
604 ecological inference 

resources. Journal of Environmental Economics and 
Management 44, 189-230. 

Brock, W. and Xepapadeas, A. 2003. Valuing biodiversity 
from an economic perspective: a unified economic, 
ecological and genetic approach. American Economic 
Review 93, 1597-614. 

Clark, C. 1990. Mathematical Bioeconomics: The Optimal 
Management Of Renewable Resources. 2nd edn. New 
York: Wiley. 

Dieckmann, U. and Law, R. 1996. The dynamical theory 
of coevolution: a derivation from stochastic ecological 
processes. Journal of Mathematical Biology 34, 
579-612. 

Kawecki, T. 1998. Red Queen meets Santa Rosalia: arms 
races and the evolution of host specialization in 
organisms with parasitic lifestyles. American Naturalist 
152( 4), 635-51. 

Krakauer, D. and Jansen, V. 2002. Red Queen dynamics in 
protein translation. Journal of Theoretical Biology 218, 
97-109. 

Heal, G. 2000. Nature and the Marketplace: Capturing the 
Value of Ecosystem Services. Washington, DC: Island 
Press. 

Levin, S. 1974. Dispersion and population interactions. 
American Naturalist 108, 207-28. 

Millennium Ecosystem Assessment. 2005. Ecosystems and 
Human Well-being. Volume 3: Policy Responses. 
Washington, DC: Island Press. 

Murray, J. 2003. Mathematical Biology, 3rd edn. Berlin, 
Springer. 

Okubo, A. 2001. Introduction: the mathematics of ecological 
diffusion. In Diffusion and Ecological Problems: Modern 
Perspectives, 2nd edn., ed. A. Okubo and S. Levin. Berlin: 
Springer. 

Okubo, A. and Levin, S. 2001. The basics of diffusion. 
In Diffusion and Ecological Problems: Modern Perspectives, 
2nd edn., ed. A. Okubo and S. Levin. Berlin: 
Springer. 

Roughgarden, J., May, R. and Levin, S. 1989. Perspectives in 
Ecological Theory. Princeton, NJ: Princeton University 
Press. 

Tilman, D. 1982. Resource Competition and Community 
Structure. Princeton, NJ: Princeton University Press. 

Tilman, D. 1988. Plant Strategies and the Dynamics and 
Structure of Plant Communities. Princeton, NJ: Princeton 
University Press. 

Tilman, D., Polasky, S. and Lehman, C. 2005. Diversity, 
productivity and temporal stability in the economies of 
humans and nature. Journal of Environmental Economics 
and Management 49, 405-26. 

Tschirhart, J. 2000. General equilibrium of an ecosystem. 
Journal of Theoretical Biology 203, 13-32. 

Turing, A. 1952. The chemical basis of morphogenesis. 
Philosophical Transactions of the Royal Society of London. 
Series B: Biological Sciences 237(641), 37-72. 

Van Valen, L. 1973. A new evolutionary law. Evolutionary 
Theory 1, 1-30. 

ecological inference 

1 The ecological inference problem 
For expository purposes, we discuss only an important but 
simple special case of ecological inference, and adopt the 
running example and notation from King (1997: ch. 2). 
The basic problem has two observed variables (T; and X;) 
and two unobserved quantities of interest ({3r and {37) for 
each of p observations. Observations represent aggregate 
units, such as geographic areas, and each individual-level 
variable within these units is dichotomous. 

To be more specific, in Figure 1 we observe for each 
electoral precinct i(i = 1, ... ,p) the fraction of voting 
age people who turnout to vote ( T;) and who are black 
(X;), along with the number of voting age people (N;). 
The quantities of interest, which remain unobserved 
because of the secret ballot, are the proportions of blacks 
who vote (f3r) and whites who vote ({37). The propor­
tions {3r and /37 are not observed because T; and X; are 
from different data sources (electoral results and census 
data, respectively) and record linkage is impossible (and 
illegal), and so the cross-tabulation cannot be computed. 

Also of interest are the district-wide fractions of blacks 
and whites who vote, which are respectively 
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These are weighted averages of the corresponding 
precinct-level quantities. Some methods aim to estimate 
only Bb and Bw without giving estimates of f3r and f37 for 
all i. 
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Figure 1 Notation for Precinct i. Note: The goal is to estimate 
the quantities of interest, /3~ (the fraction of blacks who vote) and 
/37 (the fraction of whites who vote), from the aggregate vari­
ables X; (the fraction of voting age people who are black) and T; 
(the fraction of people who vote), along with N; (the known 
number of voting age people). 
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2 Deterministic and statistical approaches 
The ecological inference literature before King ( 1997) was 
bifurcated between supporters of the method of bounds, 
originally proposed by Duncan and Davis (1953), and 
supporters of statistical approaches, proposed even 
before Ogburn and Goltra (1919) but first formalized 
into a coherent statistical model by Goodman (1953; 
1959). (For the historians of science among us: although 
these two monumental articles were written by two col­
leagues and friends in the same year and in the same 
department and university- the Department of Sociol­
ogy at the University of Chicago - the principal did not 
discuss their work prior to completion. Even by today's 
standards, nearly a half century after their publication, 
the articles are models of clarity and creativity.) Although 
Goodman and Duncan and Davis moved on to other 
interests following their seminal contributions, most of 
the ecological inference literature in the five decades 
since 1953 was an ongoing war between supporters of 
these two key approaches, and often without the usual 
academic decorum. 

2.1 Extracting deterministic information: the method of 
bounds 
The purpose of the method of bounds and its general­
izations is to extract deterministic information, known 
with certainty, about the quantities of interest. 

The intuition behind these quantities is simple. For 
example, if a precinct contained 150 African-Americans 
and 87 people in the precinct voted, then how many of 
the 150 African-American actually cast their ballot? We 
do not know exactly, but bounds on the answer are easy 
to obtain: in this case, the answer must lie between 0 and 
87. Indeed, conditional only on the data being correct, 
[0,87] is a 100 per cent confidence interval. Intervals like 
this are sometimes narrow enough to draw meaningful 
inferences, and sometimes they are too wide, but the 
ability to provide (non-trivial) 100 per cent confidence 
intervals in even some situations is quite rare in any sta­
tistical field. 

In general, before any data are seen, the unknown 
parameters Pf and /17 are each bounded on the unit 
interval. Once we observe T; and X; they are bounded 
more narrowly, as: 

a~ E [max(o T;-(l-X;)) min(L 1)] 
Pt ' X; ' X;' 

P7 E [max(o,~c£;), min(iY.,I)J. 

(3) 

Deterministic bounds on the district-level quantities Bb 
and Bw are weighted averages of these precinct-level 
bounds. 

The bounds then indicate that the parameters in each 
case fall within these deterministic bounds with certainty, 
and in practice they are almost always narrower than 
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[0,1]. Whether they are narrow enough in any one 
application depends on the nature of the data. 

2.2 Extracting statistical information: Goodman's 
regression 
Leo Goodman's (1953; 1959) approach is very different 
from, but just as important as, Duncan and Davis's. He 
looked at the same data and focused on the statistiCal 
information. His approach examines variation in the 
marginals (X; and T;) over the precincts to attempt to 
reason back to the district-wide fractions of blacks and 
whites who vote, Bb and Bw. The outlines of this approach 
and the problems with it have been known at least since 
Ogburn and Goltra (1919). For example, if in precincts 
with large proportions of black citizens we observe that 
many people do not vote, then it may seem reasonable 
to infer that blacks tum out at lower rates than whites. 
Indeed, it often is reasonable, but not always. The prob­
lem is that it could instead be the case that the whites 
who happen to live in heavily black precincts are the ones 
who vote less frequently, yielding the opposite ecological 
inference to the individual-level truth. 

What Goodman accomplished was to formalize the 
logic of the approach in a simple regression model, and 
to give the conditions under which estimates from such 
a model are unbiased. To see this, note first that the 
accounting identity 

T; = X;{Jf + (1 - X;)/17 (4) 

holds exactly. Then he showed that a regression of T; 
on X; and (1- X;) with no constant term could be 
used to estimate Bb and Bw, respectively. The key assump­
tion necessary for unbiasedness that Goodman identified 
is that the parameters and X; be uncorrelated: 
Cov({Jf,X;) = Cov({Jf,X;) = 0. In the example, the 
assumption is that blacks vote in the same proportions 
in homogeneously black areas as in more integrated 
areas. Obviously, this is true sometimes and it is false 
other times. (King, 1997: ch. 3, showed that Goodman's 
assumption was necessary but not sufficient. To have 
unbiasedness, it must also be true that the parameters 
and N; are uncorrelated.) 

As Goodman recognized, when this key assumption 
does not hold, estimates from the model will be biased. 
Indeed, they can be very b~ased, outside the deterministic 
bounds, and even outside the unit interval. This tech­
nique has been used extensively since the 1950s, and 
impossible estimates occur with considerable frequency 
(some estimates range to a majority of real applications; 
Achen and Shively, 1995). 

3 Extracting both deterministic and statistical 
information: King's EI approach 
From 1953 until 1997, the only two approaches used 
widely in practice were the method of bounds and 
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Goodman's regression. King's (1997) idea was that the 
insights from these two conflicting literatures in fact do 
not conflict with each other; the sources of information 
are largely distinct and can be combined to improve 
inference overall and synergistically. The idea is to com­
bine the information from the bounds, applied to both 
quantities of interest for each and every precinct, with a 
statistical approach for extracting information within the 
bounds. The amount of information in the bounds 
depends on the data-set, but for many data-sets it can 
be considerable. For example, if precincts are spread uni­
formly over a scatterplot of X; by T;, the average bounds 
on [Jf and /37 are narrowed from [0,1] to less than half of 
that range - hence eliminating half of the ecological infer­
ence problem with certainty. This additional information 
also helps make the statistical portion of the model far less 
sensitive to assumptions than previous statistical methods 
which exclude the information from the bounds. 

To illustrate these points, we first present all the infor­
mation available without making any assumptions, thus 
extending the bounds approach as far as possible. As a 
starting point, the left graph in Figure 2 provides a scat­
terplot of a sample data set as observed, X; horizontally 
by T; vertically. Each point in this figure corresponds to 
one precinct, for which we would like to estimate the two 
unknowns. We display the unknowns in the right graph 
of the same figure; any point in the right graph portrays 
values of the two unknowns, [Jf which is plotted hori­
zontally, and /37 which is plotted vertically. Ecological 
inference involves locating, for each precinct, the one 
point in this unit square corresponding to the true values 
of f3f and f3i, since values outside the square are logically 
impossible. 

To map the knowns onto the unknowns, King begins 
Goodman's accounting identity from eq. (4). From this 
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equation, which holds exactly, King solves for one 
unknown in terms of the other: 

w ( T; ) ( X; ) b /3; = 1 -X; - 1 -X; /3;' (5) 

which shows that /37 is a linear function of [Jf, where the 
intercept and slope are known (since they are functions 
of the data, X; and T;). 

King then maps the knowns from the left graph onto 
the right graph by using the linear relationship in eq. (5). 
A key point is that each dot on the left graph can be 
expressed, without assumptions or loss of information, as 
what King called a 'tomography' line within the unit 
square in the right graph. It is precisely the information 
lost due to aggregation that causes us to have to plot an 
entire line (on which the true point must fall) rather than 
the goal of one point for each precinct on the right graph. 
In fact, the information lost is equivalent to having a 
graph of the [Jf by /37 points but having the ink smear, 
making the points into lines and partly but not entirely 
obscuring the correct positions of the ([Jf , [37) points. 
(King also showed that the ecological inference problem 
is mathematically equivalent to the ill-posed 'tomo­
graphy' problem of many medical imaging procedures, 
such as CAT and PET scans, where one attempts to 
reconstruct the inside of an object by passing X-rays 
through it and gathering information only from the out­
side. Because the line sketched out by an X-ray is closely 
analogous to eq. (5), King labels the latter a tomography 
line and the corresponding graph a tomography 
graph.) 

What does a tomography line tell us? Before we 
know anything, we know that the true ([Jf , [37) point 
must lie somewhere within the unit square. After X; and 
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Figure 2 Two views of the same data. Note: The left graph is a scatterplot of the observables, X; by T;. The right graph displays this 
same information as a tomography plot of the quantities of interest, Pr by {J~. Each precinct i that appears as a point in the left graph is 
a line (rather than a point because of information lost due to aggregation) in the right graph. For example, precinct 52 appears as the 
dot with a little square around it in the left graph and the dark line in the right graph. Source: The data are from King (1997: Figures 5.1 
and 5.5). 



T; are observed for a precinct, we also know that the 
true point must fall on a specific line represented by 
eq. (5) and appearing in the tomography plot in Figure 2. 
In many cases narrowing the region to be searched for the 
true point from the entire square to the one line in 
the square can provide a significant amount of informa­
tion. To see this, consider the point enclosed in a box in 
the left graph, and the corresponding dark line in the 
right graph. This precinct, number 52, has observed 
values of X52 = 0.88 and T52 = 0.19. As a result, sub­
stituting into eq. (5) gives P7 = 1.58- 7.33{Jf, which 
when plotted appears as the dark line on the right 
graph. This particular line tells us that, in our search for 
the true {3~2 ,{3~2 point on the right graph, we can elim­
inate with certainty all area in the unit square except that 
on the line, which is clearly an advance over not 
having the data. Translated into the quantities of inter­
est, this line tells us (by projecting the line downward to 
the horizontal axis) that, wherever the true point falls on 
the line, {3~2 must fall in the relatively narrow bounds of 
[0.07,0.21]. Unfortunately, in this case, P7 can only be 
bounded (by projecting to the left) to somewhere 
within the entire unit interval. More generally, lines that 
are relatively steep, like this one, tell us a great deal 
about Pf and little about P7- Tomography lines that are 
relatively flat give narrow bounds on pw and wide bounds 

ab · h ' . on f'; . Lmes t at cut off the bottom left (or top nght) of 
the figure give narrow bounds on both quantities of 
interest. 

If the only information available to learn about the 
unknowns in precinct i is X; and T;, a tomography line 
like that in Figure 2 exhausts all this available informa­
tion. This line immediately tells us the known bounds on 
each of the parameters, along with the precise relation­
ship between the two unknowns, but it is not sufficient to 
narrow in on the right answer any further. Fortunately, 
additional information exists in the other observations in 
the same data set (Xi and Ti for all i #- j) which, under the 
right assumptions, can be used to learn more about Pf 
and P7 in our precinct of interest. 

In order to borrow statistical strength from all the 
precincts to learn about Pf and P7 in precinct i, some 
assumptions are necessary. The simplest version of King's 
model (that is, the one most useful for expository pur­
poses) requires three assumptions, each of which can be 
relaxed in different ways. 

First, the set of (Pf, {37) points must fall in a single 
cluster within the unit square. The cluster can fall any­
where within the square; it can be widely or narrowly 
dispersed or highly variable in one unknown and narrow 
in the other; and the two unknowns can be positively, 
negatively, or not at all correlated over i. An example that 
would violate this assumption would be two or more 
distinct clusters of (Pf, {37) points, as might result from 
subsets of observations with fundamentally different data 
generation processes (such as from markedly different 
regions). The specific mathematical version of this 
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one-cluster assumption is that Pf and P7 follow a 
truncated bivariate normal density 

TN(ab awl~ t) = N(ab awl~ t) l({Jf,{J7) 
Pt 'Pt ' Pt' Pt , v v , 

R(!B, 1:) 
(6) 

where the kernel is the untruncated bivariate normal, 

N({Jf,P7!~,t) = (2n)-1ltl-1/ 2 

x exp[-~(J3;- ~)'t-\p;- ~)J. (7) 

and 1 (Pf, {37) is an indicator function that equals 1 if 
Pf E [0, 1] and P7 E [0, 1] and zero otherwise. The nor­
malization factor in the denominator, R(~, t), is the 
volume under the untruncated normal distribution 
above the unit square: 

R(~,t) = 1111 N({Jb,pwl~,t)d{Jbdpw 
(8) 

When divided into the untruncated normal, this factor 
keeps the volume under the truncated distribution equal 
to 1. The parameters of the truncated density, which we 
summarize as 

v vb VW v v 

t/t = {!B , !B , O'b, O'w, p} = {!!3, 1:}, (9) 

are on the scale of the untruncated normal (and so, for 
v b v w 

example, !B and !B need not be constrained to the unit 
interval even though Pf and P7 are constrained by this 
density). 

The second assumption, which is necessary to form 
the likelihood function, is the absence of spatial auto­
correlation: conditional on X;, T; and Tj are mean inde­
pendent. Violations of this assumption in empirically 
reasonable (and even some unreasonable) ways do not 
seem to induce much if any bias. 

The final, and by far the most critical, assumption is that 
X; is independent of Pf and P7- The three assumptions 
together produce what has come to be known as King's 
'basic' EI model. (The use of EI to name this method comes 
from the name of his software, available at http://GKing. 
Harvard.edu.) King also generalizes this assumption, in 
what has come to be known as the 'extended' EI model, 
by allowing the truncated normal parameters to vary as 
functions of measured covariates, Zf and Z7, giving: 

v b b 
!B; = [¢1 (u~ + o.2s) + o.s] + (Zf- z )r:i 
~~ = [¢2 (0'~ + 0.25) + o.s] + (Z7- .zw)IXw 

(10) 

where IXb and IXw are parameter vectors to be estimated 
along with the original model parameters and that have 
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as many elements as Zf and Zi' have columns. This 
relaxes the mean independence assumptions to: 

E(PfiX;,Z;) = E(PfiZ;) 
E(P71X;,Z;) = E(P7jZ;). 

Note that this extended model also relaxes the assump­
tions of truncated bivariate normality, since there is now 
a separate density being assumed for each observation. 
Because the bounds, which differ in width and 
information content for each i, generally provide sub­
stantial information, even X; can be used as a covariate in 
Z;. (The recommended default setting in EI includes X; as 
a covariate with a prior on its coefficient.) In contrast, 
under Goodman's regression, which does not include 
information in the bounds, including X; leads to an uni­
dentified model (King, 1997: sec. 3.2). 

These three assumptions - one cluster, no spatial 
autocorrelation, and mean independence between the 
regressor and the unknowns conditional on X; and 
Z; - enable one to compute a posterior (or sampling) 
distribution of the two unknowns in each precinct. A 
fundamentally important component of EI is that the 
quantities of interest are not the parameters of the like­
lihood but instead come from conditioning on T; and 
producing a posterior for Pf and P7 in each precinct. 
Failing to condition on T; and examining the parameters 
of the truncated bivariate normal only makes sense if the 
model holds exactly and so is much more model-depend­
ent than King's approach. Since the most important 
problem in ecological inference modelling is precisely 
model misspecification, failing to condition on T assumes 
away the problem without justification. This point is 
widely regarded as a critical step in applying the EI model 
(Adolph and King, with Herron and Shotts, 2003). 

When bounds are narrow, EI model assumptions 
do not matter much. But, for precincts with wide bounds 
on a quantity of interest, inferences can become model 
dependent. This is especially the case with ecological 
inference problems precisely because of the loss of infor­
mation due to aggregation. In fact, this loss of informa­
tion can be expressed by noting that the joint 
distribution of Pf and P7 cannot be fully identified from 
the data without some untestable assumptions. To be 
precise, distributions with positive mass over any curve 
or combination of curves that connects the bottom left 
point (Pf = 0, P7 = 0) to the top right point (Pf = 1, 
P7 = 1) of a tomography plot cannot be rejected by the 
data (King, 1997: 191). Other features of the distribution 
are estimable. This fundamental indeterminacy is, of 
course, a problem because it prevents pinning down the 
quantities of interest with certainty, but it can also 
be something of an opportunity since different distribu­
tional assumptions can lead to the same estimates, 
especially since only those pieces of the distributions 
above the tomography lines are used in the final analysis. 

4 Alternative approaches to ecological inference 
In the continuing search for more information to bring 
to bear on ecological inferences, King, Rosen and Tanner 
(1999) extend King's (1997) model another step. They 
incorporate King's main advance of combining deter­
ministic and statistical information but begin modelling 
a step earlier at the individuals who make up the counts. 
They also build a hierarchical Bayesian model, using eas­
ily generalizable Markov chain Monte Carlo (MCMC) 
technology (Tanner, 1996). 

To define the model formally, let r; denote the number 
of voting age people who turn out to vote. At the top 
level of the hierarchy they assume that r; follows a 
binomial distribution with probability equal to e; = 
X;Pf + (1 - X;)P7 and count N;. Note that at this level it 
is assumed that the expectation of r;, rather than r:, is 
equal to X;Pf + (1- X;)P7· In other words, King (1997) 
models T; as a continuous proportion, whereas King, 
Rosen, and Tanner (1999) recognize the inherently dis­
crete nature of the counts of voters that go into com­
puting this proportion. The two models are connected, of 
course, since T;IN; approaches T; as N; gets large. 

The connection to King's tomography line can be seen 
in the contribution of the data from precinct i to the 
likelihood, which is 

(X;pf + (1-X;)pi)T;(l-X;pf- (1-X;)pi)(N;-T;J. 
(11) 

By taking the logarithm of this contribution to the 
likelihood and differentiating with respect to Pf and Pi, 
King, Rosen and Tanner show that the maximum of 
( 11) is not a unique point, but rather a line whose 
equation is given by the tomography line in eq. (5). 
Thus, the log-likelihood for precinct i looks like two 
playing cards leaning against each other. As long as T; is 
fixed and bounded away from 0.5 (and X; is a fixed 
known value between 0 and 1), the derivative at this 
point is seen to increase with N;, that is, the pitch of 
the playing cards increases with the sample size. In other 
words, for large N;, the log-likelihood for precinct i 
degenerates from a surface defined over the unit square 
into a single playing card standing perpendicular to 
the unit square and oriented along the corresponding 
tomography line. 

At the second level of the hierarchical model, Pf is 
distributed as a beta density with parameters cb and db 
and /37 follows an independent beta with parameters Cw 
and d..,. While Pf and /37 are assumed a priori independ­
ent, they are a posteriori dependent. At the third and final 
level of the hierarchical model, the unknown parameters 
Cm db, Cw and dw follow an exponential distribution with a 
large mean. 

A key advantage of this model is that it generalizes 
immediately to arbitrarily large R x C tables. This 
approach was pursued by Rosen et al. (2001), who also 



provided a much faster method of moment-based 
estimator. For an application, see King et al. (2003). 

Wakefield (2004) presents an alternative approach 
based on the Bayesian paradigm using a Markov chain 
Monte Carlo inference scheme. King, Rosen and Tanner 
(2004) survey the latest strategies for solving ecological 
inference problems in various fields, many of which do 
not fit the textbook case of a 2 x 2 table with known 
marginals and unknown cell entries. Staniswalis (2005) 
proposes a nonparametric model for ecological inference 
with an application to renal failure data. 

GARY KING, ORI ROSEN AND MARTIN TANNER 
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econometrics 

1 What is econometrics? 
Broadly speaking, econometrics aims to give empirical 
content to economic relations for testing economic 
theories, forecasting, decision making, and for ex post 
decision/policy evaluation. The term 'econometrics' 
appears to have been first used by Pawel Ciampa as 
early as 1910, although it is Ragnar Frisch who takes the 
credit for coining the term, and for establishing it as a 
subject in the sense in which it is known today (see 
Frisch, 1936, p. 95, and Bjerkholt, 1995). By emphasizing 
the quantitative aspects of economic relationships, 
econometrics calls for a 'unification' of measurement 
and theory in economics. Theory without measurement 
can have only limited relevance for the analysis of 
actual economic problems; while measurement without 
theory, being devoid of a framework necessary for the 
interpretation of the statistical observations, is unlikely to 
result in a satisfactory explanation of the way economic 
forces interact with each other. Neither 'theory' nor 
'measurement' on its own is sufficient to further our 
understanding of economic phenomena. 

As a unified discipline, econometrics is still relatively 
young and has been transforming and expanding very 
rapidly since an earlier version of this article was 
published in the first edition of The New Palgrave: A 
Dictionary of Economics in 1987 (Pesaran, 1987a). Major 
advances have taken place in the analysis of cross­
sectional data by means of semiparametric and 
nonparametric techniques. Heterogeneity of economic 
relations across individuals, firms and industries is 
increasingly acknowledged, and attempts have been made 
to take them into account either by integrating out their 
effects or by modelling the sources of heterogeneity when 
suitable panel data exists. The counterfactual considera­
tions that underlie policy analysis and treatment evaluation 
have been given a more satisfactory foundation. New time 
series econometric techniques have been developed and 
employed extensively in the areas of macroeconometrics 
and finance. Nonlinear econometric techniques are used 
increasingly in the analysis of cross-section and time-series 
observations. Applications of Bayesian techniques to 
econometric problems have been given new impetus 
largely thanks to advances in computer power and com­
putational techniques. The use of Bayesian techniques has 
in turn provided the investigators with a unifying frame­
work where the tasks of forecasting, decision making, 
model evaluation and learning can be considered as 
parts of the same interactive and iterative process; 
thus paving the way for establishing the foundation of 
'real time econometrics'. See Pesaran and Timmermann 
(2005a). 

This article attempts to provide an overview of some of 
these developments. But to give an idea of the extent to 
which econometrics has been transformed over the past 


