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The Changing Evidence Base of Social Science Research

The Last 50 Years:

Survey research

Aggregate government statistics

In depth studies of individual places, people, or events

The Next 50 Years: Spectacular increases in new data sources, due to. . .

Much more of the above

Shrinking computers & the growing Internet: data everywhere

The replication movement: academic data sharing (e.g., Dataverse)

Analogue-to-digital transformation of government records

Advances in statistical methods, informatics, & software

The march of quantification: through academia, professions,
government, & commerce (SuperCrunchers, The Numerati,
MoneyBall)

The end of the quantitative-qualitative divide
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Examples of what’s now possible

Opinions of activists:

≈1,000 interviews  millions of political
opinions in social media posts (1B every 4 days)

Exercise:

A survey: “How many times did you exercise last week?  
500K people carrying cell phones with accelerometers

Social contacts:

A survey: “Please tell me your 5 best friends”  
continuous record of phone calls, emails, text messages, bluetooth,
social media connections, electronic address books

Economic development in developing countries:

Dubious or
nonexistent governmental statistics  satellite images of
human-generated light at night, or networks of roads and other
infrastructure

Many, many more. . .
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One Example

of Automated Text Analysis
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How to Read Billions of Social Media Posts

Daniel Hopkins and Gary King. “A Method of Automated Nonparametric
Content Analysis for Social Science” AJPS. 54 (2010): 229-247

1 Downloaded & analyzed all English-language blog posts every day.

(We learned: The university is not a research, not production,
environment!)

2 Commercialized in 2008:

  
3 CH collects all social media posts, runs huge servers with our methods

4 Crimson Hexagon Academic Grant Program to be announced soon

(I.e., easy to do what I’ll describe today)
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Example: Reactions to John Kerry’s Botched Joke

You know, education — if you make the most of it . . . you can
do well. If you don’t, you get stuck in Iraq.
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Data and Quantities of Interest

Input Data:

All social media posts (or other documents)
Categories (e.g., posts about US candidates: extremely negative,
negative, neutral, positive, extremely positive, no opinion, not a blog)
Example documents from each category

Quantities of interest

Computer science: individual document classification (spam filters,
Google searches)
Social Science: category proportions

(% of email which is spam; %
negative comments about Obama; % of Egyptian posts supporting the
regime; support for different solutions to the Euro $ crisis)

Estimation

Classifications add up to proportions only if accurate
High classification accuracy ; unbiased category proportions
70% classification accuracy is high ⇒ disaster for category proportions
New methodology  unbiased category proportions

,
(even when classification accuracy is low)
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What Else Can We do With this?

You choose:

Data: country, documents, language
Categories: based on sentiment, topics, people, events, etc.
(often pre-censorship)

You provide: example documents for each category

Results: Highly accurate category proportions over time

Qualifications:

Opinion not sampled randomly; but no pop quizzes about unknown
subjects
Measures the ongoing conversation: the classical notion of “activated
public opinion”

Potential academic applications: very widespread
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Some New Data Types

1 Unstructured text: emails (1 LOC every 10 minutes), speeches,
government reports, blogs, social media updates, web pages,
newspapers, scholarly literature

2 Commercial activity: credit cards, sales data, and real estate
transactions, product RFIDs

3 Geographic location: cell phones, Fastlane or EZPass transponders,
garage cameras

4 Health information: digital medical records, hospital admittances,
google/MS health, and accelerometers and other devices being
included in cell phones

5 Biological sciences: effectively becoming social sciences as genomics,
proteomics, metabolomics, and brain imaging produce huge numbers
of person-level variables.

6 Satellite imagery: increasing in scope, resolution, and availability.
7 Electoral activity: ballot images, precinct-level results, individual-level

registration, primary participation, and campaign contributions
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Some More New Data Examples

8 Social media: facebook, twitter, social bookmarking, blog comments,
product reviews, virtual worlds, game behavior, crowd sourcing

9 Web surfing artifacts: clicks, searches, and advertising clickthroughs.
(Google collects 1 petabyte/72 minutes on human behavior!)

10 Multiplayer web games and virtual worlds: Billions of highly
controlled experiments on human behavior

11 Government bureaucracies: moving from paper to electronic data
bases, increasing availability

12 Governmental policies: requiring more data collection, such e.g., “No
Child Left Behind Act”; allowing randomized policy experiments;
Obama pushing data distribution

13 Scholarly data: the replication movement in academia, led in part by
political science, is massively increasing data sharing
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Enormous Emerging Opportunities for Social Scientists

For the first time: technologies, policies, data, and methods are
making it feasible to attack some of the most vexing problems that
afflict human society

A massive change from studying problems to understanding and
solving problems

And then there’s you & me:

In legislatures, courts, academic departments, . . . , change comes from
replacement not conversion
Will we wait to be replaced? or put in the effort to convert and learn
how to use the new information?
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For more information

http://GKing.Harvard.edu
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