterings, or for any clusterings cz and cm,

pair(cz, cm) = pair(cz × cm, cz) + pair(cz × cm, cm). (4.2)

Using the pair function and an additional assumption — invariance to the number of documents

included in the clustering — we define a third property of our metric: how the shared information

changes as the number of clusters change. Consider the case where we refine a clustering cj by

dividing documents in cluster cjk among a set of newly articulated clusters, c
′
(njk), and where

the new clustering is c
′
j . (If we restrict attention to the njk documents originally in cluster k in

clustering j, then cjk is the clustering that assigns all njk documents to the same cluster, so we

write it as c(1, njk).) A property of the pair function is that,

pair(cj , c
′
j) =

Kj∑
k=1

pair(c(1, njk), c
′
(njk)) (4.3)

Using Equation 4.3, we apply the invariance assumption to rescale the pair function. Therefore,

we require the distance between cj and c
′
j to be d(cj , c

′
j) =

∑K
k=1

njk

n d(c(1, njk), c
′
jk).

The final property employs the pair function plus a scaling axiom to define the maximum

distance for a fixed number of clusters K. Call the clustering that places the same number of

documents into each cluster c(uniform,K) (if this clustering exists). Then the clustering with the

most pairwise disagreements with c(uniform,K) is c(1, N) and so bounding on this distance bounds

all smaller distances. We use a scaling assumption to require that d(c(uniform,K), c(1, N)) =

log K, i.e., that the distance between an evenly spread out clustering and a clustering that places

all documents into the same category increases with the number of categories at a logarithmic rate.

Our three assumptions, and the four properties extracted from these assumptions, narrow the

possible metrics to a unique choice: the variation of information (VI), based on the shared or

conditional entropy between two clusterings Meila (2007). Further, it is a distance metric (even

though we made no explicit assumptions that our distance measure be a metric). We define

the VI metric by considering the distance between two arbitrary clusterings, cj and c
′
j . Define

the proportion of documents assigned to cluster k in method j and cluster k
′

in method j
′

as

pjj′ (k, k
′
) =

∑N
i=1 cikjcik′j′/N .

Given the joint-entropy definition of shared information between cj and cj′ , H(cj , cj
′ ) =

−
∑K

k=1

∑K
′

k′=1
pjj

′ (k, k
′
) log pjj

′ (k, k
′
), we seek to determine the amount of information cluster
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cj adds if we have already observed cj′ . A natural way to measure this additional information is

with the conditional entropy, H(cj |cj′ ) = H(cj , cj
′ )−H(cj

′ ), which we make symmetric by adding

together the conditional entropies: (Meila, 2007),

d(cj , cj
′ ) ≡ V I(cj , cj

′ ) = H(cj |cj
′ ) + H(cj

′ |cj). (4.4)

An equivalent statement of the variation of information may be more intuitive. Define the

mutual information between clusterings cj and cj
′ , I(cj ; cj

′ ) as

I(cj ; cj
′ ) = −

K∑
k=1

K
′∑

k
′
=1

p
′
jj(k, k

′
) log

(
pjj(k, k

′
)

pj(k)pj
′ (k′)

)
(4.5)

4.2 Properties of the Pair Function

In this section we prove various properties of the pair function.

Lemma 1. For all clusterings cj, pair(c(1, N), c(N,N)) = pair(c(1, N), cj) + pair(c(N,N), cj)

Proof. Note that c(1, N) implies
(
N
2

)
pairs of documents, so pair(c(1, N), c(N,N)) =

(
N
2

)
. Any

cj will have g =
∑Kj

k=1

(njk

2

)
pairs of documents, where njk represents the number of documents

assigned to the kth cluster in clustering j. Therefore, pair(c(1, N), cj) =
(
N
2

)
− g. If all clusterings

are placed into their own clusters, then there are no pairs of clusters, so pair(c(N,N), cj) =

g. Adding these two quantities together we find that, pair(c(1, N), cj) + pair(c(N,N), cj) =(
N
2

)
= pair(c(1, N), c(N,N)). So, we require for our distance metric that d(c(1, N), c(N,N)) =

d(c(1, N), cj) + d(c(N,N), cj) for all possible clusterings cj .

Lemma 2. For all clusterings cz and cm, pair(cz, cm) = pair(cz × cm, cz) + pair(cz × cm, cm)

Proof. Define gz =
∑K

k=1

(
nzk
2

)
and gm =

∑K
′

k=1

(
nmk

2

)
and call the number of pairs where the two

clusterings agree gagree. Then pair(cz, cm) = (gz − gagree) + (gm − gagree). cm × cz places a pair

of documents into the same cluster if and only if cz and cm agree that the pair belongs together,

thus pair(cz × cm, cz) = gz − gagree. By the same argument pair(cz × cm, cm) = gm − gagree and

therefore pair(cz × cm, cm) + pair(cz × cm, cz) = pair(cz, cm).

Thus, the meet provides a natural definition of the area between two clusterings, so we will require

that d(cz, cm) = d(cz × cm, cz) + d(cz × cm, cm).
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Lemma 3. If clustering c
′
j refines cj then pair(cj , c

′
j) =

∑Kj

k=1 pair(c(1, njk), c
′
(njk))

Proof. Define Kj′ as the number of clusters in the refined clustering. Apply the definition of

the pair function results in pair(cj , c
′
j) =

∑Kj

k=1

(njk

2

)
−
∑K

j
′

z=1

(n
j
′
z

2

)
(because the refinement can

only break apart pairs). For each cluster k in cj , enumerate the clusters in c
′
j that refine k with

r = 1, . . . , Rk (and note, Rk could be 1, indicating that there was no refinement). We can rewrite

the pair function as pair(cj , c
′
j) =

∑Kj

k=1

((njk

2

)
−
∑Rk

r=1

(n
j
′
r

2

))
=
∑Kj

k=1 pair(c(1, njk), c
′
(njk)).

Theorem 1 (Meila, 2007). The three assumptions imply that the distance metric is the Variation

of Information, given by

d(cj , cj′ ) ≡ V I(cj , cj′ ) = H(cj |cj′ ) + H(cj′ |cj). (4.6)

Proof. The four properties, derived from our three assumptions are equivalent to those stated in

Meila (2007), and so the proof follows the same argument, which we present here for completeness.

Applying the third and fourth properties we see that d(cj , c(N,N)) =
∑Kj

k
nk
N d(c(1, Nk), c(uniform(Nk), Nk)) =∑Kj

k
nk
N log nk Adding and subtracting log N we have

∑Kj

k
nk
N log nk =

∑Kj

k
nk
N (log nk

N + log N),

which is equal to log N−H(cj). By our fourth property d(c(1, N), c(N,N)) = log N . Property 1 and

this fact imply d(cj , c(1, N)) = H(cj). Now, consider two arbitrary clusterings, cm and cz. Identify

all the nkm observations assigned to the kth cluster in method m as km. And collect the cluster

labels for these documents in cz in cz(km). Then, d(cm, cm × cz) =
∑Km

k=1
nkm
N d(c(1, nkm), cz(km))

and by our previous argument
∑Km

k=1
nkm
N d(c(1, nkm), cz(km)) =

∑Km
k=1

nkm
N H(cz(km)) and applying

properties of entropy reveals that
∑Km

k=1
nkm
N H(cz(km)) = H(cm|cz). Applying our second property

then shows that d(cm, cz) = H(cm|cz) + H(cz|cm) which completes the proof.

4.3 The Sammon Multidimensional Scaling Algorithm

We define here the Sammon (1969) multidimensional scaling algorithm and show that it possesses

the properties we need. Let cj be an N ×Kj matrix (for document i, i = 1, . . . , N , and cluster k,

k = 1, . . . ,Kj , characterizing clustering j), each element of which describes whether each document

is (0) or is not (1) assigned to each cluster (or for soft clustering methods how a document is allocated

among the clusters, but where the sum over k is still 1). For each clustering j, the goal is to define

its coordinates in a new two-dimensional space xj = (xj1, xj2), which we collect into a J×2 matrix
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X. We use the Euclidean distance between two clusterings in this space, which we represent for

clusterings j and j
′
as deuc(xj ,xj′ ). Our goal is to estimate the coordinates X∗ that minimizes

X∗ = argminX

 J∑
j=1

∑
j′ 6=j

(
deuc(xj ,xj

′ )− d(cj , cj
′ )
)2

d(cj , cj′ )

 . (4.7)

Equation 4.7 encodes our goal of preserving small distances with greater accuracy than larger

distances. The denominator contains the distance between two clusterings d(cj , cj′ ). This implies

that clusterings that are small will be given additional weight in the final embedding, while large

distances will receive less consideration in the scaling, just as desired.

This appendix describes two properties of the local cluster ensemble.

Avoiding Infinite Regress via Local Cluster Ensembles We first show that the local cluster

ensemble avoids the infinite regress problem. To prove this, we show that our approach is approx-

imately invariant when replacing the k-means “meta-cluster analysis” method form local cluster

ensembles with any other valid clustering method, given that we employ a sufficiently large number

of methods in the original set.

Suppose we employ a valid distance metric between clusterings and apply arbitrary clustering

method 1 to obtain a partition of documents based upon the weighted votes for a given point. We

represent this clustering with c1 (V (w)). Now, suppose that we want to apply a second cluster

method to same weighted voting matrix c2 (V (w)). How close can we get to c1 (V (w)) by varying

the weights in c2 (V (w))?1 If it is close, then we are guaranteed to find the same clusterings (and

therefore, make the same discoveries) using two different clustering methods.

Let w∗ represent the set of weights that minimize the distance between c1 (V (w)) and c2 (V (w∗)),

w∗ = argmin
w

′ d(c1 (V (w)) , c2

(
V (w

′
)
)
. We can guarantee that, 0 ≤ d(c1 (V (w)) , c2 (V (w∗)) ≤

minj d(c1 (V (w), cj)) or that c1 (V (w)) and c2 (V (w∗)) can be no farther apart c1 (V (w)) and any

of the clusterings we have already obtained. This is because we can always place all the weight on
1We make the assumption that the second clustering method is full range (can provide any partition) to avoid

pathological counter examples. For simplicity, we also assume that when provided with a similarity matrix that
is block-diagonal (diagonal blocks are zero distance, off diagonal infinite distance) the method returns the block-
diagonals as the clustering. We are unaware of any existing clustering methods that violate this assumption, although
theoretical examples are possible to construct. Notice, that our assumptions are different than Kleinberg (2003),
avoiding well-known impossibility results.
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the clustering from an existing method. If we have included all possible clusterings for a set of doc-

uments, then d(c1 (V (w)) , c2 (V (w∗)) = 0, because the clustering from c1 (V (w)) is guaranteed

to be present in the collection of clusterings.

This illustrates two key points about the invariance of our method to the clustering method used

in creating local cluster ensembles. First, because we use a large number of clusterings to obtain

many partitions of the data, any two methods used to cluster the results are likely to yield very

similar insights. Second, we recognize that we cannot enumerate all possible partitions. Therefore,

we restrict our attention only to those partitions that can be expressed by a combination of the

collective creativity of the various academic literatures devoted to cluster analysis.

The Local Cluster Ensemble as a Relaxed Version of the “Meet” We now show that

the local cluster ensemble is a relaxed version of the “meet,” defined in Appendix 4.1: it agrees

in specific cases where we would expect correspondence, and diverges to allow local averages. In

comparison, the original version of the meet creates a cluster ensemble that gives each component

method equal weight.

We first demonstrate that the meet and the local cluster ensemble agree in specific cases.

Consider two clusterings c1 and c2 and denote their meet by c3 = c1 × c2. Recall that a pair

of documents will be assigned to the same cluster in c3 if (and only if) they are assigned to the

same cluster in c1 and c2. To construct the meet using a local cluster ensemble, suppose that we

assign equal weight to each method w1 = w2 = 0.5 and that the local cluster ensemble assumes

the same number of clusters as found in the meet, K3. A consequence of these assumptions is

that pairs of documents assigned to the same cluster in both documents will be maximally similar.

The optimal solution for k-means, applied to this similarity matrix is the meet (anything else will

increase the squared error in the final clustering, and therefore not be optimal). Further, it is clear

that the meet of a set of clusterings provides an upper bound on the number of clusters to be found

in an ensemble: using more clusters than the meet involves splitting pairs of documents that are

maximally similar into different clusters.

We now show how the meet relates to the local cluster ensemble in general. The meet among

a set of clusterings requires unanimous agreement that a pair of documents belongs to the same

17



cluster (the order of the pairs is irrelevant). We show this explicitly in terms of a voting matrix

to compare it more directly to the local cluster ensemble. Suppose we have J clusterings and

assemble the voting matrix V (w), but suppose each clustering receives equal weight w = 1
J and

obtain similarity matrix V (w)V (w)
′
. The meet settles disputes about which documents belong in

the same clusters in the most conservative way possible: requiring unanimous agreement among

the clusterings that the pairs belong together.

Rather than require unanimous agreement among all clusterings to place a pair of documents

in the same cluster — which would result in highly fragmented clusterings — the local cluster

ensemble employs a non-unanimous voting rule; this allows for some clusterings to exert greater

influence through arbitrary weights across the methods encoded in the vote matrix V (w). We

then tally the total votes for each pair belonging together with V (w)V (w)
′
. The meta-clustering

algorithm then adjudicates disputes among the clusterings about which documents belong together.

4.4 Efficiently Sampling for Cluster Quality

Here we prove that if two clusterings agree about a pair of documents — both clusterings placing

the pair together in a cluster or separately in different clusters — then it does not contribute to

differences in our measure of cluster quality and so resources need not be devoted to evaluating it.

Our evaluation then only needs to address pairs for which clusterings disagree. Define Y as 1 if the

clusterings agree about a pair and 0 if they disagree, πa as the proportion of pairs that agree, and

1− πa = πd as the proportion of pairs that disagree. Then,

E[CQ(cj − cj′ )] = E
[
E[CQ(cj − cj′ )|Y ]

]
= πa E[CQ(cj − cj′ )|Y = 1]︸ ︷︷ ︸

0

+πd E[CQ(cj − cj′ )|Y = 0]︸ ︷︷ ︸
Estimated by Sampling

(4.8)

The only piece of Equation 4.8 that is unknown is the average cluster quality among the pairs where

the two clusterings disagree. We can obtain an unbiased estimate of this by randomly sampling from

the pairs where the two methods disagree and then obtain an unbiased estimate of the difference

in cluster quality by multiplying by the proportion of pairs where there is disagreement πd (which

is easily computed from the population of pairs).
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