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Abstract
Some scholars buildmodels to classify documents into chosen categories. Others, especially social scientists

who tend to focus on population characteristics, instead usually estimate the proportion of documents in

each category—using either parametric “classify-and-count” methods or “direct” nonparametric estimation

of proportions without individual classification. Unfortunately, classify-and-count methods can be highly

model-dependent or generate more bias in the proportions even as the percent of documents correctly

classified increases. Direct estimation avoids these problems, but can suffer when the meaning of language

changes between training and test sets or is too similar across categories. We develop an improved direct

estimation approach without these issues by including and optimizing continuous text features, along with

a form of matching adapted from the causal inference literature. Our approach substantially improves

performance in a diverse collection of 73 datasets. We also offer easy-to-use software that implements all

ideas discussed herein.

Keywords: quantification, natural language processing, non-parametric statistics

1 Introduction

Scholars from a variety of fields have worked on improving the automatic classification of indi-

vidual objects (where the unit of interest might be a web page, war, person, document, country,

socialmediapost, etc.). Social scientists use classifiers too, but theymoreoften focusonaggregate

generalizations aboutpopulationsof objects, suchas thepercent in each category, rather thanany

one individual classification, a task that is sometimes called “quantification.”1 Indeed, a plausible

case canbemade that oneof thedefining characteristics of social science is a focusonpopulation-

level generalizations. We discover an interesting puzzle about one election, but try to develop

theories that apply to manymore. We are interested in the politics of one country, but attempt to

understand it as an example of how all countries (or all democracies, or all developing countries,

etc.) operate. We survey 1,500 Americans about their political attitudes, but seek to understand

how all Americans, or all people, form attitudes. Quantitative social scientists usually leave it to

historians or intensive qualitative researchers to analyze particular speeches supporting a policy

and focus instead on the percent of all speeches that support the idea.

Applying a simple “Classify-and-Count” approach yields accurate category percentages under

a perfect classifier. Perfect classifiers are unrealistic in real applications (Hand 2006), but they are

1 Estimating category percentages, as opposed to individual classifications, is also of interest in epidemiology, where it
is called “prevalence estimation.” Interest in the technical area is also growing in computer science, machine learning,
computational linguistics, and data mining, where it is variously called “quantification,” “class prior estimation,” “count-
ing,” “class probability re-estimation,” and “learning of class balance.” See Buck and Gart (1966), Esuli and Sebastiani
(2015), Forman (2007), Kar et al. (2016), Levy and Kass (1970), Milli et al. (2013), Tasche (2016), and the unification in
Firat (2016).
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unnecessary for aggregateaccuracy if individual-level errors cancel.However, choosinga classifier

by maximizing the percent correctly classified can sometimes increase the bias of aggregate

quantities, unless the one is careful in training the classifier. For example, the decision rule “war

never occurs” accurately classifies country-year dyads into war/no war categories with over 99%

accuracy, but is misleading for political science research.

Similarly, theproportionof email you receive that lands in your spam folder is a biasedestimate

of the percent of spam you receive overall, because spam filters are tuned to the fact that people

are more annoyed when they miss an important email than when some spam appears in their in-

box. This is easy to fixby tuningyour spamfilter toavoid thebias, or correctingafter the fact, butwe

usually do not know the classifier’s bias. For example, amethod that classifies 60% of documents

correctly into one of eight categories might be judged successful and useful for classification. For

example, if Google or Bing were to provide relevant results in 60% of searches (which is about the

2019 average empirically), we might be quite satisfied, since the low cost of misclassification is

to merely choose another search term and try again. However, because the individual category

percentages can then be off by as much as 40 percentage points, the same classifier may be less

useful to the social scientist interested in learning about aggregate behavior.

The tasks of estimating category percentages (quantification) or classifying individual docu-

ments (classification) both begin by analyzing a small subset of documents with (usually hand-

coded) category labels. Classification methods normally require these labeled and unlabeled

document sets to be drawn from the samepopulation, so the class probabilities can be calibrated.

Commonly, however, the labeled set is created in one time period and a sequence of unlabeled

sets are collected during subsequent time periods, each with potentially different distributions.

For example, scholars may hand-label a set of social media posts about a presidential candidate

into the 10 reasons people do or do not like this person. Then, for each day after the hand coding,

a researcher may try to estimate the percent of posts in each of these categories using the initial

hand-labeled set, with no new coding of documents. The methods of quantification we discuss

here are designed to accommodate these situations even though these are the circumstances

where the assumptions behind classification methods are violated.

We build on the only nonparametric quantification method developed for estimating

multicategory proportions that does not resort to individual classification as a first step. This

methodology was developed in King and Lu (2008) with survey research applications in public

health, and in Hopkins and King (2010) with applications to text analysis in political science; and it

was extended in King, Lu, and Shibuya (2010) and King et al. (2013, Appendix B), with a U.S. Patent
issued for the technology (King, Hopkins, and Lu 2012). Over 2,000 scholarly articles in several

scholarly fields have cited these works (according to Google scholar). Themethod has come to be

known by the name “readme,” which is the widely used open-source software that implements it

(Hopkins et al. 2013).
We begin by developing the intuition behind readme’s nonparametric methodology, and high-

light situationswhere it canbe improved.We thenoutline anapproach for improvingperformance

via two techniques, both of which involve better representing the meaning of the text. First, our

technique allows for changes in themeaning and use of language over time by adaptingmatching

techniques developed from the causal inference literature. Second, we develop an algorithm

that chooses a feature space to discriminate between categories with as many nonredundant or

independent features as possible.2

2 Unlike principal components analysis, independent component analysis, random projections, Latent Dirichlet Allocation,
topic modeling, t-distributed stochastic neighborhood embeddings, or others designed for exploration, visualization, or
classification, our approach is the first to generate a feature space optimized for quantification. This enables us to align our
data analytic procedures with our inferential goals, something that is not always straightforward with prior approaches.
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We summarize the readme estimator and its assumptions in Section 2. Section 3 then intro-

duces our newmethodology. In Section 4, we compare our approach to readme in out-of-sample

empirical evaluations in 19,710 datasets, derived from subsets of 73 corpora (and repeatedwith 18

different evaluation protocols). We discuss what can go wrong and how to avoid it in Section 5.

Our approach will not necessarily perform better in every dataset (the “ping pong theorem”

applies here too; Hoadley 2001), but in unusually extensive empirical tests, we find it normally

outperforms other approaches in real data, under the real-world conditions we describe below.

Section 6 concludes; proofs, simulations, illustrations, and other supporting information appear

in Appendices A–D in the Supplementary Material.

2 Readme: Estimation without Classification

Wenowdescribe readme, laying the groundwork for our subsequent improvements. Figure 1 gives

a schematic summary that may help guide the discussion as we introduce each component.

2.1 Notation
Consider two sets of textual documents—L, which includesN L documents labeledwith a category
number, and U, which includes N Uunlabeled documents—where N = N L +N U. When there is no

ambiguity, we use i as a generic index for a document in either set and N as a generic description
of either set size. Each document falls into category c in a set ofmutually exclusive and exhaustive
categories (c ∈ {1, . . . ,C }), but the category label is only observed in the labeled set. We write

Di = c to denote that document i falls into category c. Denote N L
c =

∑N L

i=1 1(Di = c) as the number

of documents in category c in the labeled set,N U
c as the (unobserved) number in c in theunlabeled

set, and Nc generically for either set in category c.
The proportion of unlabeleddocuments in category c isπUc =meani ∈U [1(Di = c)] (where for set

Awith cardinality #A, the mean over i of function g (i ) is meani ∈A [g (i )] = 1
#A

∑#A
i=1 g (i )). The vector

of proportions πU ≡ {πU1 , . . . ,π
U
C
}, which represents our quantity of interest, forms a simplex, that

is, πUc ∈ [0,1] for each c and
∑C

c=1π
U
c = 1. We also define the analogous (but observed) category

proportions for the labeled set πL.

2.2 Text to Numbers
In this first step, wemap the entire labeled and unlabeled corpora, with the document as the unit

of analysis, into a constructed space of textual features with the definition of the rows (taking the

place of the unit of analysis) a choice to be optimized. Many ways of performing this mapping can

be created; we propose one optimized for quantification. For readme, Hopkins and King (2010)

Figure 1. Summary schematic of readme.
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begin with a set of k unigrams, each a binary indicator for the presence (coded 1) or absence (0)
of a chosen word or word stem in a document. The number of possible strings of these zeros and

ones, called aword stem profile, isW = 2k .

The readmeapproach then computes aW ×1 feature vector, denoted SL, by sorting the labeled
documents into theW mutually exclusive and exhaustive word stem profiles, and computing the

proportion of documents that fall in each. To make the definition of SL = {SLw }more precise and

easier to generalize later, begin with the N L ×W document-feature matrix F = {Fiw } with rows

for documents, and columns for features which in this case are unique word stem profiles. Each

element of this matrix, Fiw , is a binary indicator for whether document i is characterized by word
stem profilew. Then, elements of SL are columnmeans of F: SLw =meani ∈L(Fiw ). Then, the same

procedure is applied, with the sameword stemprofiles, to the unlabeled set, whichwedenote SU.

Wealsodefine aW ×1 conditional feature vector asX L
c = {X L

wc}, which results from theapplica-

tion of the same procedurewithin category c in the labeled set, andX U
c = {X U

wc }within category c
in the unlabeled set (X U

c is unobserved, because c is unknown in the unlabeled set). These can
be computed from F c , a document-feature matrix representing only documents in category c.
We then collect these vectors for all categories into twoW ×C matrices, X L = {X L

1 , . . . ,X
L
C } and

X U = {X U
1 , . . . ,X

U
C
}, respectively.

2.3 Assumptions
We require two assumptions. First, because the unlabeled conditional feature matrixX U is unob-

served, Hopkins and King (2010) assume

X L = X U. (1)

Although Assumption 1 is quite restrictive, we can relax it. Begin by supposing that the documents

in L are drawn from the same distribution giving rise to U—which is equivalent to the assumption
necessary for individual classification.3 It turns out we can relax this further: in readme, we could

assume that the conditional distribution of features given categories is the same, which is much

less restrictive. But we go even further and avoid specifying the full probabilistic model entirely

by assuming only that the conditional expectation is the same, or in other words that the labeled

conditional feature matrix is an unbiased estimator of the unlabeled conditional feature matrix.

That is, we replace Assumption 1 with:

E (X L) = X U. (2)

Second, we must assume that matrix X L is of full rank, which translates substantively into (a)

feature choices withW > C and (b) the lack of perfect collinearity among the columns of X L.

Assumption (a) is easy to control by generating a sufficient number of features from the text.

Assumption (b) is only violated if the featuredistributions indocuments acrossdifferent categories

are identical,which is unlikelywith a sufficient number of codeddocuments. (Weprovebelow that

highbutnotperfect collinearity,whichcan result if categories areweakly connected to the features

or documents are labeled with error, can exacerbate the bias of the readme estimator.)

2.4 Estimation
Our goal is to estimate the vector of unlabeled set category proportions πU = {πU1 , . . . ,π

U
C
} given

SL, SU, andX L. Beginwith an accounting identity (i.e., true by definition), SUw =
∑C

c=1X
U
wcπ

U
c , �w ,

or equivalently in matrix form:

SU = X UπU, (3)

3 More specifically, Hand (2006) shows that classifiers assume that (a) the joint distribution of features and categories is the
same inU and L, (b) themeasured features span the space of all predictors of D, and (c) the estimatedmodel nests the true
model as a special case.
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which is a linear regression, but where the linearity is a property rather than assumption. Then,

readme estimates πU by the least-squares estimator

π̂U = (X L′X L)−1X L′SU (4)

(or a modified version that explicitly preserves the simplex constraint).4

2.5 Properties
In the classic errors-in-variables linear regression model, with random measurement error only

in the explanatory variables, least squares is biased and inconsistent. However, in readme, the

dimensions of X L remain fixed as N L grows, and so Assumption 2 also implies measurement
consistency: limN L→∞X L =X U. Thismeans that the readmeestimator inEquation (4),which is also

a linear regression with random measurement error in the explanatory variables, is statistically
consistent: as we gather and code more documents for the labeled set (and keep W fixed, or at

least growing slower than n), its estimator converges to the truth:

lim
N L→∞

π̂U = lim
N L→∞

(X L′X L)−1X L′SU = (X U′X U)−1X U′SU = πU.

This is a useful result suggesting that, unlike classic errors-in-variables, labeling more observa-

tions can reduce bias and variance. It also suggests that, to improve readme, we should focus on

reducing finite sample bias rather than consistency, which is already guaranteed.

3 Improvements

We outline issues that affect readme’s performance conceptually in Section 3.1 and analyze them

mathematically, along with proposed solutions, in Section 3.2.

3.1 Issues to Address
Readme is affected by three issues that arise in practice. First is a specific type of “concept

drift” (Gama et al. 2014) that we refer to as semantic change—the difference in the meaning of
language between the labeled and unlabeled sets. Authors and speakers frequently morph the

semantic content of their prose to be clever, get attention, be expressive, curry political favor,

evade detection, persuade, or rally the masses. For these or other purposes, the content, form,

style, andmeaning of every symbol, object, or action in human language can always evolve.

We address two types of semantic change that impact readme: emergent discourse, where new
words and phrases, or the meanings of existing words and phrases, appear in the unlabeled set

but not the labeled set, and vanishing discourse, where the words, phrases, and their meanings
exist in the labeled set but not the unlabeled set. “Russian election hacking” following the 2016

U.S. presidential election is an example of emergent discourse, language which did not exist a

few years before, whereas “Russian Communism” is an example of vanishing discourse, a usage

that has been disappearing in recent decades. However, emergent and vanishing discourse can

reverse their meanings if the researcher swaps which set is labeled. For example, in analyzing a

largehistorical dataset, a researchermay find itmore convenient to readand label a contemporary

dataset and infer to the historical datasets (e.g., as they are recovered from an archive); to label

documents at the start of the period and infer to subsequent periods; or to code a sample spread

throughout the period and to infer to the full dataset. Either vanishing or emergent discourse can

4 Readme works with any choice of k word stems, and so Hopkins and King (2010) randomly select many subsets of k ≈ 16
word stems, run the algorithm for each, and average the results. Averaging across word stem profiles reduces the variance
of the estimator. Alternatively, we could use this estimator with all observed features (Ceron, Curini, and Iacus 2016).
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bias readme, but only if such discourse is present in a specific way (we describe below) across the

categories.

Second is the lack of textual discrimination, where the language used in documents falling in
different categories or across features is not clearly distinguishable. For clarity, we divide textual

discrimination into two separate concepts that, in the readme regression, are related to the

minimal requirement in least squares that, to reduce variance and model dependence, X must
be of full rank and, ideally, far from degeneracy. Since X represents categories as variables and
features of the text as rows, we refer to these two variables as category distinctiveness (CD) and
feature distinctiveness (FD), respectively.
The lack of textual discriminationmay arise, because the conceptual ideas underlying the cho-

sen categories or features are not distinct. Hand coding errors can also lead to this problem,which

is commonly revealed by low levels of intercoder reliability. The problem can also occur because

of heterogeneity in how authors express information or a divergence between how authors of the

documents express this information and how the analyst conceptualizes the categories or codes

the features. Also common is where the analyst begins with distinct and well-defined conceptual

definitions for the set of C categories, with examples of documents that fall unambiguously into
each one, but where it turns out upon large-scale coding that large numbers of documents can

only be described as falling into multiple categories. Adding categories to represent these more

complicated expressions (so that the resulting set is still mutually exclusive and exhaustive) is a

logical solution, but this step often leads to a more cognitively demanding hand-coding problem

that reduces intercoder reliability.

A final problematic situation for readme occurs due to interactions with the other two

problems. This issue is proportion divergence, when the category proportions in the labeled set
(πL) diverge from those in the unlabeled set (πU). To understand this issue, consider a dataset

with massive semantic change and no textual discrimination—so the document texts are largely

uninformative—but where πL ≈ πU, such as when the labeled set is a random sample from the

unlabeled set. In this situation, readme will return the observed proportion vector in the labeled

set, πL, which is a good estimate of πU. This means that we can sometimes protect ourselves from

semantic change and the lack of textual discrimination by selecting a labeled set with a similar

set of category proportions as the unlabeled set. This protectivemeasure is impossible to put into

practice in general, as it requires a priori knowledge of category membership, but it can be useful
in some cases when designing training sets, and we show below that it can be corrected for.

3.2 Analytical Solutions
We now propose improvements to readme, including (1) a dimension reduction technique for

direct estimation of category proportions (analogous to techniques that have been used for

improving classifier performance; e.g., Brunzell and Eriksson 2000; Vincent et al. 2010) and (2)
an adaptation of matching methods for causal inference. (We also show in Appendix D in the

Supplementary Material how the methods developed here may have uses in the causal inference

literature.) Figure 2 gives a schematic summary of step (1), and Figure 3 summarizes the whole

algorithm including step (2).

3.2.1 Dimension Reduction. Dimension reduction is especially important here, because numerical

representation of text documents can have an outsized impact on the results (see Denny and Spir-

ling 2018; Levy, Goldberg, and Dagan 2015). The idea behind our dimension reduction approach

is that even if large numbers of individual features perform poorly, lower-dimensional linear

combinations of featuresmay do considerably better. We beginwith theN ×W document-feature

matrix F defined in Section 2. Our goal then is to project thismatrix to a lower-dimensionalN ×W ′

document-feature matrix F̄ = F Γ , where Γ is aW ×W ′matrix of transformation weights defined
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Figure 2. Summary schematic of the quantification-targeted text processing in readme2.

Figure 3. Summary schematic of readme2. See Figure 3 for details of step (2). Thematching step is done prior
to the formation of XL .

below andW ′ �W . Oncewe obtain F̄ , we can take conditional expectations of the features given

the category labels to generate the readme regression matrix as before. We denote conditional

regression matrix obtained from F̄ as X̄ , in parallel to notation F and X.5

The key question, then, is how to define Γ to choose among the many possible lower-

dimensional F̄ matrices and thereby reduce readme’s bias? To answer this question, we develop

intuition by studying readme’s bias in simplified data with only two categories. Because of

the simplex constraint, the unlabeled set category proportions can then be characterized by a

single parameter, πU1 . The accounting identity for each feature mean w, S
U
w , can be written as

SUw = X U
w2 +BUwπ

U
1 , where

BUw = X U
w1−X U

w2 (5)

quantifies the systematic component of textual discrimination between the two categories. The

readme estimator is then the least-squares estimator of πU1 (see Appendix A in the Supplementary

Material for proofs of all propositions in this section).

5 This new transformation can be thought of as a feed-forward neural network, where the input layer F feeds into a hidden
layer F̄ , which then produces an output X̄ .
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PROPOSITION 1. The two-category readme estimator is

π̂U1 =

∑W
w=1B

L
w

(
SUw −X L

w2

)
∑W

w=1(B
L
w )

2
.

If X L = X U, the above expression equals πU1 and readme is unbiased. We can relax this

assumptionbymakingAssumption2,whichweexpressasX L
wc =X U

wc+εwc ,whereεwc is a random

variable with mean zero and variance inversely proportional to Nc . We then write the readme

estimator in terms ofX U, the true unlabeled set category proportion πU1 , and the sample category

size N L
c , which we can use to obtain the approximate bias.

PROPOSITION 2. The approximate bias of the readme estimator is

Bias
(
π̂U1

)
≈

∑W
w=1 [Var(εw2)−Cov(εw1,εw2)] (1−πU1 )− [Var(εw1)−Cov(εw1,εw2)] π

U
1∑W

w=1

[
(BU

w )
2 +Var(νw )

] ,

with combined error variance νw = εw1−εw2.

Proposition 2 suggests several factors to consider when defining Γ . As the systematic compo-

nent of textual discrimination, BUw , increases relative to the variance of the error terms, εw1 and

εw2, the bias approaches 0. In other words, readme works better with distinct language across

categories. We should therefore define Γ to maximize CD, the difference in conditional means
across categories. We do this by directly generalizing to C categories Equation (5):

CD(Γ ) ∝
∑
c<c′

W ′∑
w=1

���X̄ L
wc − X̄ L

wc′

���,

where the inequalities in the summations prevent double-counting. This expression is simply the

sum of all the absolute values of all the BUw terms.

Proposition 2 also suggests defining Γ to increase FD, which involves making the rows of

our regression matrix X̄ closer to independent. To see why, consider how the numerator of the

approximate bias contains the sum across all the features of the difference in the differences

between the error variance of the categories and the covariance between the error variances (we

can call this latter difference “excess variance”). If the features all were to capture the same latent

quality, we would encounter a situation where the differences in excess variance would tend to

go in the same direction (either all positive or all negative) across the features. Dependencies

between one feature and another would increase the bias. However, when the features capture

distinctive latent qualities of the text, the differences in excess variance between the categories

will sometimes be positive and sometimes negative—so their sum will be closer to 0. We define

this criterion, in parallel to CD, as follows:

FD(Γ ) ∝
∑
c<c′

∑
w ′<w

�����X̄ L
wc − X̄ L

wc′

��− ��X̄ L
w ′c − X̄ L

w ′c′

�����,

where again the inequalities in the summations prevent double-counting.

We then choose Γ by optimizing both CD and FD:

Γ ∗ = arg max
Γ ∈�W×W ′

CD(Γ )+FD(Γ ).
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As Appendix B in the Supplementary Material demonstrates, using only one of these two criteria

alone does not optimize as desired. Thus, although we can apply readme in any feature space

summary of the documents, using the lower-dimensional feature space defined by Γ should

reduce bias in readme.

3.2.2 Adapting Matching Methods for Text Analysis. Finally, we add one last insight by considering the

special case of independence of measurement errors across categories (i.e., Cov(εw1,εw2) = 0).

In this situation, readme bias is minimized when the following relationship holds between the

labeled and unlabeled set category proportions.

PROPOSITION 3. When measurement errors are independent across categories, the bias of
readme is minimized at

πL1 =
πU1

∑W
w=1σ

2
w1

πU1
∑W

w=1σ
2
w1 + (1−πU1 )

∑W
w=1σ

2
w2

.

Thus,when themeasurement error variances are roughly equivalent across categories, thebias

of readme is minimized when proportion divergence is smallest.

We use this result to simultaneously reduce the biasing effect of vanishing discourse and to

reduce proportion divergence. We do this borrowing the idea of matching from the causal infer-

ence literature (Ho et al. 2007; Iacus, King, and Porro 2012). In causal inference,matching “prunes”
control observations from the data that have covariate values far from treated observations. In

our case, we fix the unlabeled set and selectively prune the labeled set to remove documentswith

covariate profiles far from those in the unlabeled set.

To implement this idea, we search the labeled set L for amatched subset,M, thatmore closely

resembles the unlabeled set. We do this without any information from the category labels (since

they are unobserved in the unlabeled set). The goal is to remove observations from the labeled

set that are so far in their content from the observations in the unlabeled set that they likely come

from an entirely different data-generating process. If the texts of the documents are meaningful,

exact one-to-onematching of documents in this waywill eliminate all error, since it will mean that

we have a hand code for each unlabeled document. In practice, approximate matching is usually

needed, and any labeled unmatched documents are pruned and not used further. Ourmatching is

in a space (of the transformedword vector summaries) designed for our specific problem; aligning

the space of matching and the goals of the analysis are, of course, also key in matching for causal

inference (King andNielsen 2017). Finally, we recompute F̄ and thematched X̄ L, whichwe denote

X̄ LM , and apply the readme regression.

As a result, the assumption in Equation (2) nowneeds only to hold in thematched subset of the

labeled set rather than for the entire labeled set:

E [X LM] = X U. (6)

Matching thus considerably weakens the assumptions necessary for readme estimation and

predictably reduces its bias.

4 Evaluation

4.1 Design
We performed 18 large-scale evaluations of our methodology, each following a different design

protocol for allocating documents to membership in the labeled and unlabeled sets. Prior

approaches in the literature have almost always used a single evaluation design, as compared

to our 18, and only a few datasets, compared to our 73. The resulting 19,710 empirical evaluations
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in our replication data and code thus increase the rigor which future scholars can bring to bear on

newmethods developed to improve on those proposed here.

For each design protocol, we estimate readme2 and 32 alternative statistical methods that can

be used to estimate category proportions (including readme). Each method is analyzed on 19,710

(= 73×15×18) datasets, becausewe have 73 corpora, 15 iterations per corpora per design, and 18

designs. The total number of method-design observations is therefore 630,720 (= 19,710×32).

The 32 alternative methods of estimating category proportions are of five types. The first four

types comprise six classifiers each run within each of the four possible combinations of (a) a

discrete or continuous feature space and (b) a classification of whole documents and counting

or averaging continuous probability estimates to yield estimates of the category proportions. The

six classifiers include SVMs, random forests, Naive Bayes, and L1- and L2-regularized multinomial

regression (James et al. 2013), and an ensemble of these classifiers based on an average of
classifiers within each of the two cells of (b). The fifth type of alternative method includes eight

methods tuned for quantification. Among these, only readme is designed for more than two

categories. We adapt the remaining seven—Friedman, Adjusted Counts, HDX, Median Sweep,

Mixture HPMF, Mixture L1, and Mixture L2 (each detailed in Firat 2016)—to multiple categories via

estimation of repeated dichotomizations of the set of categories. When a method has adjustable

parameters, we either optimized over them or used the software default.

Each of the 19,710 datasets we analyze, constructed as a subset of 1 of our 73 corpora, has a

labeled out-of-sample test set that plays the role of the unlabeled set, except that we are able

to use its labels after estimation to evaluate performance. The 73 corpora include three used in

Hopkins and King (2010): (1) 1,426 emails drawn from the broader Enron Corporation corpusmade

public during the Federal Energy Regulatory Commission’s investigation of the firm’s bankruptcy

and hand-coded by researchers into five categories; (2) a set of 462 newspaper editorials about

immigration (with 3,618 word stems and 5 categories); and (3) a set with 1,938 blog posts about

candidate Hillary Clinton from the 2008 presidential election (with 3,623 word stems and 7

categories). We also include 11,855 sentences (with 5 categories and 3,618 word stems) from the

Stanford Sentiment Treebank (Socher et al. 2013). Finally, we include 69 separate social media
datasets (most from Twitter and a few from diverse blogs and Facebook posts), each created

by a different political candidate, private company, nonprofit, or government agency for their

own purposes, covering different time frames and categorization schemes (see Firat 2016); these

data cover 150–4,200 word stems, 3–12 categories, and 700–4,000 documents. (All data are in our

replication dataset, except that for privacy reasons the raw text of the last set has been coded as

numbers.)

Nearly all documents in the 73 corpora are labeled with a time stamp. For the empirical design,
we randomly select a time point and pick the previous 300 documents as the labeled set and

the next 300 documents as the out-of-sample evaluation set (wrapping in time if necessary). For

each corpus, we repeat this process 50 times. This procedure keeps the evaluation highly realistic

while also ensuring that we have many types of datasets with variation in proportion divergence,

textual discrimination, and semantic change. The joint distribution of these quantities is crucial in

determining the overall error dynamics, so accurately simulating this distribution is of the utmost

importance in this exercise.

Although the empirical design emphasizes realism about what we see in practice, we replicate

this analysis across the 18 designs described in Table 1 which make different assumptions about

the joint distribution. Each of the 18 evaluation designs offers a different way of generating 19,710

datasets as subsets of the 73 corpora described in Section 4. Each dataset is divided into a labeled

set as well as a test set that serves the purpose of the unlabeled set during estimation, but can

also be used for evaluation, since all its document labels are observed.
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Table 1. Alternative evaluation designs.

Design name Description

Empirical Sample consecutive chronological slices of the data to form
labeled and unlabeled sets, wrapping when necessary
(detailed in Section 4).

Empirical, varied labeled set
size

Sample consecutive chronological slices of the data to form
labeled and unlabeled sets, wrapping when necessary.
Randomly sample the labeled set size from
{100,300,500,1000}.

Empirical, maximum labeled
set size

Sample a consecutive chronological slice of the data to form
the labeled set. Use the remainder of the documents to form
the unlabeled set.

Empirical, maximum
unlabeled set size

Sample a consecutive chronological slice of the data to form
the labeled set. Use the remaining 300 documents to form the
unlabeled set.

Sequential Sample a time point randomly. From the 300 documents
preceding this date, form the labeled set. From the 300
documents following to this date, form the unlabeled set.
Wrap when necessary.

Random subsets Sample documents randomly without replacement for labeled
and unlabeled sets.

Min. proportion divergence Sample documents randomly without replacement to form
10,000-candidate labeled and unlabeled sets. Select the pair
that minimizes |πL−πU | divergence.

Uniform random proportion
divergence

Draw random uniform on the interval [0,0.75], the target
|πL−πU | divergence. Draw 10,000 candidate πL and πU

uniform from the simplex. Select the pair closest to the target.

Random labeled set,
uniformly random Pr(D ) in
unlabeled set

Draw 300 labeled set documents at random from the set of
candidates. Draw a target Pr(D )U uniformly from the simplex
and select candidate documents to achieve this target.

Max. proportion divergence Sample documents randomly without replacement to form
10,000-candidate labeled and unlabeled sets. Select the pair
that maximizes |πL−πU | divergence.

Min. semantic change Sample documents randomly without replacement to form
10,000-candidate labeled and unlabeled sets. Select the pair
that minimizes semantic change.

Uniform random semantic
change

Sample documents randomly without replacement to form
10,000-candidate labeled and unlabeled sets. Select a uniform
random target amount of semantic change. Select the pair
closest to the target.

Max. semantic change Sample documents randomly without replacement to form
10,000-candidate labeled and unlabeled sets. Select the pair
that maximizes semantic change.

Randomwalk Draw πL from a uniform density on the simplex. For iteration i,
draw πU from a Dirichlet with parameter α ∝ 1C×1 for the first
iteration and α ∝ (πU)i−1 for subsequent iterations.

Chronological πL, uniform
random πU

Draw the labeled set chronologically. Then, draw πU by
selecting a random point on the simplex.

Extreme proportion shift Select division that best approximates one of the categories
having <5%of the labeled set, but >25%of the unlabeled set.

Uniform random
proportions

Draw πL and πU from independent uniform distributions on
the simplex.

Extreme features in labeled
set

Calculate document-level word vector features. Form the
labeled set from documents falling furthest from the average
document. Form the unlabeled set from a random selection of
the remaining documents.
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4.2 Implementation Details
Forwordembeddings,weuse the200-dimensional globalwordvector (“GloVe”)model, estimated

fromabout 2 billion Twitter postswith a vocabulary of about 1.2million terms.We follow standard

approaches by summarizing the vectors, in our case with the 10th, 50th, and 90th quantiles

of each dimension (Templeton and Kalita 2018), resulting, for any given corpus, in F withW =

200 × 3 = 600 unique features observed for each document. Because we are optimizing over

these factors, we do not require the preprocessing steps for textual data (removing stop words,

punctuation, etc.); instead, we are only constrained by the choice of the preprocessing for the

originalwordembedding training,which in the caseofGloVemeansmaking the text all lower case.

For optimization,weuse stochastic gradient descentwithmomentum,minimizingoverfittingwith

dropout, gradient clipping, normalizing F̄ to mean zero and variance 1, and using a standard

confidence penalty (King, Gebbie, and Melosh 2019; Kingma and Ba 2017; Pereyra et al. 2017;
Srivastava et al. 2014). We set the number of final features,W ′, to 20, although performance does

not greatly depend on this parameter as long as it is much smaller than the number of input

featuresW.

4.3 Results
We present results across our numerous evaluations in three ways.

First, Figure 4 compares theperformanceof readme2 to the 32 alternativemethods across all 18

designs. For eachmethod,we compute the proportion of datasetswith higher error than readme2

vertically by the proportion divergence in quantiles horizontally. Our new approach outperforms

the best classifier (in these data, a support vector machine (SVM) model run in the continuous

feature space) in 98.6%of corpora.Many of the 32methods are outperformedby readme2 in 100%

of the cases, as indicated by appearing at the top of the graph. Relative performance remains

excellent across the different levels of category proportion divergence between labeled and

unlabeled sets. The new method’s relative performance improves when proportion divergence

is high (at the right, with more substantial changes between labeled and unlabeled sets), which

makes sense, since ours is the only approach to directly address semantic change. The different

types of methods (represented as lines) follow three basic patterns in relative performance: (a)

classifierswith averagedprobabilities (in black andgreen) have higher sumof absolute error (SAE)

relative to readme2asdivergence increases, due to their assumption that test and training sets are

drawn from the same distribution; (b) quantification methods (in light blue) approach readme2’s

performance only with high levels of divergence, since they are designed for this situation; and (c)

the remaining methods perform relatively poorly overall regardless of proportion divergence.

Second, we provide a more detailed comparison of the performance of readme to readme2,

the primary goal of this paper. In the empirical design, which we argue is particularly important

in practice, we find a 34.3% average corpus-wide improvement over readme, which in terms of

SAE is a substantial 8.6 percentage points. Figure 5 plots estimation error (vertically) for readme

compared to our new approach (ordered horizontally by size of the improvement). The length of

each arrow represents the average improvement over subsets of each of the 73 corpora, with one

arrow for each. In all cases, the arrows face downward, meaning that in every corpus, our new

method outperforms readme on average. Our new approach performs better in all three of the

datasets used in Hopkins and King (2010), and also the Stanford Sentiment dataset (the colored

arrows).

Next, we show that our results are robust across our 18 diverse simulation designs (described

in Table 1). The left panel of Figure 6 compares average performance over simulations and reveals

that readme2 outperforms readme for every simulation design (as indicated by being above the

dotted horizontal line). The empirical analysis, noted in red, is the substantively most meaningful

design described above. Then, the right panel of Figure 6 illustrates how, across the 18 simulation
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designs, readme2 outperforms not only readme, but all 32 alternative methods in a large fraction

of cases. Readme2’s average rank is 3.11, whereas the next best algorithm’s average rank is 5.94.

Median performance (indicated by the horizontal gray bar for each design) is always improved.

We performed a final check to assess the sensitivity of our analysis to the vector representation

of the words. We re-analyzed the Clinton blogs’ data using a labeled/unlabeled split from our

“Empirical” design. We generated the quantification-tuned features using the 200-dimensional

GloVe embeddings fromTwitter (used in ourmain simulation results). We then generated features

using 25- and 100-dimensional GloVe embeddings from Twitter, as well as the 50-dimensional

embeddings trained on a 2014 Wikipedia corpus. We find that each of the 20 synthetic features

from the 200-dimensional GloVe embeddings has close counterparts in each of the other cases.

Themaximumabsolute correlation for each feature is above 0.60, andmost are above 0.80. These

results, illustrated in Figure 7, show that the readme2 algorithm described here is quite robust

to the choice of vector representation for the words. The “random” line in blue indicates the
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density of maximum absolute correlations we would see if there were no relationship between

the transformed200-dimensional Twitter vector summaries and the transformed summaries from

other vector sources.

In sum, our new methodology would seem to be preferable to readme and other existing

methods across awide array of corpora, datasets, and evaluation protocols. It is alsoworth noting

that readme2 is computationally fast due to its use of batch sampling and efficient differentiable

programming libraries. Estimation on a dataset with a labeled set size of 1,000 and an unlabeled

set size of 500, with 5 categories and 600 raw features, takes about 11.5 seconds on a CPU with a

2.7 GHz processor and 8 GB of memory (while estimation via SVM, e.g., takes 10.5 seconds and via

lasso-regularized regression takes 7.3 seconds).
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5 Current Issues and Future Research

The methods introduced here appear to be clear improvements over readme and other

approaches in a wide variety of circumstances, category types, and datasets. We focus in this

section on the three situations where our approach may not help and further research may be

productive. In addition, increasing computational power and data availability may open up the

possibility of other improvements, such as by optimizing over fixed choices we have made or, for

example, simultaneously training word embeddings with our approach.

First, when we use matching in continuous space, we generally reduce proportion divergence

and the effects of vanishing discourse. However, emerging discourse not only can cause bias in

anymethod, but this bias can sometimes be induced by the analyst in the process of dealing with

vanishing discourse. In addition, although readme2 is the only method that has been proposed

to reduce the effects of vanishing discourse, it is of no help if all the relevant discourse vanishes

within a category. This is akin to a violationof the commonsupport assumption in causal inference

and so must rely on risky extrapolations. Unlike with classifiers, our methodology does not need

to assume that the labeled and unlabeled sets are drawn from the same distribution, but we do

require that the conditional distributions have some overlap. If one suspects that meaning or

language is changing dramatically, the easiest fix is to code additional observations from later

points in time.

Second, if the original feature space is highly sparse (as in a regression with a large number

of irrelevant covariates), then our optimization algorithm may have difficulty arriving at a stable

solution forΓ . This can happenwith highly uninformative text, categories with labels that may be

more meaningful to investigators than the authors of the text, or error-ridden hand coding. If the

word vectors used to generate the raw features were trained on an inappropriate corpus, perfor-

mance would also be expected to deteriorate, as the relationship between the text and numbers

wouldbemore tenuous.Ourwordvectors are fromTwitter, and sowe recommendswapping these

outwith another set if the text being analyzed differs substantially from tweets. Fortunately,many

types of pretrained word vectors are now available, including in many languages.

Finally, our approach relies on meaningful text in each document, conceptually coherent and

mutually exclusive and exhaustive categories, and a labeling effort that validly and reliably codes

documents into the right categories. These may seem like obvious criteria, but they always

constitute the most important steps in any automated text analysis method, including ours. In

our experience, most of the effort in getting an analysis right involves, or should involve, these

preliminary steps.

6 Concluding Remarks

We improve on readme, a popular method of estimating category proportions, which is a task of

central interest to social scientists and others. We do this without having to tune or even use the

oftenmodel-dependent methods of individual classification developed for different quantities of

interest. We prove properties and provide intuition about readme and then build our alternative

approach. We have tested our analysis in 73 separate datasets, 19,710 data subsets, and 18

evaluation protocols, with encouraging results. Overall, our approach weakens the key assump-

tions of readme while creating new, more meaningful numerical representations of each of the

documents specifically tuned to reduce the mean square error of multicategory, nonparametric

quantification.

We can identify several ways of building on our work to further improve performance. These

include methods for optimizing the raw continuous textual representations used in readme2. In

this analysis, we use document-level summaries of word vectors for the raw features, but there is

no quantitative principle implying that this choice is optimal and so could be improved. Indeed,

our results suggest that the quantitative features used in readme greatly improve performance. It
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is natural, then, to consider continuous document-level representations directly from the labeled

(and unlabeled) sets, or possibly using categorywise information from the labeled set or with

smoothing toward word vectors created from giant corpora such as that we use from Twitter.

With these additions, the estimation process could be more fully optimized for quantification.

Finally, further work could explore more systematically the application of these ideas to other

nonparametric methods.
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