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Abstract
Ecological inference (EI) is the process of learning about individual behavior from aggregate data. We relax
assumptions by allowing for “linear contextual e�ects,”whichpreviousworks have regarded as plausible but
avoided due to nonidentification, a problem we sidestep by deriving bounds instead of point estimates. In
this way, we o�er a conceptual framework to improve on the Duncan–Davis bound, derived more than 65
years ago. To study the e�ectiveness of our approach, we collect and analyze 8,430 2 × 2 EI datasets with
known ground truth from several sources—thus bringing considerably more data to bear on the problem
than the existing dozen or so datasets available in the literature for evaluating EI estimators. For the 88% of
real data sets in our collection that fit a proposed rule, our approach reduces the width of the Duncan–Davis
bound, on average, by about 44%, while still capturing the true district-level parameter about 99% of the
time. The remaining 12% revert to the Duncan–Davis bound.

Keywords: asymptotics, bounds, confidence intervals, contextual models, ecological inference, linear
regression, partial identification

1 Introduction
Ecological inference (EI) is the task of reconstructing individual behavior from aggregate data or,
more specifically, making inferences about a conditional probability distribution when only its
marginal distributions are known. As a simple example, suppose in each precinct in the United
States, we observe from election results the proportion of people who turn out Ti and from
census data the proportion of people who are African American (“black”), Xi . Our goal then is to
estimate the cells of the vote/no vote× black/nonblack cross-tabulation at the district level—with
values including the percent of blacks who turn out and the percent of nonblacks who turn
out—even though thesecretballotmakes it impossible tocalculate thesecell valuesdirectly. EIhas
numerous applications inmany fields, withmore complex cases havingmore than two categories
for one or more of the variables, but the same basic issues apply (King 1997, Section 1.1).
The early literature on EI introduced separate deterministic and statistical approaches for

estimating the cell values. Duncan and Davis’ (1953) deterministic approach (herea�er “DD”) is to
bound the cell entries with no assumptions other than the veracity of the data. For an extreme
example, if everyone in a precinct is black, then the percent of black people who turn out to vote
is known exactly. Although sometimes useful, as DD bounds are guaranteed to capture the true
values, they are o�en wide and thus not su�iciently informative. In contrast, Goodman’s (1953)
statistical approach ignores information in the deterministic bounds; assumes independence
among Xi , the precinct-level cell entries, and the number of people in each precinct (which
together we refer to as the “standard EI assumptions”); and can then generate an unbiased
estimate of the average cell values from a regression of Ti on Xi and 1 − Xi (with no constant
term). Unlike DD, Goodman’s approach provides sharp point estimates that are consistent under
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these assumptions, but it usually results in highly model dependent inferences, o�en far outside
of the DD bounds and even the unit interval.
These two streams of research merged when King (1997) developed the first model that

included information from both precinct-level DD bounds (varying over i ) and cross-precinct
statistical information. King’s Bayesian model makes standard EI independence assumptions a
priori but incorporates precinct-level bounds information so that parameters and estimates can
be a posteriori dependent, which also guarantees that all estimates (at the aggregate and precinct
level) are alwayswithin their bounds and these bounds, in turn, are used to improve the statistical
estimates. King (1997, Chapter 9) also proposed a “contextual e�ects” extension to weaken the
standard EI independence assumptions in which cell entries are parametric functions of Xi , with
precinct-level bounds su�icient for (weak) identification. A richmethodological literaturehasbuilt
on thesedevelopmentswithnumerous applications appearing acrossmany fields anddisciplines,
each of which now includes both statistical and deterministic information (see many examples in
King, Rosen, and Tanner 2004).
In this paper, we return to the contextual e�ect approach, allowing the race-specific probability

of voting to depend linearly on Xi , with the slope coe�icient representing the linear contextual
e�ect. Although this approach addresses the most consequential violation of the standard
EI assumptions, it has well-known identification challenges (e.g., Owen and Grofman 1997;
Chambers and Steel 2001; Wakefield 2004). Although we include precinct-level information,
much uncertainty remains about the precise values of the contextual e�ect parameters. We
show, however, that this problem fits easily in the framework of “interval data regression,”
where we regress the varying precinct-level DD bounds on the race proportion in each precinct.
Although interval data regression does not fully identify the regression coe�icients, it can provide
identification regions or bounds (see, e.g., Chernozhukov, Hong, and Tamer 2007; Liao and Jiang
2010). We apply this technique to bound the nonidentified regression parameter in the linear
contextual model and then use that information to improve the DD bounds of the quantities
of interest.
Like DD, our approach also has no adjustable parameters, which makes it easy to use and

robust to claims of hacking: the researcher simply inputs a (sensible) set of ecological data and
themethod returns accurate bounds on the quantities of interest, usuallymuchmore informative
than given by DD. However, the bound is no longer model-free as is DD. This leads to two issues
in using this method. First, the new bound depends on a linear contextual e�ect assumption.
Violations of the assumptions can cause the bound on the quantity of interest to miss the true
district voting proportion, or to even be empty. Second, even if the assumptions hold, the implied
regression bound is only derived in the limit of large p (the number of precincts) and can still miss
the true district-level voting proportion by an amount on the order of 1/

√
p .

To address the second concern, we increase the implied regression bound by a multiple of
the standard errors on both sides (similar to forming a confidence interval) before intersecting
with the DD bound. To address the first concern, we select only datasets where the implied
regression bound has a nonempty intersection with the DD bound. These two ideas together
turn out to produce highly accurate estimates for the 8,430 datasets that we have constructed
from census and other data sources, where ground truth is known. For most of the datasets, the
resulting bounds becomemuch shorter than the DD bound, yet still contain the true district-level
proportion. We have made our datasets publicly available via the Harvard Dataverse (Jiang
et al. 2019) and will add to them over time as a useful resource for researchers in applying or
improving EI.
Of course, our datasets may not be representative of every dataset that researchers choose

to analyze in the future, and the performance measures may thus di�er for di�erent collections
of datasets. Also, even the linear contextual e�ect assumption and our new estimator together
do not always overcome the intractable inferential problem posed by information sometimes
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lost via aggregation, such as due to the secret ballot in the context of vote choice. For example,
the proposed interval may be too wide to be informative when both aggregate variables are
near 0.5 and have little variation across precincts. In some other datasets, the proposed method
producesbounds substantially tighter thanDD. Limitationsof theproposedmethodaredescribed
in Section 7.1.
We begin by defining the linear contextual model in Section 2 and explain why some of the

regression coe�icients are not identified. We describe how to bound the unidentified regression
coe�icients in Section 3 and how to bound the district-level voting proportions in Section 4. In
Section 5, we introduce confidence intervals for the bounds to account for finite sample variation.
In Section 6, we provide extensive analytic, simulated, and real data examples. In Section 7,
we discuss the generality and limitation of the proposed model, o�er comparisons with fully
identified models based on assumptions, and o�er suggestions for future research. Technical
details appear in the Supplementary Appendix.

2 The Linear Contextual E�ects Model
We now describe our data and quantity of interest (Section 2.1), introduce the nonidentified
linear contextual e�ects model (Section 2.2), give a simple example (Section 2.3), and reveal
the conflicting assumptions in the literature that have been suggested for how to achieve
identification (Section 2.4).

2.1 Data and Quantities of Interest
We begin with the EI “accounting identity” (i.e., true by definition) for precinct i (i = 1, . . . , p):

Ti = Xi β
b
i + (1 − Xi )βwi . (1)

Following our running example, Ti is the proportion of people in precinct i turning out to vote,
Xi is the proportion of people in the precinct who are “black” (defined as nonwhite), β bi is the
proportion of black people who turn out to vote, and βw

i
is the proportion of white people who

turn out to vote.
Although we would like to know β b

i
and βw

i
for every precinct i = 1, . . . , p , the quantities of

interest for this paperwill be limited to the district-level proportion of blacks andwhiteswho vote,
respectively:

B ≡

p∑
i=1

N iXi β
b
i

/ p∑
i=1

N iXi W ≡

p∑
i=1

N i (1 − Xi )βwi
/ p∑
i=1

N i (1 − Xi ), (2)

where N i is the total number of people in precinct i .
These quantities are related to each other, a�er conditioning onTi , by the accounting identity

at the district level:

W

p∑
i=1

N i (1 − Xi ) + B
p∑
i=1

N iXi =

p∑
i=1

N iTi ,

so one can be derived from the other. Therefore, we focus only on the inference about B from
here on.

2.2 The (Nonidentified) Model
We now allow “contextual e�ects”, which in this example means that the race-specific turnout
proportions (β b

i
and βw

i
) are allowed to depend on the “context” (e.g., the black proportion Xi ).

The only essential assumption wemake in this paper is as follows:
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ASSUMPTION 1 (Linear contextual e�ects). The random vector (β b
i
, βw
i
,Xi ,N i ) is independent

and identically distributed over i , for i = 1, . . . , p , and satisfies

E (βwi `Xi ,N i ) = w0 +w1Xi (3)

and

E (β bi `Xi ,N i ) = b0 + b1Xi , (4)

wherew0,w1, b0, b1 are nonrandom real parameters.

The current form of the assumption implies that E (β b,w
i

`Xi ,N i ) = E (β b,w
i

`Xi ) (where β b,wi
means that this expression holds for β b

i
and also βw

i
), and, therefore, N i can be omitted.

Supplementary Appendix C explains how the e�ect of N i can be included in the regression. In
themain text, however, we adopt this simpler form of themodel omittingN i since this retains the
essential feature of partial identification and it is more common in the literature (see, e.g., Achen
and Shively 1995; King 1997, Section 3.2; Altman, Gill, and McDonald 2004).
Under these assumptions, (β b

i
, βw
i
,Xi ) from each precinct is a vector of random variables

sampled from an underlying probability distribution. The conditional expectationsE (β b,w
i

`Xi ) are
taken over the conditional distribution of β b,w

i
, given Xi , which allows for β b,wi to still be random

even a�er fixing the values of Xi . For example, precincts with similar Xi ’s (e.g., around 0.5) can
still have very di�erent race-specific voting proportions, β b

i
or βw

i
.

Under the assumptions regarding E (β b,w
i

`Xi ), the accounting identity (1) now implies a
quadratic regression:

E (Ti `Xi ) =w0 + (b0 −w0 +w1)Xi + (b1 −w1)X 2
i (5)

=w0 + c1Xi + d1X
2
i , (6)

where

c1 = b0 −w0 +w1 and d1 = b1 −w1 (7)

are the coe�icients ofXi andX 2
i , respectively. It then follows that the three parameters (w0, c1, d1)

are identifiable (if theXi ’s can take threeormoredistinct values) andcanbeestimatedby (possibly
weighted) least squares regression.
The four regression parameters in the linear contextual e�ects model are related to the three

regression parameters in the quadratic regression ofTi vs Xi via

(w0,w1, b0, b1) = (w0,w1, c1 +w0 −w1, d1 +w1), (8)

which are partially identifiable up to one free parameter: (w0, c1, d1) are identified, butw1 is not.1

2.3 A Simple Example
The nonidentifiability of thismodel described here iswell-known, for example,when b1 =w1, and
the resultingTi , Xi relation is linear (see Freedman et al. 1991; King 1997, Section 3.2).
Figure 1 o�ers a slightly di�erent example to illustrate the nonidentification problem, which

we also use in several places below (see Sections 3.1 and 6.1.1). In this example, we observe voter

1 Although we focus on boundingw1 in this paper, we could have also chosen b1 = w1 + d1 as the nonidentified parameter
instead. The results are equivalent due to the accounting identity (1). However, in that case, a composite parameter b0+b1
(instead of simplyw0) is identifiable, and the notation would bemore complex with no additional benefit.
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Figure 1. A simple example of nonidentification. The solid line is the total observed voter turnout Ti . The
underlying race-specific proportions β b,w

i
can either both follow the same solid line 0.9 − 0.2x (with slope

w1 = −0.2) or separately follow the two dashed lines 0.9 − 0.1x and 0.8 − 0.1x (with slopew1 = −0.1). The
slope parameter w1 (for βwi ) is therefore not identified. (Another possible value w1 = 0 corresponds to a
scenario of constant (β b

i
, βw
i
) = (0.7, 0.9).)

turnoutTi declining linearly as the black percentage of the precinct, Xi , increases (see the solid
black line).However, the reason for this relationshiphere is notnecessarilydeterminedsolely from
these two marginal variables. It could be that individual black citizens have lower voter turnout
than white citizens and so the increasing percentage of black citizens leads to overall turnout
declines. Alternatively, it could instead be that the white citizens who live in precincts with many
black citizens tend to vote less, for cultural or economic reasons. In the figure, we convey the
“contextual dependence” that would not normally be observable, which is how βw

i
and β b

i
vary

over precincts; in this case, both declining as X increases. This context may reflect a situation in
whichprecinctswithmoreblack citizens happen tobe frompoorer, inner city areas (as a result, for
example, of structural discrimination), with more residential mobility and hence lower turnout.

2.4 Conflicting Advice on Identifying Assumptions
The key problem, then, is that the linear contextual e�ects model has four parameters, but the
derived quadratic regression of the observedTi versusXi can only identify three of them. Existing
works have addressed this issue, providing at times conflicting advice. In particular, scholars
have suggested treating the nonidentified parameterw1 by settingw1 = max{−d1, 0} (Achen and
Shively 1995; Altman, Gill, and McDonald 2004), w1 = 0 (Wakefield 2004, Section 1.2), and w1 =

−d1/2 (Wakefield 2004, Section 1.2).Of course, theadvice in eachcase is givenwithwarningsand is
appropriate in somecircumstancesbutareneitheruniversally appropriatenor comewithdecision
rules to help researchers decide when to use each one. Ultimately, each of these assumptions is
arbitrary, meaning that the results using it give answers that are highly model dependent. In real
applications, these assumptions canmake amajor substantive di�erence in empirical results.
The approachwe introducebelowdi�ers in an important respect from this literature. Insteadof

arbitrarily picking a value forw1 and hoping it applies across datasets or to the one before us, we
derive aprior-insensitive bound forw1 under the current linear contextual e�ectsmodel, using the

Wenxin Jiang et al. ` Political Analysis 5
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Figure 2. Intuition for boundingw1. The dotted curves are the expectations of the DD bounds for βwi for the
simple example of Section 2.3. The solid lines 0.9 − (0.1 ± 0.2)x are obtained by forcing linear contextual
e�ects E (βw

i
`Xi = x ) = w0 +w1x to lie between the dotted curves. The dashed lines are examples exceeding

the expectation of the DD upper bound (see Section 3.1).

expectationsof theDDbounds conditional on theXi ’s.Our approach is conditional on the linearity
of the contextual e�ects model but should be relatively robust to many types of deviations from
linearity.

3 Contextual Model Parameter Bounds
We now o�er intuition, followed by more formal theory, for how to bound the nonidentified
parameter of the contextual model parameter. In Section 4, we show how to use this result to
bound the district-level quantity of interest.

3.1 Intuition
Denote the DD bounds for the unobserved βw

i
as Li ≤ βwi ≤ Ui , where Li ≡ max{0, (Ti − Xi )/(1 −

Xi )} and Ui ≡ min{1,Ti /(1 − Xi )}. Under the linear contextual model E (βwi `Xi ) = w0 + w1Xi ,
the observable DD bounds Li ≤ βwi ≤ Ui form a problem of interval data regression, regressing
[Li ,Ui ]againstXi . It iswell-known (see, e.g., Chernozhukov,Hong, andTamer2007; LiaoandJiang
2010) that although interval data regression cannot fully identify the regression coe�icients, it can
provide their identification regions or bounds. We use this perspective to derive a bound for the
nonidentified regression coe�icientw1.
Taking expectations under the linear contextual model gives the corresponding bound in the

conditional expectation, E (Li `Xi ) ≤ E (βwi `Xi ) ≤ E (Ui `Xi ), or

E (Li `Xi ) ≤ w0 +w1Xi ≤ E (Ui `Xi ). (9)

Thesebounds are identifiable fromobservablequantities. Forcing this bound in the entire domain
of Xi leads to a bound forw1.
Consider the simple example from Section 2.3, whereTi = 0.9 − 0.2Xi .

Wenxin Jiang et al. ` Political Analysis 6
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In Figure 2, we illustrate the intuition of how to bound the slope parameter w1 in the linear
contextualmodelE (βw

i
`Xi = x ) =w0+w1x for all x ∈ (0, 1). The intercept parameter is identifiable

asw0 = E (Ti `Xi = 0) = 0.9. The slope parameterw1 is nonidentified, but only partially so. There
arehiddenconstraints: if the linew0+w1x = 0.9−2x , then theprobabilityE (βw

i
`Xi = x ) =w0+w1x

can be negative; sow1 cannot be as low as−2 (w1 ≥ −2). Even if we choosew0 +w1x = 0.9− 0.9x

so that E (βw `Xi = x ) = w0 + w1x falls between [0, 1] for all x ∈ (0, 1), the line 0.9 − 0.9x

can still penetrate a large portion of the dotted curve of the expectation of the DD lower bound
E (Li `Xi = x ). As such, w1 also cannot be as low as −0.9 (w1 ≥ −0.9). In fact, to force w0 + w1x

to fall between the dotted curves [E (Li `Xi = x ), E (Ui `Xi = x )] for all x ∈ (0, 1), we need to have
w1 ∈ [−0.3, 0.1] = −0.1±0.2, restricted to a small interval in this example. (Incidentally, this bound
includes all the three possibilitiesw1 = −0.2,w1 = −0.1, andw1 = 0, as described in the original
example in Figure 1.)
Intuitively, this is how we exploit the expectation of the DD bound (9) to bound the

nonidentified contextual e�ect parameter w1. More formally, we have the following theoretical
results.

3.2 Theory
The following proposition provides a necessary and su�icient condition for this bound in terms of
the only nonidentified parameterw1.

PROPOSITION 1. Assume a linear contextual e�ect E (βw
i
`Xi ) = w0 + w1Xi for all Xi ∈ A where

A ⊂ (0, 1). Then

E (Li `Xi ) ≤ E (βwi `Xi ) ≤ E (Ui `Xi ),

for allXi ∈ A, if and only if the nonidentifiable parameterw1 satisfies

sup
Xi ∈A

[(E (Li `Xi ) −w0)/Xi ] ≤ w1 ≤ inf
Xi ∈A

[(E (Ui `Xi ) −w0)/Xi ].

PROOF. If supX ∈A[(E (L`X )−w0)/X ] ≤ w1 ≤ infX ∈A[(E (U `X )−w0)/X ]holds, then for allX ∈ A,
[(E (L`X ) −w0)/X ] ≤ w1 ≤ [(E (U `X ) −w0)/X ]. This implies E (L`X ) ≤ w0 +w1X ≤ E (U `X ) for
allX ∈ A ⊂ (0, 1).
For the converse: E (L`X ) ≤ w0 + w1X ≤ E (U `X ) for all X ∈ A ⊂ (0, 1) implies [(E (L`X ) −

w0)/X ] ≤ w1 ≤ [(E (U `X ) −w0)/X ] holds for all X ∈ A. Now, we take infX ∈A for both sides of
w1 ≤ [(E (U `X ) −w0)/X ] and take supX ∈A for both sides of [(E (L`X ) −w0)/X ] ≤ w1. �

The above proposition then gives the tightest bound possible on w1. The upper bound and
the lower bound are both constructed out of identifiable quantities. The functions E (Li `Xi ) and
E (Ui `Xi ) may be estimated by lowess smoothing. If for some reason we would like to avoid such
nonparametric estimation (e.g., it may not perform well at boundary values of Xi ), we can relax
thebounds somewhat and incorporate results fromaparametric regressionE (Ti `Xi ) =w0+c1Xi +

d1X
2
i .

PROPOSITION 2. For all Xi ∈ [l ,u] ⊂ (0, 1) where l < u , assume linear contextual e�ect
E (βw

i
`Xi ) = w0 +w1Xi and a quadratic regression E [Ti `Xi ] = w0 + c1Xi + d1X

2
i . Then we have

wl ≤ w1 ≤ wu,

wherewl =maxx ∈{l ,u}max{−w0/x , (w0+c1+d1−1)/(1−x )−d1}andwu =minx ∈{l ,u}min{(1−
w0)/x , (w0 + c1 + d1)/(1 − x ) − d1}.
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Before we prove this proposition, we give some intuition on why the proposed bounds make
sense. The bounds are obtained by forcingw0 +w1x and b0 + b1x (for all x ∈ [l ,u]) to be within
[0, 1] since these linear combinationsmodel the [0, 1]-valuedprobabilities (viaE (βw ,b `X = x )). For
example, one of the proposed lower bounds ofw1 is of the form −w0/x ; this makesw1 ≥ −w0/x

and thereforew0+w1x ≥ 0. Oneof theupper boundsofw1 is (1−w0)/x ; thismakesw1 ≤ (1−w0)/x
and therefore w0 + w1x ≤ 1. Similarly, the other two functions in the bounds are related to the
bounds of b0 + b1x by using (8). Now we prove the proposition rigorously.

PROOF. For the bounds in Proposition 1, note that E (Ui `Xi ) = E [min{1,Ti /(1 − Xi )}`Xi ] ≤
min{1, E [Ti `Xi ]/(1−Xi )}due toJensen’s inequality, andsimilarlyE (Li `Xi ) ≥ max{0, (E [Ti `Xi ]−
Xi )/(1 − Xi )}. Now apply a quadratic regression E [Ti `Xi ] = w0 + c1Xi + d1X

2
i . Then from

Proposition 1, we have

sup
Xi ∈A

max{−w0/Xi , (w0 + c1 − 1 + d1Xi )/(1 − Xi )}

≤ w1 ≤ inf
Xi ∈A

min{(1 −w0)/Xi , (w0 + c1 + d1Xi )/(1 − Xi )}.

Simplifying these bounds for A = [l ,u]with the boundary points leads to the proof. �

To use Proposition 2, we need to supply the interval [l ,u] where we believe the assumptions
hold. One could simply use the data range l = minXi and u = maxXi of the dataset. However,
there may be reasons to either reduce this range (e.g., if there are outliers) or increase this range
(if there is a belief that the pattern could be reliably extrapolated to some extent beyond the data
range). If we attempt to check the assumptions when there is no knowledge regarding the ground
truth βw

i
, we could still use the (Ti ,Xi ) data to fit a quadratic curve on (0, 1) and superimpose it

on the scatterplot, using it to rule out unreasonable choices of a range [l ,u]. For example, when
quadratic regression is based on a scatterplot limited in a small domain of Xi ∈ [0.5, 0.6] and
extrapolating the fitted quadratic curve to x ∈ [0.1, 0.9] leads to E (T `X = x ) = w0 + c1x + d1x

2

breaking the “ceiling” of 1 or the “floor” of 0, then it is obvious that the range [l ,u] = [0.1, 0.9] is
too wide.
On the other hand, the bigger the setA = [l ,u] is forXi , the tighter the bounds will be in these

propositions. Suppose we consider a special case A → (0, 1). In other words, we assume that the
previous quadratic regressionmodel holds for allXi in thewhole range of (0, 1). Then relaxing the
bounds of Proposition 2 and taking l → 0, u → 1, we immediately have the following:

PROPOSITION 3. For allXi ∈ (0, 1), assume linear contextual e�ect E (βwi `Xi ) = w0 +w1Xi and a
quadratic regression E [Ti `Xi ] = w0 + c1Xi + d1X

2
i . Then we have

wl ≤ w1 ≤ wu,

wherewl = max{−w0, c1 +w0 − 1} andwu = min{1 −w0, c1 +w0}.

4 District Cell Value Bounds
Section 3 derives bounds for the contextual e�ect parameter w1. Our ultimate quantity of
interest is the district-level, race-specific vote proportions—the unobserved cell values of the
cross-tabulation, B andW . In this section, we derive these bounds, given the bounds onw1.

4.1 Estimating District-Level Parameters
We first analyze the precinct-level parameter β b

i
. Denote residuals as eb

i
= β b

i
− E (β b

i
`Xi ), ewi =

βw
i
− E (βw

i
`Xi ). Note that

Wenxin Jiang et al. ` Political Analysis 8
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β bi = E (β bi `Xi ) + e
b
i (10)

by (8)
= w0 + (c1 −w1) + (w1 + d1)Xi + ebi (11)

= [w0 + c1 + d1Xi ] +w1(Xi − 1) + ebi (12)

≡ bi (w1, θ) + ebi , (13)

where θ ≡ (w0, c1, d1)T .
The district-level parameter is given as

B ≡

p∑
i=1

N iXi β
b
i /

p∑
i=1

N iXi (14)

=

∑p
i=1 N iXi bi (w1, θ)∑p

i=1 N iXi
+

∑p
i=1 N iXi e

b
i∑p

i=1 N iXi
. (15)

By the Law of Large Numbers, for large p , we can ignore the second term of the expansion of
(14) with the mean zero residuals eb

i
, when estimating B . We can then form a point estimate of B

using the first term:

B (w1, θ) ≡
∑p
i=1 N iXi bi (w1, θ)∑p

i=1 N iXi

=

∑p
i=1 N iXi bi (0, θ)∑p

i=1 N iXi
−w1

∑p
i=1 N iXi (1 − Xi )∑p

i=1 N iXi
, (16)

where

bi (w1, θ) ≡ [w0 + c1 + d1Xi ] +w1(Xi − 1). (17)

4.2 Sensitivity of District Cell Value Estimate
The point estimateB (w1, θ) will vary withw1 due to (16). The sensitivity onw1 can bemeasured by

∂B (w1, θ)
∂w1

= −r ≡ −

∑p
i=1 N iXi (1 − Xi )∑p

i=1 N iXi
, (18)

which is typically nonzero (unless Xi ∈ {0, 1} for all nonempty precincts). Therefore, the bounds
we derived earlier forw1 will be very useful here for limiting the scope of the influence byw1.
For any possible value of the partially identified w1, the district-level parameter B =∑
i N iXi β

b
i
/
∑
i N iXi is estimated by the point estimator B (w1, θ) following (16). We will now use

the bounds on w1 to bound this district-level parameter estimate B (w1, θ), and estimate its θ
parameter by regression.

4.3 Bounding District Cell Value
Due to Proposition 2 or Proposition 3, we know that w1 ∈ [wl ,wu], where wu = wu(θ) and
wl = wl (θ) depend on θ. Then

B (w1, θ) ∈ [Bl ,Bu] ≡ [B (wu(θ), θ),B (wl (θ), θ)]. (19)

The parameters θ = (w0, c1, d1)T can be estimated from a least squares regression

θ̂ = (ŵ0, ĉ1, d̂1)T ← min
w0,c1,d1

∑p
i=1 ρi [Ti − (w0 + c1Xi + d1X

2
i )]

2∑p
i=1 ρi

, (20)

possibly weighted by some choice ρi .

Wenxin Jiang et al. ` Political Analysis 9
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Replacing θ in (19) by θ̂, we obtain the estimated bounds for the district parameter B . Since
this is implied from a regressionmodel of linear contextual e�ects, onemay call this a “regression
bound,” which will be our proposed interval estimate for B .

DEFINITION 1 (Regression bound). 2 A regression bound for the district parameter B =∑
i N iXi β

b
i
/
∑
i N iXi is of the form

[B̂ l , B̂u] ≡ [B (wu(θ̂), θ̂),B (wl (θ̂), θ̂)], (21)

where the functional formof the point estimateB (w1, θ) follows (16),wu =wu(θ)andwl =wl (θ)
are the bounds of thew1 parameter according to Proposition 2 or Proposition 3, and θ̂ estimates
the regression coe�icients θ from (20).

5 Confidence Intervals
The previous regression bound [B̂ l , B̂u] for B does not take into account sampling variation. It
assumes, for example, that thequadratic regression coe�icientsŵ0, ĉ1, d̂1 are the true coe�icients,
while in reality they are estimated from p precincts and are subject to sampling error. Due to
sampling error, it may be possible that according to the sample estimates, B < [B̂ l , B̂u], even
if the model assumptions for linear contextual e�ects are valid, when we should automatically
haveB ∈ [B̂ l , B̂u] in the large p limit. (See Supplementary Appendix B.) To solve this problem, we
will provide asymptotic conservative confidence intervals for B in this section, where B̂ l will be
reduced (and B̂u will be increased) by a typical size of the sampling variation.
Since [B̂ l , B̂u] ≡ [B (wu(θ̂), θ̂),B (wl (θ̂), θ̂)] depends on the functional forms ofwl (·) andwu(·),

we first need to analyze in detail these functional forms.
In Propositions 2 and 3, the bounds wl and wu are functions of the quadratic regression

coe�icients θ = (w0, c1, d1)T . The lower bounds can be expressed in the form

wl (θ) =
J

max
j=1

{g l 0j + g l
T
j θ}, (22)

and the upper bounds can be expressed in the form

wu(θ) =
J

min
j=1

{gu0j + gu
T
j θ}. (23)

For Proposition 2, J = 4,
g l 01 = 0, g lT1 = (−1/l , 0, 0), g l 02 = −1/(1 − l ), g lT2 = (1/(1 − l ), 1/(1 − l ), 1/(1 − l ) − 1),
g l 03 = 0, g lT3 = (−1/u, 0, 0), g l 04 = −1/(1 − u), g lT4 = (1/(1 − u), 1/(1 − u), 1/(1 − u) − 1),
gu01 = 1/l , guT1 = (−1/l , 0, 0), gu02 = 0, guT2 = g lT2 ,
gu03 = 1/u , guT3 = (−1/u, 0, 0), gu04 = 0, guT4 = g lT4 .
For Proposition 3, J = 2,
g l 01 = 0, g lT1 = (−1, 0, 0), g l 02 = −1, g lT2 = (1, 1, 0),
gu01 = 1, guT1 = (−1, 0, 0), gu02 = 0, guT2 = (1, 1, 0).
Using this notation, we have the following result.

PROPOSITION 4. LetB =
∑p
i=1
N iXi β

b
i∑p

i=1
N iXi

be the district parameter of voting proportion for a candidate

of interestamongall theblackpeople inadistrictwithp precincts. LetDDbe theDuncanandDavis
(1953) bound for B , following

2 This bound corresponds to a special case with the choice of λ = 0 in a technical report by Jiang et al. (2018), who allow the
residuals of theTi Xi regression to be incorporated in the bound.
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DD =


∑p
i=1 N i max{0,Ti − (1 − Xi )}∑p

i=1 N iXi
,

∑p
i=1 N i min{Ti ,Xi }∑p

i=1 N iXi


. (24)

As p → ∞, an asymptotic conservative confidence interval for B of the form

CIx ≡ [B̂L − xSL, B̂U + xSU ] ∩ DD (25)

has asymptotic coverage probability at leastΦ(x ).
Here, we use the following system of notation:
x > 0,
θ̂T = (ŵ0, ĉ1, d̂1)which is estimated by quadratic regression (20), which has robust sandwich

asymptotic variance matrixV ,3

r ≡
∑
i N iXi (1−Xi )∑

i N iXi
,

h0 ≡ 0,
hT ≡

∑
i N iXi (1,1,Xi )∑

i N iXi
,

S1 = (1/2)
√∑

i

(
N iXi∑
i N iXi

)2
,

B̂L = maxJ
j=1{B̂Lj },

B̂U = minJj=1{B̂Uj }.
For j = 1, . . . , J , the g l j ’s and gu j ’s are defined above a�er (22) and (23),
B̂Lj = h0 − r gu

0
j
+ (h − r gu j )T θ̂,

B̂Uj = h0 − r g l
0
j
+ (h − r g l j )T θ̂,

SLj ≡ S1 +
√
(h − r gu j )TV (h − r gu j ),

SUj ≡ S1 +
√
(h − r g l j )TV (h − r g l j ),

SL = SL ĵ where ĵ ≡ argmax
J
j=1{B̂Lj },

SU = SU j̃ where j̃ ≡ argmin
J
j=1{B̂Uj }.

For this result to hold, we assume that the linear contextual model holds conditional on both
N i andXi on the entire support of these random variables and also for allXi in a range specified
in either Proposition 2 or Proposition 3.We assume that the robust varianceV is of orderOp(1/p).
In addition, we assume the following “tie-breaking” conditions:

(i) Assume thatN iXi (1 − Xi ) is not almost surely 0.
(ii) Assume that the minimizing entry ofwu = minJj=1{gu

0
j
+ guTj θ} is unique and not tied with

the other entries, and similarly the maximizing entry ofwl = maxJ
j=1{g l

0
j
+ g lTj θ} is unique

and not tied with the other entries.
(iii) Assume thatwu(θ) , wl (θ).

A derivation of this confidence interval CIx in Proposition 4 is included in Supplementary
Appendix A.

REMARK 1. The tie-breaking conditions can be checked by examining the data at hand. The
condition on N i and Xi is satisfied if N i is not almost surely 0 and if Xi does not almost surely
take a boundary value (0 or 1) for nonempty precinctswithN i > 0. The conditions on θwill hold
for almost all true parameters (except on a set with Lebesguemeasure 0, where some of the 2J
points {gu0

j
+ guTj θ, g l

0
j
+ g lTj θ, j = 1, . . . , J} are exactly tied). In the Bayesian sense when θ

is regarded as a vector of continuous random variables, these conditions hold with probability
one sinceany tieswould forceθ to lieona lowerdimensionalmanifoldwhichhas zeroLebesgue
measure.

3 See, for example, https://www.stata.com/manuals/p_robust.pdf
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REMARK 2. Instead of the analytic method described here, one may consider using the
bootstrap to estimate the standard deviation (sd) of the bound estimate B̂L (and similarly
for B̂U ) and replace the SL in the formula of CIx by sdboot(B̂L). However, we suspect that
this bootstrap method would not be theoretically valid here. The reason is that we are not
interested in how much B̂L varies from its own nonstochastic large sample limit, that is, the
typical size of B̂L − limp→∞ B̂L. We are really interested in the typical size of B̂L − B instead.

However, the district-level parameterB =
∑p
i=1
N iXi β

b
i∑p

i=1
N iXi

is a nonidentified stochastic quantity, and

its sampling variationswould be ignored by bootstrapping B̂L alone. Nevertheless, in practice,
the bootstrap methodmay still work well heuristically for describing the sampling variation.

6 Illustrations and Applications
We now give theoretical and simulation analyses (Section 6.1) and empirical applications
(Section 6.2) of our new bounds.

6.1 Theoretical
Wewill compare the proposed bound CIx to the Duncan and Davis (1953) bound DD, as defined in
Proposition 4. For any interval A, we will use `A` to denote its length. We will use x = 0 and x = 1

for illustration.
To measure the success of the proposedmethod, we examine:

(1) Whether the new interval estimate contains the true district parameter: B ∈ CIx .
(2) How narrow the new interval estimate is compared to the DD bound: the width ratio WRx ≡

`CIx `/`DD`.

In the examples below, we assume X ∼ Unif[0, 1] and N i is constant for all i , unless otherwise
stated.

6.1.1 Continuation of Example in Section 2.3
We first return to the simple example of Section 2.3. We observeTi = 0.9 − 0.2Xi . The regression
parameters are (w0, c1, d1) = (0.9,−0.2, 0). Here one can apply Proposition 3 to obtain [wl ,wu] =
[max{−0.9,−0.2 + 0.9 − 1},min{1 − 0.9,−0.2 + 0.9}] = [−0.3, 0.1]. In this case, in the limit of
a large number of precincts (large p), the proposed interval in Section 4 becomes [BL,BU ] =

(0.9−0.2)−[E (X (1−X ))/EX ][0.1,−0.3], whereE (X (1−X ))/EX = 1/3 for uniformX . Therefore,
[BL,BU ] ≈ [0.67, 0.80] ≈ 0.73 ± 0.07. What about the true district B? In the large p limit, B =

EXβ b/EX , butwepointedout thatβ b is unidentified. For example, it couldbeeither0.9−0.2X or
0.8−0.1X as shown in Figure 1. In the first case,B = E (X (0.9−0.2X ))/EX = 0.9−0.2(2/3) = 0.77,
and in the second case,B = E (X (0.8−0.1X ))/EX = 0.8−0.1(2/3) = 0.73. In either case, the true
B still falls in the proposed interval [0.67, 0.80] ≈ 0.73 ± 0.07. This interval may still seem not
particularly tight, but this is necessary due to the intrinsic indeterminacy. For example, in another
scenario, constant (β b

i
, βw
i
) = (0.7, 0.9) can also explain the observedT ,X relation, asmentioned

in the discussion of Freedman et al. (1991) in King (1997, Chapter 3.2). This would lead to B = 0.70

being still included and quite close to the lower end of the proposed interval [0.67, 0.80].
The large sample limit of the DD bound is [E max{0,T − 1 + X }/EX , E min{T ,X }/EX ] ≈

[0.61, 0.93] ≈ 0.77 ± 0.16. So the proposed bound [0.67, 0.80] ≈ 0.73 ± 0.07 is contained inside
the DD bound and the width ratio (in the large p limit) is about 0.07/0.16 ≈ 0.44. So the proposed
bound actually becomes less than half as wide in this case, compared to DD.
Di�erent relations between T and X could lead to di�erent width ratios of the proposed

method in comparison to the DD bound. We provide several additional examples below.
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6.1.2 Additional Examples
EXAMPLE 1. β b

i
= T +τ(1−Xi ) ∈ [0, 1] and βwi = T −τXi ∈ [0, 1], where probability constraints

entail τ ∈ ±min(T , 1 −T ) andT ∈ (0, 1). Then the plotTi against Xi is a flatTi = T . Here, one
can show by Proposition 3 that [wl ,wu] = ±min(T , 1 − T ). In this case, in the limit of large
precincts and large number of precincts (large N i and p), it can be shown analytically that the
true parameterB ≈ Eβ b

i
= T +τ/3 ∈ CI0 ≈ T ± (1/3)min(T , 1−T ) ⊂ DD ≈ [T 2, 2T −T 2]. Also,

WR0 ≡ `CI0`/`DD` ≈ 1/[3max(T , 1 −T )] ∈ (1/3, 2/3). In summary, the proposed bound tightens
the DD bound while still containing the true parameter.

EXAMPLE 2. β b
i

= τ(1 − Xi ), βwi = 1 − τXi , where τ ∈ [0, 1]. Then the plot Ti against Xi is
Ti = 1−Xi . Here, one can showbyProposition 3 that [wl ,wu] = [−1, 0]. In this case, in the limit
of large precincts and large number of precincts (large N i and p), it can be shown analytically
that B ≈ Eβ b

i
= τ/3 ∈ CI0 ≈ [0, 1/3], DD ≈ [0, 1/2]. Also, WR0 ≡ `CI0`/`DD` ≈ 2/3. In summary,

the proposed bound tightens the DD bound while still containing the true parameter.

EXAMPLE 3. β b
i
= 0, βw

i
= 1−Xi . Then the plotTi againstXi isTi = (1−Xi )2. Here, one can show

by Proposition 3 that [wl ,wu] = [−1,−1]; sow1 is identified. In this case, in the limit of large
precincts and a large number of precincts (large N i and p), it can be shown analytically that
B = 0, CI0 ≈ [0, 0], DD ≈ [0, 2E min(X , (1 − X )2)] ≈ [0, 0.3032767]. Also, WR0 ≡ `CI0`/`DD` ≈ 0.
We now generate p = 1000 precincts all with population N i = 150 for this example. For

sample estimates based on this finite dataset, we obtain true B = 0, DD = [0, 0.301843].
We apply Proposition 2 for this example with [l ,u] = [min(Xi ),max(Xi )] = [0.001473298,

0.9988792].
We obtain B̂ l = 0.000023 and B̂u = 0.000305 which are very close to B = 0, but CI0 =

[B̂ l , B̂u] excludes the true B due to sampling variation. On the other hand, the proposed
interval estimate narrowlymisses the trueB due to sampling variation. The confidence interval
CIx for x = 1 is ([−0.018185, 0.018556] ∩ DD) = [0, 0.018556], which does contain the true B
now and is still very narrow. (Here, intersection with the DD bound improves the lower bound
to be 0.) In summary, the regression bound CI0 can miss the true parameter due to sampling
variation. However, a�er expanding the bound to account for the sampling variation, CI1 does
contain the true parameter B and is still much narrower than the DD bound.

EXAMPLE 4. Consider p = 1000precincts all with populationN i = 150.We letXi ∼ Unif[0, 0.95],
β b
i
≈ (N iXi )−1Bin(N iXi , 1/(1+exp(−b0−b1×Xi−(1−Xi )×εbi )),β

w
i
≈ (N i (1−Xi ))−1Bin(N i (1−Xi ),

1/(1 + exp(−w0 −w1 × Xi − (1 − Xi )εwi )) (the approximation ≈ here involves operations such
as rounding N iXi and adding 1 to avoid zero or fractional counts), where εb,wi ’s are iid N (0, s2),
s = 0.5, b0 = 2.197225, b1 = −1.791759,w0 = 2.197225,w1 = 0,Ti ≈ β bi Xi + β

w
i
(1 − Xi ) (the

approximation ≈ here involves operations such as replacing Xi by a rounded version of N iXi
divided by N i ). The resultingTi versus Xi scatterplot is given by Figure 3.
We apply Proposition 2 for this example with [l ,u] = [min(Xi ),max(Xi )] = [0.001400,

0.948935].
In this case, it can be shown that B = 0.733582 ∈ CI0 = [0.704450, 0.750966] ⊂ DD =

[0.636268, 0.931647]. Also, WR0 ≡ `CI0`/`DD` = 0.157478.
The CI1 is [0.682944, 0.772162], which is also narrower than theDD interval and contains the

true B .

EXAMPLE 5. Consider p = 1000 precincts all with populationN i = 150. We letXi ∼ Unif[0, 0.7],
β b
i
≈ (N iXi )−1Bin(N iXi , 1/(1+exp(−b0−b1×Xi−(1−Xi )×εbi )),β

w
i
≈ (N i (1−Xi ))−1Bin(N i (1−Xi ),

1/(1 + exp(−w0 −w1 × Xi − (1 − Xi )εwi )) (the approximation ≈ here involves operations such
as rounding N iXi and adding 1 to avoid zero or fractional counts), where εb,wi ’s are iid N (0, s2),
s = 1, b0 = 0, b1 = 0,w0 = 2.197225,w1 = 0,Ti ≈ β bi Xi + β

w
i
(1 − Xi ) (the approximation ≈
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Figure 3.T versus X scatterplot for Example 4.

Figure 4.T versus X scatterplot for Example 5.

here involves operations such as replacingXi by a rounded version ofN iXi divided byN i ). The
resultingTi versus Xi scatterplot is given by Figure 4.
We apply Proposition 2 for this example with [l ,u] = [min(Xi ),max(Xi )] = [0.001031,

0.699215].
In this case, it can be shown that B = 0.499342 ∈ CI0 = [0.399895, 0.759834] ⊂ DD =

[0.340341, 0.961388]. Also, WR0 ≡ `CI0`/`DD` = 0.579568.
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TheCI1 is [0.368232, 0.799369], which is also narrower than theDD interval and contains the
true B .

The CI1 used in Examples 3–5 will have at least Φ(1) ≈ 84% coverage probability
asymptotically, according to Proposition 4. In repetitions of 1000 simulations, we found that
CI1 is very conservative: P [B ∈ CI1] = 944/1000, 1000/1000, 1000/1000, respectively, in
Examples 3, 4, and 5. The comparison for (mean width of CI1, mean width of DD bound) is
(0.0178, 0.3032), (0.0946, 0.2974), (0.4405, 0.6227), respectively. These results demonstrate that
the proposed confidence intervals are considerably more informative about B compared to the
DD bounds, as shown in repeated simulations.
It is noted that in Examples 4 and 5, the true models do not follow the linear contextual model

or quadratic regression ofTi versus Xi . The β b,wi ’s follow overdispersed logistic regression model
with heteroscedastic normal random e�ects.

6.2 Empirical
Given that some information is forever lost during the process of aggregating individual-level
data, it is important to develop models tuned to the specific types of datasets similar to those
used in practice. Unfortunately, for the very reason that EI is a problem in the first place, datasets
with true labels in target application areas, such as elections and voting rights litigation, are
typically not available. The nature of the learning problem is thus intrinsicallymuchmore di�icult
than a traditional supervised learning problem where labeled examples sampled from the target
distribution are abundant. As such, the most recent work on EI has evaluated approaches using
a very small number of datasets with ground truth, combined with artificial, simulated data.
Here, we dramatically increase the number of datasets with ground truth labels on social data
for evaluation of our proposed model as well as to serve as a test bed for future approaches to EI
model building. We describe the data we collected followed by our empirical results.

6.2.1 Data
Datasets frompreviousworks (e.g., King 1997;Wakefield 2004; Imai, Lu, and Strauss 2008) include
data on voter registration and race in 1968; literacy by race in 1910; and party registration in
south-east North Carolina in 2001.Weuse these data and also collect datasets from theUSCenters
for Disease Control and Prevention on mortality rates by gender and race (CDC 2017); literacy
rates and educational attendance by gender from the 2001 Census of India (O�ice of the Registrar
General & Census Commissioner 2001); and additional datasets from theUSCensus and American
Community Surveys from 1850 to 2016 via the Integrated Public Use Microdata Series (Ruggles
etal.2017). Fromthese sources,wecreated8,430datasets (i.e.,X ,T pairs). Someof thesedatasets
are dependent across time and levels of geographic granularity. For example, for the US Census
and American Community Surveys, we have 4 unique X variables and 75 unique T variables
analyzed across available years and geographic units (Minor Civil Divisions or counties). In some
cases, additional datasets are created by dichotomizing individual-level multicategory variables
in di�erentways. For example,we create binary variables from the number of familymembers in a
household by dichotomizing as one and greater than one family members, and then in a separate
dataset as up to two andmore than two family members, and so forth.
The datasets contain a total of 44,164,540 geographic units (precincts, counties, etc.), with an

average of about 5,239 geographic units per dataset and a median of 478, ranging from 145 to
41,783. Our replication data are publicly available via Harvard Dataverse (Jiang et al. 2019). We
discuss limitations of evaluating EI methods with these data in Section 7.1.
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Table 1. E�ectiveness in termsof thenominal coverageprobability,Φ(x ); proportionof intervals that capture
the true district value, p(B ∈ CIx ); and the width ratio among those selected. The last two columns repeat
the previous two among only the 88% of the datasets that do not revert to DD bounds.

x Φ(x ) p(B ∈ CIx ) E [WRx ] p(B ∈ CIx `selected) E [WRx `selected]

0.00 0.5000 0.9410 0.4474 0.9330 0.3721
0.25 0.5987 0.9833 0.5534 0.9810 0.4926
0.50 0.6915 0.9891 0.6145 0.9876 0.5619
0.75 0.7734 0.9928 0.6610 0.9918 0.6148
1.00 0.8413 0.9951 0.6995 0.9945 0.6586
1.25 0.8944 0.9967 0.7320 0.9962 0.6955
1.50 0.9332 0.9985 0.7605 0.9982 0.7279
1.75 0.9599 0.9991 0.7859 0.9989 0.7568
2.00 0.9772 0.9995 0.8085 0.9995 0.7824

6.2.2 Analysis
Our goal is scientifically appropriate EI (including, when appropriate, conclusions such as “we
don’t know anything”) even in the presence of (a) assumptions that are violated and (b) data
where most or all of the relevant individual-level information has been aggregated away. The
specific method we evaluate here has no adjustable parameters and works on all input data. It
begins with the easy-to-apply bounds of Proposition 2 based on a quadratic regression (leaving
the nonparametric regression approach in Proposition 1 to future work because it involves tuning
the smoothing parameter and is harder to derive the confidence intervals). Themethod then uses
CIx if B̂ l ≤ B̂u and DD covers part of CI0, and otherwise reverts to the DD bounds. (This simple
heuristic eliminates cases when the bounds flip, which can occur in practice when assumptions
are violated; see Supplementary Appendix B, Remark 2.)
Table 1 displays the e�ectiveness of our methodology for all datasets in our collection, given

di�ering confidence levels, Φ(x ) (in the second column). We observe (in the third column) that
our proposed bounds consistently capture the true value more o�en than the nominal coverage
intervals, meaning that our bounds are highly accurate but also conservative. For example, at the
96% confidence interval (second to last row), our bounds capture the truth 99.91% of the time
rather than 96%. The improvement relative to DD appears as the ratio of the length of our new
confidence interval to the length of the original DDboundwidth, as reported in the fourth column.
This number is always less than 1.0, o�en substantially so.
By inferring from thesedata,we recommend that, in practice, researchers useourboundswhile

setting x = 0.5 (see the third rowof numbers for CI0.5), which is a reasonable trade-o�between the
capture probability and thewidth ratio for the observed datasets. It captures the truth in 98.9%of
our 8,430 datasets and narrows the bounds by 38.5% relative to the 65-year-old DD bounds. We
also analyze 92 of the 8,430 datasets where the bounds do not capture the truth, by constructing
Figure 5. The figure gives a histogram of the size of the misses, the vast majority of which are very
small, almost all less than 0.05.
For completeness, we also repeat the calculation for columns 3 and 4 among only those

datasets where our method does not revert to DD bounds. These results appear in the final two
columns. Because our method reverts to the DD bounds in only 12% of our datasets, narrowing
the bounds in the remaining 88%, the last two columns do not di�er much from columns 3 and 4.
Finally, we summarize these results in Figure 6 by plotting the width of our proposed bounds

(horizontally) by the width of the DD bounds (vertically). Each dot is one of our 8,430 datasets.
The green dots on the diagonal represent the 12%of datasets for which ourmethod automatically
returned the DD bound. For all others, the bounds are narrower and thusmore informative, which
is reflected in the figure by being above the diagonal line. Among these, the few red dots are those
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Figure5.Histogram for how far away the trueB falls outsideof CI0.5 for the 92datasets (out of the total 8,430)
for which the bounds were applied, but the true district-level B value was not captured.

where the truth isnot capturedand themassofblackdots iswhere the truth is captured. The figure
reveals that our approach is able to improve the most over the DD bounds when the DD bounds
have widths farther from the 0 or 1 extremes of the unit interval.
Overall, the results of analyzing more than 8,000 datasets with known truth suggest that

our approach generates considerably more information than the bounds proposed by, and used
routinely in the literature since, Duncan and Davis (1953) with very little cost.

7 Concluding Remarks
We now discuss limitations (Section 7.1), comparisons with fully parametric identified models
(Section 7.2), and suggestions for future research (Section 7.3).

7.1 Limitations
Our work adds a single essential assumption, requiring contextual e�ects, if any, to be linear
(Assumption 1). This is far more general than the traditional approaches, which assume zero
contextual e�ects (or e�ects that have zero correlation with X ) and which are regularly falsified
by real datawith knowledge of the ground truth. Much of the problemwith Goodman’s regression
giving answers outside of the known DD bounds is precisely because of this implicit zero
contextual e�ect assumption that we generalize and thus avoid.
Yet, when Assumption 1 fails, the bounds produced by our method may not capture the truth.

The key questions in practice are how o�en such problems occur and how can one know about
such violations. Fortunately, we have found in Section 6.2 that violations bad enough to violate
our bounds are rare in our collection of datasets. However, in the di�icult field of EI, we must
constantly be aware that it is always theoretically possible to violate assumptions without any
signal in observable data. Consider the following example:

EXAMPLE 6. Suppose Xi ∼ Unif[0, 1] and N i is independent of Xi and β b,wi . Suppose we have
quadratic contextual e�ects β b

i
= T + b2(X 2

i − 1), βw = T + b2(X 2
i + Xi ), where to ensure
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Figure6.Widths of theproposedbounds relative to theDDbounds. Greenpoints represent datasets inwhich
thebounds reverted to thoseof theDDbounds, and redpoints indicate the92datasets (out of the total 8,430)
for which the bounds were applied, but the true district-level B value was not captured.

these are probabilities valued in [0, 1] for all possible X , we restrict T ∈ (0, 1) and b2 ∈
[max{−T /2,−(1 − T )},min{T , (1 − T )/2}]. ThenTi = β bi Xi + β

w
i
(1 − Xi ) = T . The observed

data (Xi ,Ti ) would be the same as our Example 1 earlier (Ti = T ). We have already found that
the large sample limit of our proposed bound is CI0 =T ± (1/3)min{T , 1−T }. The large sample
limit of true B is now E (N iXi β bi )/E (N iXi ) = T − b2/2. It is then possible that for large enough
b2, B < CI0 (e.g., when b2 = T = 1/3). The same holds in the large sample limit for CIx with any
x > 0 since the sampling variation that di�erentiates between CIx and CI0 disappears in the
large sample limit.

If all datasets were generated from this model (e.g., with b2 = T = 1/3), then the asymptotic
coverage probability of any CIx would be 0 and we would not be able to avoid such data
sets without knowledge of the ground truth. Fortunately, this kind of “nondetectable violation”
happens quite rarely, at least in our data. For example, the nondetectable violation in Example 6 is
caused by the quadratic e�ects in β b

i
and βw

i
canceling each other exactly by chance. In addition,

our interval estimates are robust in the sense that even a small amount of violation of the
assumptions do not matter. For example, the quadratic e�ect b2 does not have to be exactly 0 for
CI0 to capture B . This is in contrast to traditional point estimates and their confidence intervals,
which will miss the true parameter due to any bias when the sample size p is su�iciently large,
since the width of the confidence interval typically shrinks at the rate of 1/

√
p .

From the thousands of real datasets on which we evaluated the approach, we found that most
practically important violations can be easily detected if CI0 is empty (i.e., the regression bound
either flips or does not intersect with the DD bound at all). Supplementary Appendix B examines
this analytically for the limit of large p (see Remark 2). The logic there is to prove that if the
assumptions hold, then CI0 should not be empty. Therefore, if CI0 is found to be empty, then
something must be wrong about the assumptions.
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As shown in Section 6.2, in most cases in our real data, we have nonempty CI0. When applying
the CIx for x > 0 on the selected datasets with nonempty CI0, we found that our conservative
confidence interval CIx tends to capture the true district parameter B more o�en than the stated
level of confidenceΦ(x ), while tightening the DD bound. For example, CI0.5 has nominal coverage
probability about 70%, but it actually captures B more than 90% of the selected datasets (see
Table 1).
Although these datasets dramatically increase researchers’ ability to evaluate methods of EI

empirically, the data may not be representative of every dataset that researchers choose to
analyze in the future. The performance measures may thus di�er for di�erent collections of data
sets. In all likelihood, the width ratio may be less sensitive to new data than widths themselves,
and the capture probabilitymaybe less sensitive than the size of themisses or the probability that
the proposedmethod reverts to the DD bound. Although our data are not randomly selected from
the set of all possible datasets (which would not necessarily be useful anyway), these datasets
make it possible to move at least some decisions about which model is appropriate from a
theoretical or normative choice to amore sound empirical basis. Researchers should evaluate the
application of our methodology or any other to their own data based, in part, on how statistically
similar their datasets are to those in our collection.
For example, our method appears to be less useful for the 189 datasets in our collection with

X defined by gender. Although it is well-known that gender data are di�icult to handle for any EI
methods, it alsoposes challenges toour regressionapproach since it iswell-known that regression
coe�icients cannot be determined very well if the range ofX is small. This happens to be the case
for gender (havingXi ≈ 0.5 for almost all i ) for theobvious reason thatmenandwomen tend to live
together. Thenarrow range forX , which implies thatmost informationhasbeenaggregatedaway,
alsomakes it easy for quadratic regression ofT ,X to be distorted by outliers or influential points
since an outlier (say a precinct with a prison composed mostly of males with zero voters) would
be far from the mass of other data points and an unreliable basis on which to make inferences
about the rest of the data. Possibly for these reasons, our proposed bound for gender datasets
tends to revertmore o�en than for other data to the DDbound and, when not reverting, it tends to
either fail to tighten the DD boundmuch or miss the true parameter more o�en. We have studied
this problem but have not found a way to automatically identify problematic datasets, without
excluding too many false positives for which our proposed method works better. Our technical
report suggests a second heuristic, that is, to revert to the DD bound also if its width exceeds 0.7
(Jiang et al. 2018). The rationale is that this represents a dataset where there is intrinsic lack of
information, and theproposed regressionmethod shouldnotbeexpected towork reliably. Adding
this second heuristic indeed is successful in reducing the misses of the true parameters for the
189 datasets with gender variables: from about 8% (16/189) down to about 2% (3/189). However,
the percentage of all 8,430 datasets where the proposed method does not revert to the wider DD
bound also deteriorated (from about 88% to about 60%). We leave the study of EI in the context
of low information data to future study.
More generally, our datasets may have T ,X distributions di�erent from others. Future

researchersmaywish to derivemore general characterizations of what types of datasets are likely
to have accurate intervals with narrow widths. For now, we can suggest one preliminary result
about this important subject that works well with the data we have analyzed. For example, for
intervals derived fromProposition 2, if the relation betweenT andX is determined by a quadratic
regression fit t (x ) = w0 + c1x + d1x

2 that is linear (where d1 = 0) and if t (0), t (1) are both in range
(0, 1), then the large p limit for the width of the proposed interval D1 = (1 − χ )(1 − τ)/(1 − δ),
where τ = `t (0.5) − 0.5`/0.5, χ = ENX 2/ENX , and δ uses information about a symmetric range
[l ,u] = [δ, 1 − δ] ⊂ (0, 1) where we assume the contextual model in Proposition 2. This implies
that in order to have narrow proposed intervals for large p , we hope to have [l ,u] close to (0, 1),
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t (0.5) = E (T `X = 0.5) to be far away from 0.5, and make ENX 2/ENX large. The latter happens
when nonzero values of X tend to be close to 1 for all precincts with N > 0.
For more than half of our datasets, ET > 0.8, and this may be favorable for generating narrow

proposed intervals since ET is similar to the influential factor t (0.5). For datasets for which ET
tends to be closer to 0.5, the interval width could be too wide to be informative on B . However,
even in such cases, our intervals still tend to be comparatively shorter thanDD. It is also noted that
when the interval is wide, there is a reason for it to be so, since each location of the wide interval
could be the true value of B in a reasonable scenario. We argue it is better to expose this intrinsic
indeterminacy, rather than producing shorter intervals that are sensitive to further assumptions
and canmiss the truth badly when such assumption fails. Moreover, as noted above, the width of
the proposed interval depends on several factors. Even if ET is close to 0.5, it is still possible for
the interval to be narrow if the X distribution is favorable. For example, if most precincts have a
highproportionblackX , while a smaller number of other precincts are predominantlywhite, then
the width of the proposed interval can still be very narrow even if theT is located around 0.5.

7.2 Comparison with Identifiable Methods
An alternative approach is to assume nonlinear contextual e�ects such as E (β b

i
`Xi ) = 1/(1 +

e−b0−b1Xi ) andE (βw
i
`Xi ) = 1/(1+e−w0−w1Xi ). At first sight, this seems to avoid the nonidentifiability

problem in the model E (Ti `Xi ) = Xi /(1 + e−b0−b1Xi ) + (1 − Xi )/(1 + e−w0−w1Xi ). However,
the limitations of such an approach are well-known: “Unfortunately, assuming nonlinearity
theoretically removes the nonidentifiability but in practice is totally dependent on the form
chosen, and parameter estimateswill in general be highly unstable” (Wakefield 2004, Section 1.3).
In contrast, our approach is to directly confront the nonidentifiability problem by modeling

only the linear contextual e�ects. Our linearity assumptionmaybewrong, but a linear relationship
between two bounded variables is normally a reasonably good first approximation. Not always,
of course, but at least readers will always fully understand the assumption. This seems to be
preferable to point estimation based on a fully parametric approach withmodel dependence and
instability hidden in di�icult-to-detect ways.
A similar comment can bemade in comparison to anymethod that is made identifiable only in

a way that is sensitive to some assumption. For example, in the “extended” model of King (1997),
linear contextual e�ects (usually with di�use priors) are placed on the untruncated means of the
underlying truncated bivariate normal (TBVN) distribution of the precinct quantities of interest.
This model is identifiable due to the truncated normal distributional assumption on the precinct
quantities and has the advantage over our approach of providing sharp point estimates and
precinct-level estimates. In contrast, our proposed approachmakes no distributional assumption
and, at the cost of only providing bounds and no precinct-level estimates, should be relatively
robust. We are also able to o�er explicit formulas that reveal the scope of the indeterminacy that
remains regardless ofwhether theprecinct quantities truly followa truncatednormaldistribution.
The proposedmethod is also computationallymuch faster than the extended TBVNmodel, which
is based on a fully Bayesian model with approximation via Monte Carlo simulation.
In general, for any identifiable model sensitive to the modeling or prior distribution

assumptions, the resulting credible interval or confidence interval will be narrower (by an order
1/
√
p) than ours (of order 1). This means that if the assumptions that lead to identifiability of the

full model are correct, it will capture the true parametermore precisely. However, thismodelmay
have poorer coverage properties andmay not capture the truthwhen the assumptions arewrong.
We also note that our approach may provide some useful insight for improving models that

are identifiable. For example, in our experiments with the TBVNmodel, our heuristic for selecting
datasets also seems tohelp improve the successof theTBVNcredible intervals tooandseems tobe
a general indicator of information in individual behavior being destroyed during the aggregation
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process. Dilating the credible intervals by the estimate plus or minus an order-
√
p multiplier of

the standard error can greatly improve the coverage probability. This could help any confidence
interval or credible interval that haswidthof order1/

√
p to battle intrinsic indeterminacy since the

large multiplier e�ectively dilates the interval to be order 1 and can become more robust against
violation of the assumptions. Another approach that fits under our conceptual framework would
be to add a constant o�set such as ±0.1 to all the district estimates of Goodman’s regression that
fall inside the DD bounds, and to use their intersections, which o�en works well too.

7.3 Suggestions for Future Research
When data have influential observations or seem to belong to several di�erent clusters, we found
that a divide and conquer strategy may be helpful. One could divide the data into several parts
and apply either the proposed bound or the DD bound to each part, depending on the observed
pattern in the particular part. The proposed bound could be applied to any part of the data that
displays a common pattern (e.g., those of linear or quadratic regression). For parts of the data
that are outliers or that otherwise lack a clear pattern for linear or quadratic regression, one could
apply the DD bound. The bounds would then be combined by weighting the number of relevant
people in eachpart of thedata toobtain a singlebound. In initial experimentsof suchanapproach,
we segmented the data visually and found that this strategy can sometimes rectify the misses or
nonselection of the current method. We leave automating the process of segmentation to future
work.
We have thus far only considered one variable Xi for the contextual e�ect. One may also

consider adding other covariates to the contextual e�ect models, modeling both β b
i
and βw

i
.

We also only focus on inference for the district-level parameter; it would be important to
obtain useful bounds for the precinct-level parameters β b

i
and βw

i
(that would parallel the

precinct-level estimates in King (1997)), probably by modeling the distribution of the residuals
(β b
i
− E (β b

i
`Xi )), (βwi , E (β

w
i
`Xi )), or at least the second moments such as v ar ((β bi , β

w
i
)T `Xi ). (The

residuals average out in the district-level estimates, so we could still get useful bounds for the
district-level parameter in the current paper, even without modeling the residuals.) Finally, it
would be useful to extend the ideas in this paper to the case ofmore generalR ×C tables (perhaps
generalizing Cho and Manski 2008).

Supplementarymaterial
For supplementary material accompanying this paper, please visit
https://doi.org/10.1017/pan.2019.19.
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