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e Data:

e easy to come by; often a free byproduct of IT improvements
e becoming commoditized

e Ignore it & every institution will have more every year

e With a bit of effort: huge data production increases

e Where the Value is: the Analytics

Output can be highly customized

Moore's Law (doubling speed/power every 18 months)

v. Our Students (1000x speed increase in 1 day)

$2M computer v. 2 hours of algorithm design

Low cost; little infrastructure; mostly human capital needed
Innovative analytics: enormously better than off-the-shelf
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In each: without new analytics, the data are useless
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e Qualitative researchers: overwhelmed by information; need
help

e Quantitative researchers: recognize the huge amounts of
information in qualitative analyses, starting to analyze
unstructured text, video, audio as data

e Expert-vs-analytics contests: Whenever enough information is
quantified, a right answer exists, and good analytics are
applied: analytics wins

e Moral of the story:

Fully human is inadequate

Fully automated fails

We need computer assisted, human controlled technology
(Technically correct, & politically much easier)
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e Sentiment analysis via word counts
e Different problems, Same Analytics Solution:
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Successful: single largest government program; lifted a whole

The Solvency of Social Security

generation out of poverty; extremely popular

Solvency: depends on mortality forecasts: If retirees receive
benefits longer than expected, the Trust Fund runs out

SSA data: little change other than updates for 75 years
SSA analytics:

Few statistical improvements for 75 years

Ignores risk factors (smoking, obesity)

Mostly informal (subject to error & political influence)
Forecasts: All systematically biased since 2000

New customized analytics we developed:

Logical consistency (e.g., older people have higher mortality)
More accurate forecasts

~» Trust fund needs ~ $800 billion more than SSA thought
Other applications to insurance industry, public health, etc.
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Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph
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E EE] “Freedom” \(3‘““”3
H H “Eye field” (nonsensical)
Example Substitution 2: Homophone (sound like “hexie”)

N o \%ﬁ?ﬁ.ﬁ\
R “Harmonious [Society]” (official slogan) '© B>
IRy “River crab” (irrelevant)

They can't follow the conversation; Our methods can!

The same task: (1) Government and industry analyst’s job, (2)
language drift (#BostonBombings ~~ #BostonStrong), (3) Child
pornographers, (4) Look-alike modeling,(5) Starting point for
sophisticated automated text analysis
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Computer-Assisted Reading (Consilience)

To understand many documents, humans create categories to

represent conceptualization, insight, etc.

Most firms: impose fixed categorizations to tally customer
complaints, sort reports, retrieve information
Bad Analytics:

Unassisted Human Categorization: time consuming; huge
efforts trying not to innovate!

Fully Automated “Cluster Analysis”: Many widely available,
but none work (computers don't know what you want!)

Our alternative: Computer-assisted Categorization

You decide what's important, but with help

Invert effort: you innovate; the computer categorizes
Insights: easier, faster, better

(Lots of technology, but it's behind the scenes)
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e Data: 64,000 Senators’ press releases
o Categorization: (1) advertising, (2) position taking, (3) credit
claiming
e New Insight: partisan taunting
e Joe Wilson during Obama'’s State of the Union: “You lie!”

e “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks' "

e How common is it? 27% of all Senatorial press releases!
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How did we come to study Chinese Censorship?

e We were working on methods of automated text analysis

e How to stress test the methods? Do they work in Chinese?
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e We had the content of millions of censored Chinese posts!
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Censorship is not Ambiguous: Example Error Page

The page you
requested is temporarily
down. How about you
go look at another
page.

HiARMWMATETRT F TR
*A AR a2

Jingjing. one of China's
cartoon internet police

EEHT

XFRI| TABE| BPES | AR | BERE | LSRR | ARHMN RYSE

[= Online. Al ight 0,
[FHICP i U A i
RRIRAA e B IR AR B4 A SORSES: B00-8930160 FiiE: 00914667780  f43(: (0991)4682953
B F{EA: edit@mailxoninfonet XAHEBMBRIEEFTIE £ XUX(2010)054 o

SR (RS S EVETIIAL B1.B2-20090001 M A EI080626 L E T H BIIEEE A ATIIAS: (FIFH051S

12/23



Chinese Censorship

13/23



Chinese Censorship

e The largest selective suppression of human expression in
history

13/23



Chinese Censorship

e The largest selective suppression of human expression in
history

e implemented manually (within a few hours of posting),

13/23



Chinese Censorship

e The largest selective suppression of human expression in
history

e implemented manually (within a few hours of posting),
e by = 200,000 workers,

13/23



Chinese Censorship

e The largest selective suppression of human expression in
history

e implemented manually (within a few hours of posting),
e by = 200,000 workers,
e located in government and inside social media firms

13/23



Chinese Censorship

e The largest selective suppression of human expression in
history

e implemented manually (within a few hours of posting),
e by = 200,000 workers,
e located in government and inside social media firms

e A huge censorship organization:

13/23



Chinese Censorship

e The largest selective suppression of human expression in
history

e implemented manually (within a few hours of posting),
e by = 200,000 workers,
e located in government and inside social media firms

e A huge censorship organization:
o (obviously) designed to suppress information

13/23



Chinese Censorship

e The largest selective suppression of human expression in
history

e implemented manually (within a few hours of posting),
e by = 200,000 workers,
e located in government and inside social media firms

e A huge censorship organization:

o (obviously) designed to suppress information
e (paradoxically) very revealing about the goals, intentions, and
actions of the Chinese leadership
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e Everyone knows the Goal:
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its leaders, and their policies
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e What Could be the Goal?
1. Step-eriticismof-thestate Wrong
2. Stop collective action Right
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e Implications: Social Media is Actionable!
e Chinese leaders:

e measure criticism: to judge local officials
® censor: to stop events with collective action potential
e Thus, we can use criticism & censorship to predict:
e Officials in trouble, likely to be replaced
e Policies that generate dissent
e Dissidents to be arrested; peace treaties to sign; emerging
scandals
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What Types of Events Are Censored?
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Censoring Collective Action: Ai Weiwei's Arrest
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Censoring Collective Action: Riots in Zencheng
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Censoring Collective Action: Environmental Lottery Rally
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Low Censorship on Policy: One Child
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Low Censorship on News: Power Prices
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e |ts cheap and powerful; don't skimp!
o Off-the-shelf analytics ~~ big advances
e |nnovative analytics ~> immensely better than off-the-shelf
e (Much harder to hire for innovative analytics;
so consider a mix of in house hires and outside experts)
e Save it for first!
e The goal is “inference”:
using facts you know to learn about facts you don't know
e The uncertainties in inference: not having the facts you need
(most statistics are designed solely to overcome data problems)
e Building analytics during design:
e avoids problems before they occur
e saves a fortune,
® opens many more possibilities
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