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@ Exercise: A survey: "How many times did you exercise last week? ~-
500K people carrying cell phones with accelerometers

@ Social contacts: A survey: “Please tell me your 5 best friends” ~~
continuous record of phone calls, emails, text messages, bluetooth,
social media connections, electronic address books

Economic development in developing countries: Dubious or
nonexistent governmental statistics ~~ satellite images of
human-generated light at night, or networks of roads and other
infrastructure

Expert-vs-Statistician contests: Whenever enough information is
quantified (& a right answer exists), stats wins

e Many, many, more. ..
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Progress in Reading and Writing

@ Improvements for knowledge workers over 200 years:
e Then: Quill tip pen & expensive paper and a few books and articles
e Now: Microsoft Word and Huge p||e O'F books and
articles

@ How has reading changed?

o 100 years ago: Get book; read cover to cover

o Now: When did you last read a book cover-to-cover (for work)?

o We now read a tiny fraction haphazardly, and delude ourselves into
thinking we understand all we need
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Computer-Assisted Reading

@ To understand many documents, humans create categories

@ Approaches
e Unassisted Human Categorization: time consuming; huge efforts trying
not to innovate!
e Fully Automated Cluster Analysis: no method works well in general;
impossible to know which to apply!
e Our Computer-assisted Methods: You, not some computer algorithm,
decides what's important, but with help
o Computer-Assisted Clustering
Easy in theory: list all clusterings; choose the best
Impossible in practice: Too hard for us mere humans!
An organized list will make the search possible
Insight: Many clusterings are perceptually identical
E.g.,: consider two clusterings that differ only because one document
(of 10,000) moves from category 5 to 6

@ Question: How to organize clusterings so humans can understand?
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Humans Can Zoom in to Read; We Can Zoom Out

choose one (or more) clustering, based on insight, discover

useful information,. . .
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o human-generated (by these scholars, working for a year each)
o fully-automated computer-generated
e computer-assisted generation (biased against us; took about an hour)
@ Conducted an evaluation; the scholar was the judge
@ Same result in each case:

e Computer-assisted clustering won both competitions
e Both scholars preferred our insight to their’s
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Evaluation: What Do Members of Congress Do?

- David Mayhew's (1974) famous typology

- Advertising
- Credit Claiming
- Position Taking

- Data: 200 press releases from Frank Lautenberg’s office (D-NJ)
- Apply our method
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In Sample lllustration of Partisan Taunting

Taunting ruins deliberation

- “Senator Lautenberg Blasts
— Republicans as ‘Chicken Hawks
THE CHICKENHAWK | [Government Oversight]

Definition

- "The scopes trial took place in
1925. Sadly, President Bush's veto
today shows that we haven't
progressed much since then”
[Healthcare]

i

- “Every day the House Republicans

Sen. Lautenberg dragged this out was a day that
on Senate Floor made our communities less
4/29/04 safe.” [Homeland Security]
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Out of Sample Confirmation of Partisan Taunting

- Discovered using 200 press releases; 1 senator.

- Confirmed using 64,033 press releases; 301 senator-years.

- Apply supervised learning method: measure proportion of press
releases a senator taunts other party

On Avg., Senators Taunt
in 27 % of Press Releases

30
|
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Unstructured text: emails (1 LOC every 10 minutes), speeches,
government reports, blogs, social media updates, web pages,
newspapers, scholarly literature

Commercial activity: credit cards, sales data, and real estate
transactions, product RFIDs

Geographic location: cell phones, Fastlane or EZPass transponders,
garage cameras

Health information: digital medical records, hospital admittances,
google/MS health, and accelerometers and other devices being
included in cell phones

Biological sciences: effectively becoming social sciences as genomics,
proteomics, metabolomics, and brain imaging produce huge numbers
of person-level variables.

Satellite imagery: increasing in scope, resolution, and availability.
Electoral activity: ballot images, precinct-level results, individual-level
registration, primary participation, and campaign contributions
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Some More New Data Examples

© Social media: facebook, twitter, social bookmarking, blog comments,
product reviews, virtual worlds, game behavior, crowd sourcing

© Web surfing artifacts: clicks, searches, and advertising clickthroughs.
(Google collects 1 petabyte/72 minutes on human behavior!)

@ Multiplayer web games and virtual worlds: Billions of highly
controlled experiments on human behavior

@ Government bureaucracies: moving from paper to electronic data
bases, increasing availability

@ Governmental policies: requiring more data collection, such e.g., “No
Child Left Behind Act”; allowing randomized policy experiments;
Obama pushing data distribution

@ Scholarly data: the replication movement in academia, led in part by
political science, is massively increasing data sharing
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What's Hard about Clustering?

(Why Johnny Can't Classify)

Goal: Computer-assisted conceptualization & clustering
Bell(n) = number of ways of partitioning n objects
Bell(2) =2 (AB, A B)

Bell(3) =5 (ABC, AB C, ABC, ACB, AB Q)

Bell(5) = 52

Bell(100) ~ 10?8 x Number of elementary particles in the universe

Now imagine choosing the optimal classification scheme by hand!
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Normative Implications of Taunting

@ Partisan taunting:
e Very common
o Makes deliberation less likely
o Occurs more often in homogeneously partisan districts (i.e., when
preaching to the choir)

@ Incompatibility of the principles of representative democracy

o To get reflection: Homogeneous (noncompetitive) districts

o To get deliberation (no taunting): Heterogeneous (competitive)
districts

e ~- you can't have both!
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