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The Emergence of Quantitative Social Science

The Last 50 Years:

Survey research

Aggregate government statistics

In depth studies of individual places, people, or events

The Next 50 Years: Spectacular increases in new data sources, due to. . .

Much more of the above — improved, expanded, and applied

Shrinking computers & the growing Internet: data everywhere

Popular versions: MoneyBall, SuperCrunchers, The Numerati,

The replication movement: academic data sharing (e.g., Dataverse)

Governments encouraging data collection & experimentation

Advances in statistical methods, informatics, & software

Impact:

changed most Fortune 500 firms; established new industries;
altered friendship networks, human expressive capacity, political
campaigns, public health, legal analysis, policing, economics, sports, and
public policy
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Examples of what’s now possible with QSS

Opinions of activists:

A few thousand interviews  billions of
political opinions in social media posts (1B every 3.3Days)

Exercise:

A survey: “How many times did you exercise last week?  
500K people carrying cell phones with accelerometers

Social contacts:

A survey: “Please tell me your 5 best friends”  
continuous record of phone calls, emails, text messages, bluetooth,
social media connections, electronic address books

Economic development in developing countries:

Dubious or
nonexistent governmental statistics  satellite images of
human-generated light at night, or networks of roads and other
infrastructure

Expert-vs-Statistician contests: Whenever enough information is
quantified (& a right answer exists), stats wins

Many, many, more. . .
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Progress in Reading and Writing

Improvements for knowledge workers over 200 years:

Then: Quill tip pen & expensive paper and a few books and articles

Now: Microsoft Word

and Huge pile of books and
articles

How has reading changed?

100 years ago: Get book; read cover to cover
Now: When did you last read a book cover-to-cover (for work)?
We now read a tiny fraction haphazardly, and delude ourselves into
thinking we understand all we need
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Computer-Assisted Reading

To understand many documents, humans create categories

Approaches

Unassisted Human Categorization: time consuming; huge efforts trying
not to innovate!
Fully Automated Cluster Analysis: no method works well in general;
impossible to know which to apply!
Our Computer-assisted Methods: You, not some computer algorithm,
decides what’s important, but with help

Computer-Assisted Clustering

Easy in theory: list all clusterings; choose the best
Impossible in practice: Too hard for us mere humans!
An organized list will make the search possible
Insight: Many clusterings are perceptually identical
E.g.,: consider two clusterings that differ only because one document
(of 10,000) moves from category 5 to 6

Question: How to organize clusterings so humans can understand?
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Humans Can Zoom in to Read; We Can Zoom Out
You choose one (or more) clustering, based on insight, discovery, useful information,. . .

Space of Clusterings
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Evaluation: More Informative Discoveries

2 scholars reading in archives for > 1 year each

Separate Competitions among clusterings:

human-generated (by these scholars, working for a year each)
fully-automated computer-generated
computer-assisted generation (biased against us; took about an hour)

Conducted an evaluation; the scholar was the judge

Same result in each case:

Computer-assisted clustering won both competitions
Both scholars preferred our insight to their’s
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Evaluation: What Do Members of Congress Do?

- David Mayhew’s (1974) famous typology

- Advertising
- Credit Claiming
- Position Taking

- Data: 200 press releases from Frank Lautenberg’s office (D-NJ)

- Apply our method
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Example Discovery

: Partisan Taunting
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Let’s look at one clustering in this
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In Sample Illustration of Partisan Taunting

Taunting ruins deliberation

Sen. Lautenberg
on Senate Floor
4/29/04

- “Senator Lautenberg Blasts
Republicans as ‘Chicken Hawks’ ”
[Government Oversight]

- “The scopes trial took place in
1925. Sadly, President Bush’s veto
today shows that we haven’t
progressed much since then”
[Healthcare]

- “Every day the House Republicans
dragged this out was a day that
made our communities less
safe.”[Homeland Security]
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Out of Sample Confirmation of Partisan Taunting

- Discovered using 200 press releases; 1 senator.

- Confirmed using 64,033 press releases; 301 senator-years.
- Apply supervised learning method: measure proportion of press

releases a senator taunts other party

Prop. of Press Releases Taunting
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Some New Data Types

1 Unstructured text: emails (1 LOC every 10 minutes), speeches,
government reports, blogs, social media updates, web pages,
newspapers, scholarly literature

2 Commercial activity: credit cards, sales data, and real estate
transactions, product RFIDs

3 Geographic location: cell phones, Fastlane or EZPass transponders,
garage cameras

4 Health information: digital medical records, hospital admittances,
google/MS health, and accelerometers and other devices being
included in cell phones

5 Biological sciences: effectively becoming social sciences as genomics,
proteomics, metabolomics, and brain imaging produce huge numbers
of person-level variables.

6 Satellite imagery: increasing in scope, resolution, and availability.
7 Electoral activity: ballot images, precinct-level results, individual-level

registration, primary participation, and campaign contributions

Gary King (Harvard) Quantitative Social Science 13 / 17



Some New Data Types

1 Unstructured text: emails (1 LOC every 10 minutes), speeches,
government reports, blogs, social media updates, web pages,
newspapers, scholarly literature

2 Commercial activity: credit cards, sales data, and real estate
transactions, product RFIDs

3 Geographic location: cell phones, Fastlane or EZPass transponders,
garage cameras

4 Health information: digital medical records, hospital admittances,
google/MS health, and accelerometers and other devices being
included in cell phones

5 Biological sciences: effectively becoming social sciences as genomics,
proteomics, metabolomics, and brain imaging produce huge numbers
of person-level variables.

6 Satellite imagery: increasing in scope, resolution, and availability.
7 Electoral activity: ballot images, precinct-level results, individual-level

registration, primary participation, and campaign contributions

Gary King (Harvard) Quantitative Social Science 13 / 17



Some New Data Types

1 Unstructured text: emails (1 LOC every 10 minutes), speeches,
government reports, blogs, social media updates, web pages,
newspapers, scholarly literature

2 Commercial activity: credit cards, sales data, and real estate
transactions, product RFIDs

3 Geographic location: cell phones, Fastlane or EZPass transponders,
garage cameras

4 Health information: digital medical records, hospital admittances,
google/MS health, and accelerometers and other devices being
included in cell phones

5 Biological sciences: effectively becoming social sciences as genomics,
proteomics, metabolomics, and brain imaging produce huge numbers
of person-level variables.

6 Satellite imagery: increasing in scope, resolution, and availability.
7 Electoral activity: ballot images, precinct-level results, individual-level

registration, primary participation, and campaign contributions

Gary King (Harvard) Quantitative Social Science 13 / 17



Some New Data Types

1 Unstructured text: emails (1 LOC every 10 minutes), speeches,
government reports, blogs, social media updates, web pages,
newspapers, scholarly literature

2 Commercial activity: credit cards, sales data, and real estate
transactions, product RFIDs

3 Geographic location: cell phones, Fastlane or EZPass transponders,
garage cameras

4 Health information: digital medical records, hospital admittances,
google/MS health, and accelerometers and other devices being
included in cell phones

5 Biological sciences: effectively becoming social sciences as genomics,
proteomics, metabolomics, and brain imaging produce huge numbers
of person-level variables.

6 Satellite imagery: increasing in scope, resolution, and availability.
7 Electoral activity: ballot images, precinct-level results, individual-level

registration, primary participation, and campaign contributions

Gary King (Harvard) Quantitative Social Science 13 / 17



Some New Data Types

1 Unstructured text: emails (1 LOC every 10 minutes), speeches,
government reports, blogs, social media updates, web pages,
newspapers, scholarly literature

2 Commercial activity: credit cards, sales data, and real estate
transactions, product RFIDs

3 Geographic location: cell phones, Fastlane or EZPass transponders,
garage cameras

4 Health information: digital medical records, hospital admittances,
google/MS health, and accelerometers and other devices being
included in cell phones

5 Biological sciences: effectively becoming social sciences as genomics,
proteomics, metabolomics, and brain imaging produce huge numbers
of person-level variables.

6 Satellite imagery: increasing in scope, resolution, and availability.
7 Electoral activity: ballot images, precinct-level results, individual-level

registration, primary participation, and campaign contributions

Gary King (Harvard) Quantitative Social Science 13 / 17



Some New Data Types

1 Unstructured text: emails (1 LOC every 10 minutes), speeches,
government reports, blogs, social media updates, web pages,
newspapers, scholarly literature

2 Commercial activity: credit cards, sales data, and real estate
transactions, product RFIDs

3 Geographic location: cell phones, Fastlane or EZPass transponders,
garage cameras

4 Health information: digital medical records, hospital admittances,
google/MS health, and accelerometers and other devices being
included in cell phones

5 Biological sciences: effectively becoming social sciences as genomics,
proteomics, metabolomics, and brain imaging produce huge numbers
of person-level variables.

6 Satellite imagery: increasing in scope, resolution, and availability.
7 Electoral activity: ballot images, precinct-level results, individual-level

registration, primary participation, and campaign contributions

Gary King (Harvard) Quantitative Social Science 13 / 17



Some New Data Types

1 Unstructured text: emails (1 LOC every 10 minutes), speeches,
government reports, blogs, social media updates, web pages,
newspapers, scholarly literature

2 Commercial activity: credit cards, sales data, and real estate
transactions, product RFIDs

3 Geographic location: cell phones, Fastlane or EZPass transponders,
garage cameras

4 Health information: digital medical records, hospital admittances,
google/MS health, and accelerometers and other devices being
included in cell phones

5 Biological sciences: effectively becoming social sciences as genomics,
proteomics, metabolomics, and brain imaging produce huge numbers
of person-level variables.

6 Satellite imagery: increasing in scope, resolution, and availability.

7 Electoral activity: ballot images, precinct-level results, individual-level
registration, primary participation, and campaign contributions

Gary King (Harvard) Quantitative Social Science 13 / 17



Some New Data Types

1 Unstructured text: emails (1 LOC every 10 minutes), speeches,
government reports, blogs, social media updates, web pages,
newspapers, scholarly literature

2 Commercial activity: credit cards, sales data, and real estate
transactions, product RFIDs

3 Geographic location: cell phones, Fastlane or EZPass transponders,
garage cameras

4 Health information: digital medical records, hospital admittances,
google/MS health, and accelerometers and other devices being
included in cell phones

5 Biological sciences: effectively becoming social sciences as genomics,
proteomics, metabolomics, and brain imaging produce huge numbers
of person-level variables.

6 Satellite imagery: increasing in scope, resolution, and availability.
7 Electoral activity: ballot images, precinct-level results, individual-level

registration, primary participation, and campaign contributions

Gary King (Harvard) Quantitative Social Science 13 / 17



Some More New Data Examples

8 Social media: facebook, twitter, social bookmarking, blog comments,
product reviews, virtual worlds, game behavior, crowd sourcing

9 Web surfing artifacts: clicks, searches, and advertising clickthroughs.
(Google collects 1 petabyte/72 minutes on human behavior!)

10 Multiplayer web games and virtual worlds: Billions of highly
controlled experiments on human behavior

11 Government bureaucracies: moving from paper to electronic data
bases, increasing availability

12 Governmental policies: requiring more data collection, such e.g., “No
Child Left Behind Act”; allowing randomized policy experiments;
Obama pushing data distribution

13 Scholarly data: the replication movement in academia, led in part by
political science, is massively increasing data sharing
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For more information

http://GKing.Harvard.edu
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What’s Hard about Clustering?
(Why Johnny Can’t Classify)

Goal: Computer-assisted conceptualization & clustering

Bell(n) = number of ways of partitioning n objects

Bell(2) = 2 (AB, A B)

Bell(3) = 5 (ABC, AB C, A BC, AC B, A B C)

Bell(5) = 52

Bell(100) ≈

1028 × Number of elementary particles in the universe

Now imagine choosing the optimal classification scheme by hand!
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Normative Implications of Taunting

Partisan taunting:

Very common
Makes deliberation less likely
Occurs more often in homogeneously partisan districts (i.e., when
preaching to the choir)

Incompatibility of the principles of representative democracy

To get reflection: Homogeneous (noncompetitive) districts
To get deliberation (no taunting): Heterogeneous (competitive)
districts
 you can’t have both!
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