Demographic Forecasting

Gary King Harvard University

Joint work with Federico Girosi (RAND) with contributions from Kevin Quinn and Gregory Wawro

Gary King Harvard University ()

• Mortality forecasts, which are studied in:

- demography & sociology
- public health & biostatistics
- economics & social security and retirement planning
- actuarial science & insurance companies
- medical research & pharmaceutical companies
- political science & public policy
- A better forecasting method
- A better farcasting method
- Other results we needed to achieve this original goal

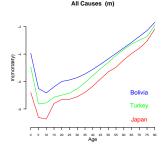
Other Results (Needed to Develop Improved Forecasts) A New Class of Statistical Models

- Output: same as linear regression
- Estimates a set of linear regressions together
- Allows different covariates in each regression
- We demonstrate that most hierarchical and spatial Bayesian models with covariates misrepresent prior information
- Better Bayesian priors
- forecasts and farcasts based on much more information

The Statistical Problem of Global Mortality Forecasting

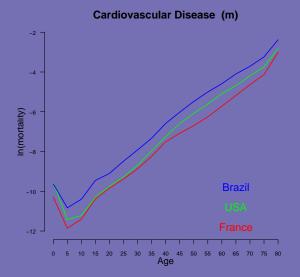
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
 - Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
 - Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short. A majority of countries have only a few isolated annual observations; only 54 countries have at least 20 observations; Africa, AIDS, & Malaria are real problems

Existing Method 1: Parameterize the Age Profile

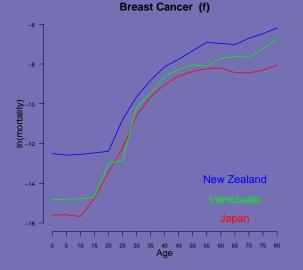


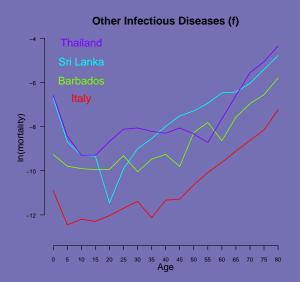
• Gompertz (1825): log-mortality is linear in age after age 20

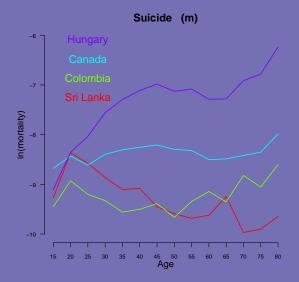
- reduces 17 age-specific mortality rates to 2 parameters
- forecast only these 2 parameters
- Reduces variance, constrains forecasts
- Dozens of more general functional forms proposed
- But does it fit anything else?



()

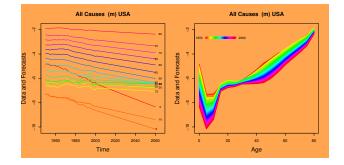




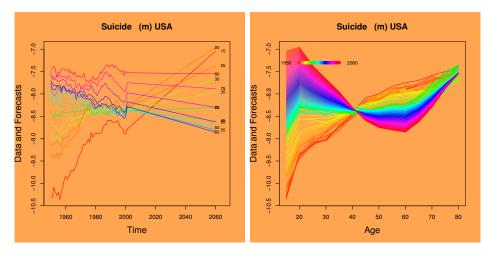


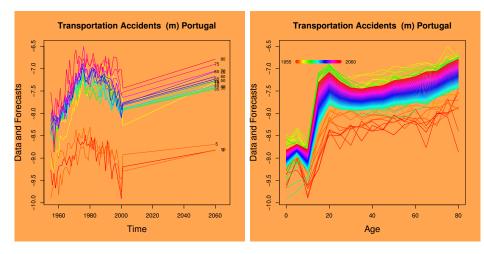
- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
 - Adjacent age groups have similar mortality rates
 - Age profiles are more variable for younger ages
 - We don't know much about levels or exact shapes
- Ignores covariate information

Existing Method 2: Deterministic Projections



- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates; forecasts fan out; age profile becomes less smooth
- Does it fit elsewhere?





- Linearity does not fit most time series data
- Out-of-sample age profiles become unrealistic over time

Regression Approaches (Murray and Lopez, 1996)

• Model mortality over countries (c) and ages (a) as:

$$m_{cat} = \mathbf{Z}_{ca,t-\ell} \boldsymbol{\beta}_{ca} + \epsilon_{cat} , \quad t = 1, \dots, T$$

- $Z_{ca,t-\ell}$: covariates lagged ℓ years.
- β_{ca} : coefficients to be estimated
- Equation by equation estimation: huge variances
- Pool over countries: $\beta_{ca} \Rightarrow \beta_{a}$
 - Small variance (due to large *n*)
 - large biases (due to restrictive pooling over countries),
 - considerable information lost (due to no pooling over ages)
 - same covariates required in all cross-sections

Partial Pooling via a Bayesian Hierarchical Approach

• Likelihood for equation-by-equation least squares:

$$\mathcal{P}(m \mid \boldsymbol{\beta}_i, \sigma_i) = \prod_t \mathcal{N}(m_{it} \mid \mathbf{Z}_{it} \boldsymbol{\beta}_i, \sigma_i^2)$$

• Add priors and form a posterior

 $\mathcal{P}(\beta, \sigma, \theta \mid m) \propto \mathcal{P}(m \mid \beta, \sigma) \times \mathcal{P}(\beta \mid \theta) \times \mathcal{P}(\theta) \mathcal{P}(\sigma)$ = (Likelihood) × (Key Prior) × (Other priors)

• Calculate point estimate for β (for \hat{y}) as the mean posterior:

$$\beta^{\mathsf{Bayes}} \equiv \int \beta \mathcal{P}(\beta, \sigma, \theta \mid m) \, d\beta d\theta d\sigma$$

- The hard part: specifying the prior for $oldsymbol{eta}$ and, as always, ${\sf Z}$
- The easy part: *easy-to-use software* to implement everything we discuss today.

The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among coefficients (β 's).

Requirements: Comparing β_i and β_j

• Similarity: sij

• Distance: $(\beta_i - \beta_j)' \Phi(\beta_i - \beta_j) \equiv \|\beta_i - \beta_j\|_{\Phi}^2$

Natural choice for the prior:

$$\mathcal{P}(oldsymbol{eta} \mid \Phi) \propto \exp\left(- \; rac{1}{2} \sum_{ij} oldsymbol{s}_{ij} \|oldsymbol{eta}_i - oldsymbol{eta}_j\|_{\Phi}^2
ight)$$

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- \bullet Prior knowledge about β exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
 - Φ can't be estimated, and must be set.
 - An uninformative prior for it would make Bayes irrelevant,
 - An informative prior can't be used since we don't have information
 - Common practice: make some wild guesses.
- The classical approach can be harmful: Making β_i more smooth may make μ less smooth (μ = Zβ):
- Extensive trial-and-error runs: no useful parameter values.

Our Alternative Strategy: Priors on μ

Three steps:

1 Specify a prior for μ :

$$\mathcal{P}(\mu \mid \theta) \propto \exp\left(-\frac{1}{2}\boldsymbol{H}[\mu,\theta]\right), \text{ e.g., } \boldsymbol{H}[\mu,\theta] \equiv \frac{\theta}{T} \sum_{t=1}^{T} \sum_{a=1}^{A-1} (\mu_{at} - \mu_{a+1,t})$$

- To do Bayes, we need a prior on ${\boldsymbol{\beta}}$
- Problem: How to translate a prior on μ into a prior on β (a few-to-many transformation)?
- **②** Constrain the prior on μ to the subspace spanned by the covariates: $\mu = \mathbf{Z}\boldsymbol{\beta}$
- **③** In the subspace, we can invert $\mu = \mathbf{Z}\beta$ as $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mu$, giving:

$$\mathcal{P}(\boldsymbol{\beta} \mid \boldsymbol{\theta}) \propto \exp\left(-\frac{1}{2}\boldsymbol{H}[\boldsymbol{\mu}, \boldsymbol{\theta}]\right) = \exp\left(-\frac{1}{2}\boldsymbol{H}[\mathbf{Z}\boldsymbol{\beta}, \boldsymbol{\theta}]\right)$$

the same prior on $\mu,$ expressed as a function of β (with constant Jacobian).

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

 $\mu_{cat} = Z_{cat} \beta_{ca}$

A Simple Analogy

- Suppose $\delta = \beta_1 \beta_2$ and $P(\delta) = N(\delta|0, \sigma^2)$
- What is $P(\beta_1, \beta_2)$?
- Its a singular bivariate Normal
- Its defined over β_1, β_2 and constant in all directions but $(\beta_1 \beta_2)$.
- We start with one-dimensional P(μ_{cat}), and treat it as the multidimensional P(β_{ca}), constant in all directions but Z_{cat}β_{ca}.

Advantages of the resulting prior over $\pmb{\beta}$, created from prior over μ

- Fully Bayesian: The same theory of inference applies
- μ_i and μ_j can always be compared, even with different covariates.
- The normalization matrix Φ is unnecessary (normalization is performed by Z, which is known)

 Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile \(\overline{\mu}(a)\):

$$H[\mu,\theta] \equiv \frac{\theta}{AT} \int_0^T dt \int_0^A da \left(\frac{d^n}{da^n} \left[\mu(a,t) - \bar{\mu}(a)\right]\right)^2$$

• Discretize age and time:

$$\mathcal{P}(\mu \mid \theta) \propto \exp\left(-\frac{1}{2} \frac{\theta}{aa't} \sum_{aa't} (\mu_{at} - \bar{\mu}_{a})' \frac{\mathcal{W}_{aa'}^n}{\mathcal{W}_{aa'}^n} (\mu_{a't} - \bar{\mu}_{a'})\right)$$

• where W^n is a matrix uniquely determined by n and θ

Add the specification $\mu_{at} = \bar{\mu}_a + \mathbf{Z}_{at} \boldsymbol{\beta}_a$:

$$\mathcal{P}(\boldsymbol{\beta} \mid \boldsymbol{\theta}) = \exp\left(-\frac{\theta}{T} \sum_{\boldsymbol{a}\boldsymbol{a}'t} W_{\boldsymbol{a}\boldsymbol{a}'}^{n} (\mathbf{Z}_{\boldsymbol{a}t}\boldsymbol{\beta}_{\boldsymbol{a}}) (\mathbf{Z}_{\boldsymbol{a}'t}\boldsymbol{\beta}_{\boldsymbol{a}'})\right)$$
$$= \exp\left(-\theta \sum_{\boldsymbol{a}\boldsymbol{a}'} W_{\boldsymbol{a}\boldsymbol{a}'}^{n} \boldsymbol{\beta}_{\boldsymbol{a}}' \mathbf{C}_{\boldsymbol{a}\boldsymbol{a}'} \boldsymbol{\beta}_{\boldsymbol{a}'}\right)$$

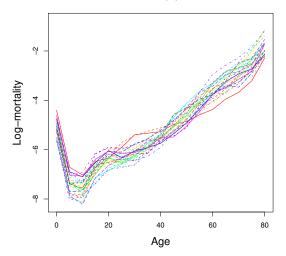
where we have defined:

$$\mathsf{C}_{aa'} \equiv rac{1}{T} \mathsf{Z}'_a \mathsf{Z}_{a'} \quad \mathsf{Z}_a ext{ is a } T imes d_a ext{ data matrix for age group } a$$

$$\mathcal{P}(oldsymbol{eta} \mid heta) \propto \exp\left(- heta \sum_{aa'} oldsymbol{\mathcal{W}}^{\prime\prime}_{aa'}oldsymbol{eta}_{a}^{\prime} oldsymbol{\mathsf{C}}_{aa'}oldsymbol{eta}_{a'}
ight)$$

- The prior is normal (and improper)
- *n*: determines by the prior through the "interaction" matrix W^n .
- θ : the "strength" of the prior
- Different age groups can have different covariates: the matrices $C_{aa'}$ are rectangular $(d_a \times d_{a'})$.

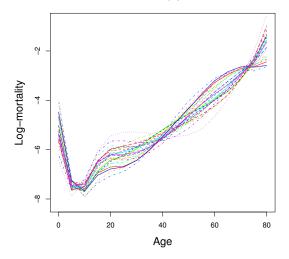




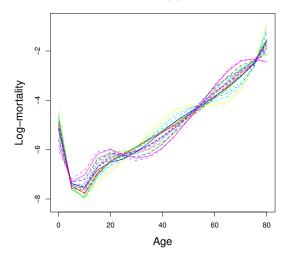
Ņ Log-mortality 4 ဖု ထု 20 40 60 80 0 Age

All Causes (m), n = 2

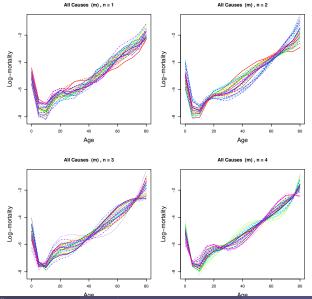
All Causes (m), n = 3



All Causes (m), n = 4

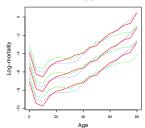


()



Formalizing (Prior) Indifference

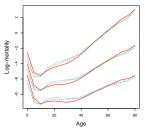
equal color = equal probability



All Causes (m), n = 1

Level indifference

Level and slope indifference



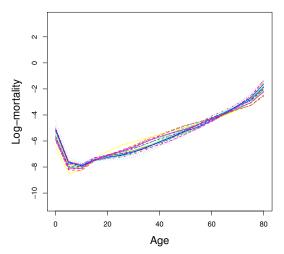
• The prior:

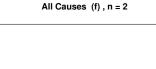
$$\mathcal{P}(\boldsymbol{eta} \mid \boldsymbol{ heta}) \propto \exp\left(- rac{oldsymbol{ heta}}{aa'} W_{aa'}^{n} oldsymbol{eta}_{a}^{\prime} \mathbf{C}_{aa'} oldsymbol{eta}_{a'}
ight)$$

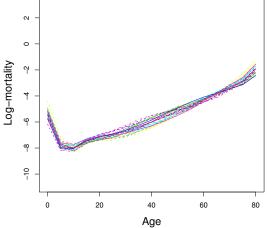
- We figured out what *n* is
- but what is the smoothness parameter, θ ?
- θ controls the prior standard deviation

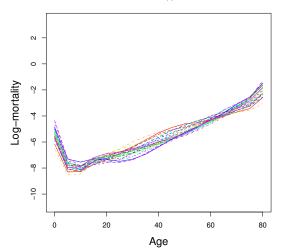
ŝ 0 Log-mortality Ņ 4 φ ထု -10 20 0 40 60 80 Age

All Causes (f), n = 2



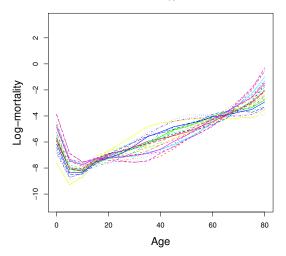


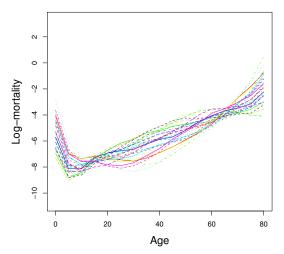




All Causes (f), n = 2

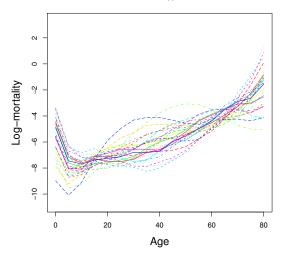
All Causes (f), n = 2



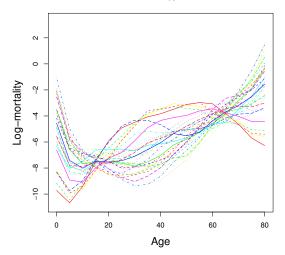


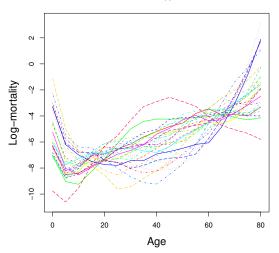
ŝ 0 Log-mortality Ņ 4 φ ထု -10 20 40 60 80 0 Age

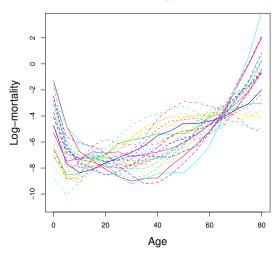
All Causes (f), n = 2

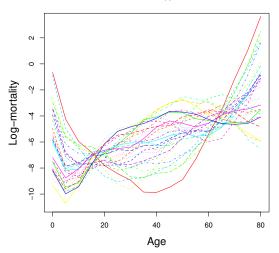


All Causes (f), n = 2

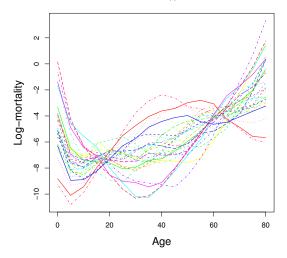








All Causes (f), n = 2

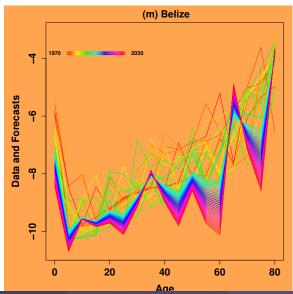


Generalizations

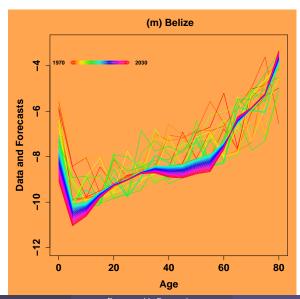
- The above tools: smooth over a (possibly discretized) continuous variable age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit *i* is a label, such as country.
- Can smooth simultaneously over different types of variables (age, country, and time).
- We can smooth interactions:
 - Smoothing *trends* over age groups.
 - Smoothing trends over age groups as they vary across countries, etc.
- The mathematical form for *all* these (separately or together) turns out to be the same:

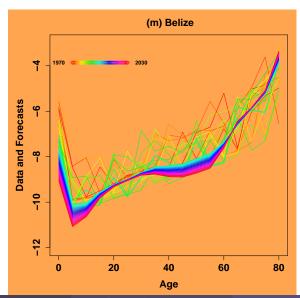
$$\mathcal{P}(eta \mid heta) \propto \exp\left(-rac{ heta}{2}\sum_{ij}W_{ij}eta_i^\prime \mathbf{C}_{ij}eta_j
ight), \qquad \mathbf{C}_{aa^\prime} \equiv rac{1}{T}\mathbf{Z}_a\mathbf{Z}_{a^\prime}$$

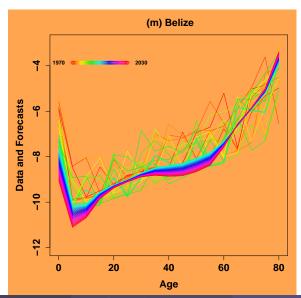
Mortality from Respiratory Infections, Males

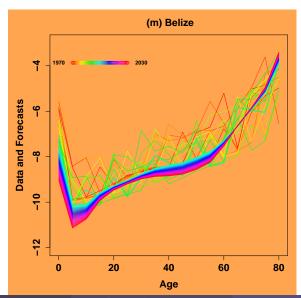


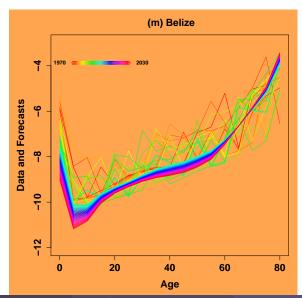
Demographic Forecasting

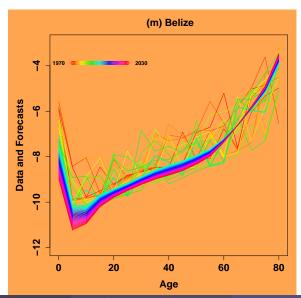


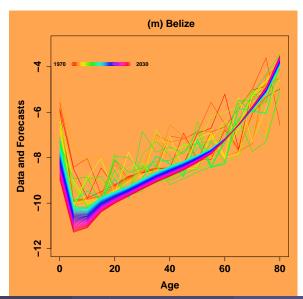


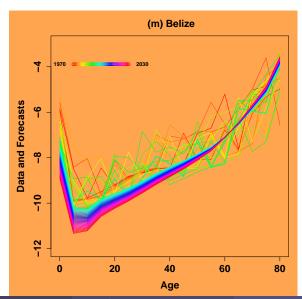




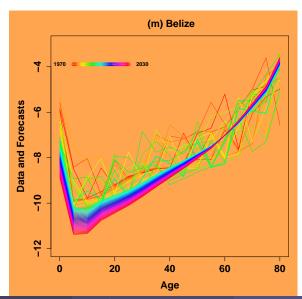


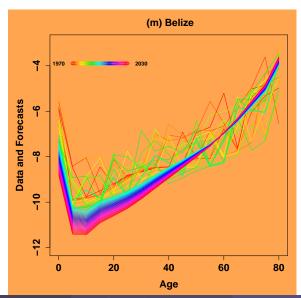


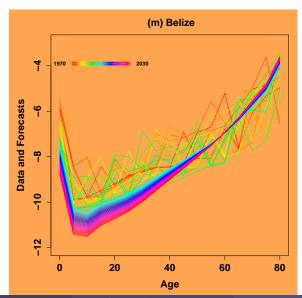


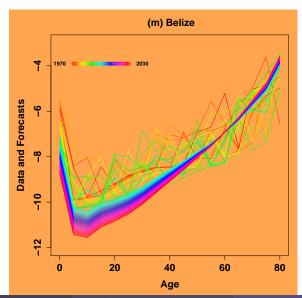


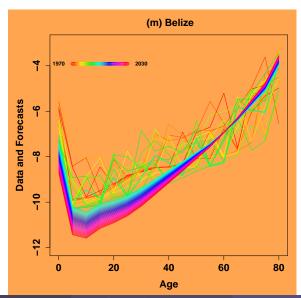
Mortality from Respiratory Infections, males, $\sigma = 0.21$ Smoothing over Age Groups

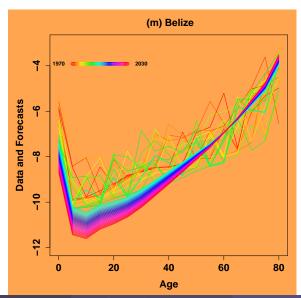


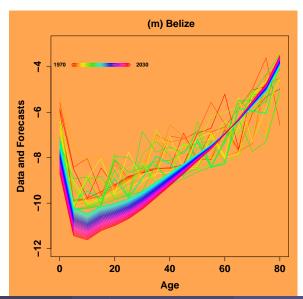


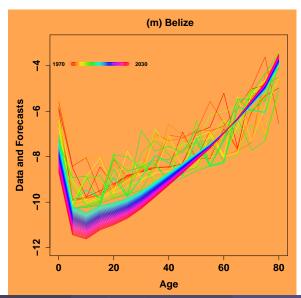


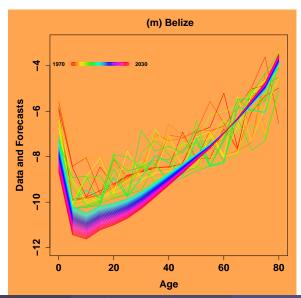


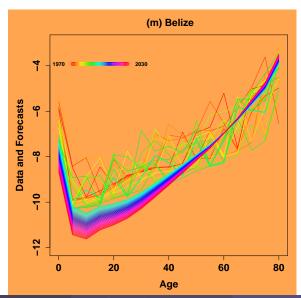




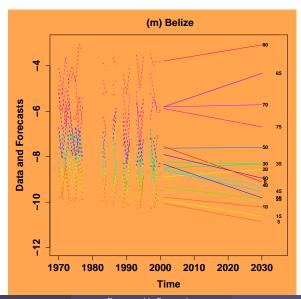




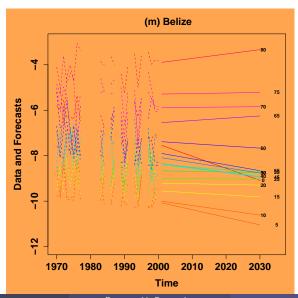


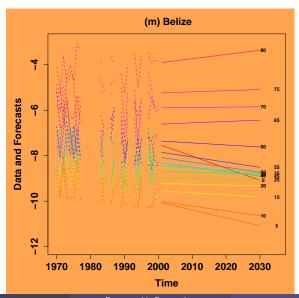


Mortality from Respiratory Infections, males Least Squares

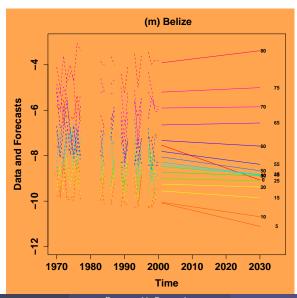


Mortality from Respiratory Infections, males, $\sigma = 2.00$ Smoothing over Age Groups

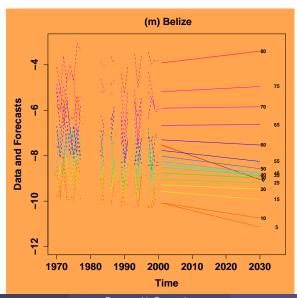


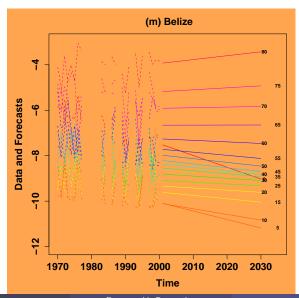


Mortality from Respiratory Infections, males, $\sigma=1.15$ Smoothing over Age Groups

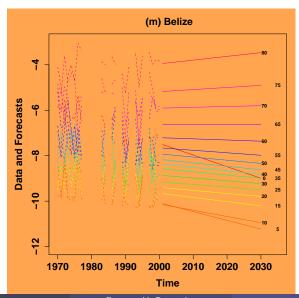


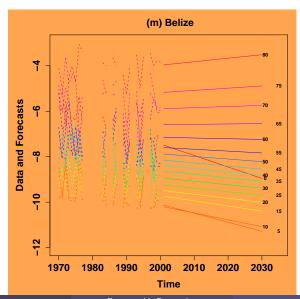
Mortality from Respiratory Infections, males, $\sigma = 0.87$ Smoothing over Age Groups

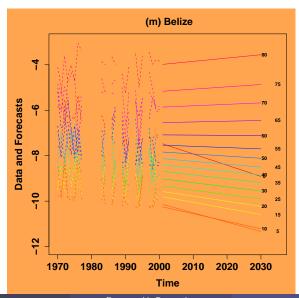




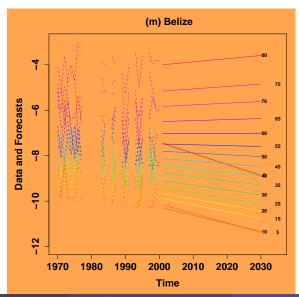
Mortality from Respiratory Infections, males, $\sigma = 0.50$ Smoothing over Age Groups

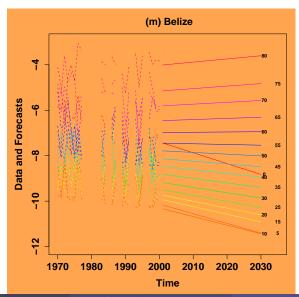


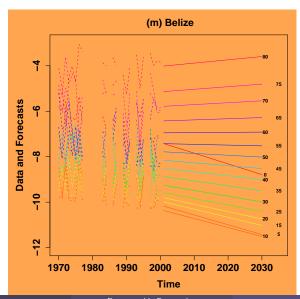


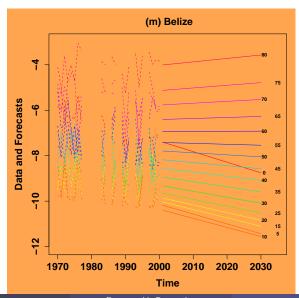


Mortality from Respiratory Infections, males, $\sigma = 0.21$ Smoothing over Age Groups

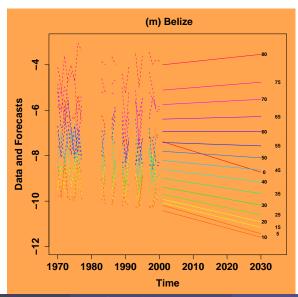


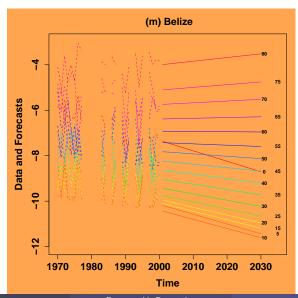


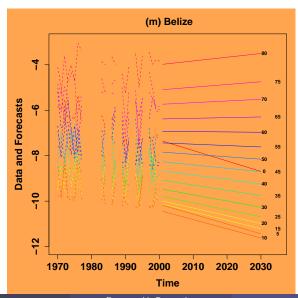


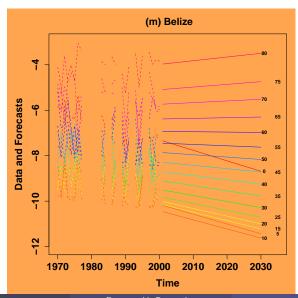


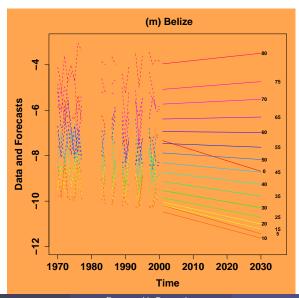
Mortality from Respiratory Infections, males, $\sigma = 0.07$ Smoothing over Age Groups



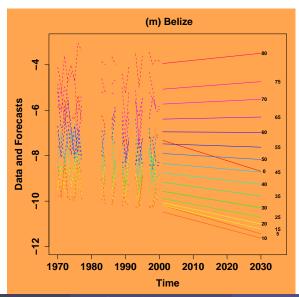








Mortality from Respiratory Infections, males, $\sigma = 0.01$ Smoothing over Age Groups



Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

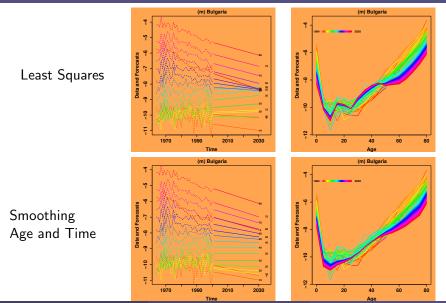
Least Squares

Smoothing Age Groups



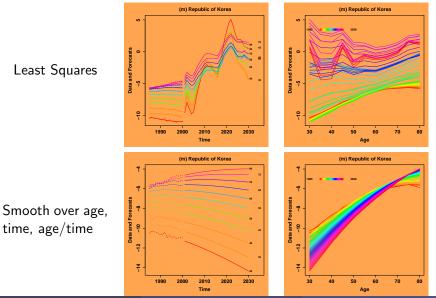
Demographic Forecasting

Smoothing Trends over Age Groups and Time Log-Mortality in Bulgarian males from respiratory infections

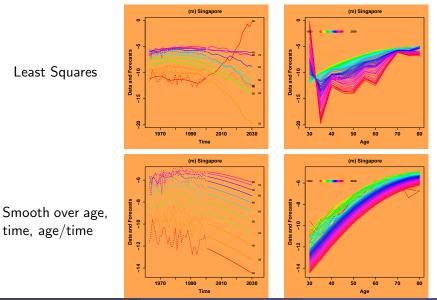


Demographic Forecasting

Using Covariates (GDP, tobacco, trend, log trend) Lung cancer in Korean Males

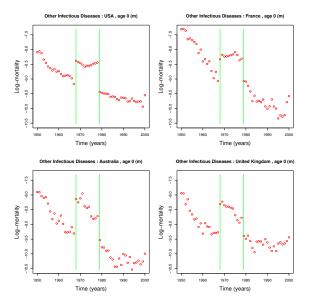


Using Covariates (GDP, tobacco, trend, log trend) Lung cancer in Males, Singapore

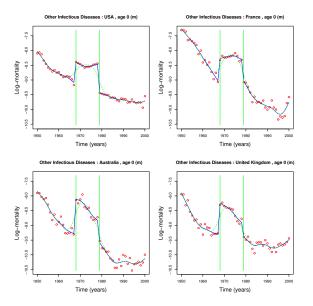


Demographic Forecasting

What about ICD Changes?



Fixing ICD Changes



A book manuscript, YourCast software, etc.

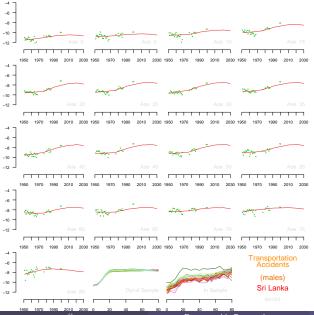
http://GKing.Harvard.edu

Without Country Smoothing



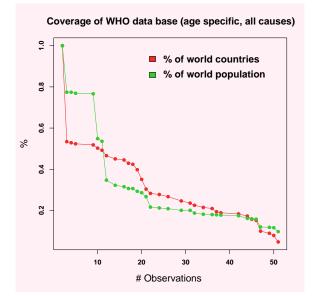
Demographic Forecasting

With Country Smoothing



Demographic Forecasting

Many Short Time Series



• These priors are "indifferent" to transformations:

$$\mu(a,t) \rightsquigarrow \mu(a,t) + p(a,t)$$

- where p(a, t) is a polynomial in a (whose degree is the degree of the derivative in the prior)
- Prior information is about relative (not absolute) levels of log-mortality

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	% Improvement		
	Over Best to Best		
	Previous	Conceivable	
Cardiovascular	22	49	
Lung Cancer	24	47	
Transportation	16	31	
Respiratory Chronic	13	30	
Other Infectious	12	30	
Stomach Cancer	8	24	
All-Cause	12	22	
Suicide	7	17	
Respiratory Infectious	3	7	

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- % to best conceivable = % of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.
- Does *considerably* better with more informative covariates

Preview of Results: Out-of-Sample Evaluation Mean Absolute Error in Males (over age and country)

	Mean Absolute Error			% Improvement	
	Best	Our	Best	Over Best	to Best
	Previous	Method	Conceivable	Previous	Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- % to best conceivable = % of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.
- Does much better with better covariates