
The Social Science Data Revolution

Gary King

Department of Government
Harvard University

(Horizons in Political Science talk, Government Department, Harvard University, 3/30/11)

Gary King (Harvard, Gov Dept) The Data Revolution 1 / 24



The Changing Evidence Base of Social Science Research

The Last 50 Years:

Survey research

Aggregate government statistics

In depth studies of individual places, people, or events

The Next 50 Years: Spectacular increases in new data sources, due to. . .

Much more of the above — improved, expanded, and applied

Shrinking computers & the growing Internet: data everywhere

The replication movement: academic data sharing (e.g., Dataverse)

Governments encouraging data collection, distribution,
experimentation (e.g., GovData)

Advances in statistical methods, informatics, & software

The march of quantification: through academia, professions,
government, & commerce (SuperCrunchers, The Numerati,
MoneyBall)
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Examples of what’s now possible

Opinions of activists: A few thousand interviews  millions of
political opinions in social media posts (1B tweets/week)

Exercise: A survey: “How many times did you exercise last week?  
500K people carrying cell phones with accelerometers

Social contacts: A survey: “Please tell me your 5 best friends”  
continuous record of phone calls, emails, text messages, bluetooth,
social media connections, electronic address books

Economic development in developing countries: Dubious or
nonexistent governmental statistics  satellite images of
human-generated light at night, or networks of roads and other
infrastructure

Expert-vs-Statistician contests: Whenever enough information is
quantified (& a right answer exists), stats wins every time

Many, many more. . .
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How to make progress in the new data-rich world?

1 Computer-assisted methods: Traditional quantitative-only or
qualitative-only approaches are infeasible

2 Large-scale, interdisciplinary, collaborative research

3 New statistical methods & engineering required

4 Better theory: to respond to massive new evidence, privacy
challenges, data-driven science

 Bigger changes in the practice of social science then ever before
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Two Examples

of Automated Text Analysis
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Example 1: How to Read a Billion Blog Posts
(& Classify Deaths without Physicians)

Daniel Hopkins and Gary King. “Extracting Systematic Social Science
Meaning from Text” AJPS,  commercialized via:

  

Gary King and Ying Lu. “Verbal Autopsy Methods with Multiple
Causes of Death,” Statistical Science  used by (among others):
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Data and Quantities of Interest

Input Data:

Large set of text documents (e.g., all English language blog posts)
Categories (posts about US candidates): extremely negative, negative,
neutral, positive, extremely positive, no opinion, not a blog
A small “training set” of documents hand-coded into the categories

Quantities of interest

Computer science: individual document classifications (spam filters,
Google searches)
Social Science: proportion in each category (proportion of email which
is spam; proportion extremely negative comment about Pres Bush)

Estimation

Can get the 2nd by counting the 1st (if 1st is accurate)
High classification accuracy ; unbiased category proportions
70% classification accuracy is high ⇒ disaster for category proportions
New methodology: unbiased category proportions, even when
classification accuracy is low
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Out-of-sample Comparison: 60 Seconds vs. 8.7 Days
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Reactions to John Kerry’s Botched Joke

You know, education — if you make the most of it . . . you can
do well. If you don’t, you get stuck in Iraq.
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Example 2: Computer-Assisted “Reading”

Justin Grimmer and Gary King. 2011. “General-Purpose Clustering
and Conceptualization” Proceedings of the National Academy of
Sciences.

Conceptualization through Classification: “one of the most central
and generic of all our conceptual exercises. . . .Without classification,
there could be no advanced conceptualization, reasoning, language,
data analysis or,for that matter, social science research.” (Bailey,
1994).

Cluster Analysis: simultaneously (1) invents categories and (2)
assigns documents to categories
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What’s Hard about Clustering?
(Why Johnny Can’t Classify)

Goal: Computer-assisted conceptualization & clustering

Bell(n) = number of ways of partitioning n objects

Bell(2) = 2 (AB, A B)

Bell(3) = 5 (ABC, AB C, A BC, AC B, A B C)

Bell(5) = 52

Bell(100) ≈ 1028 × Number of elementary particles in the universe

Now imagine choosing the optimal classification scheme by hand!

Available compromises pursue different goals:

Standard Approach: Fully automated methods  no method works
well in general; impossible to know which to apply!
Our Approach: Computer-assisted methods  You, not some
computer algorithm, decides what’s important, but with help
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Switch from Fully Automated to Computer Assisted

Computer-Assisted Clustering

Easy in theory: list all clusterings; choose the best
Impossible in practice: Too hard for us mere humans!
An organized list will make the search possible
Insight: Many clusterings are perceptually identical
E.g.,: consider two clusterings that differ only because one document
(of 10,000) moves from category 5 to 6

Question: How to organize clusterings so humans can understand?
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How to Zoom Out while Reading
You choose one (or more) clustering, based on insight, discovery, useful information,. . .

Space of Clusterings
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Evaluation: More Informative Discoveries

Found 2 scholars analyzing lots of textual data for their work

Created 6 clusterings:

2 clusterings selected with our method (biased against us)
2 clusterings from each of 2 other methods (varying tuning parameters)

Created info packet on each clustering (for each cluster: exemplar
document, automated content summary)

Asked for
(6
2

)
=15 pairwise comparisons

User chooses ⇒ only care about the one clustering that wins

Both cases a Condorcet winner:

“Immigration”:

Our Method 1 → vMF 1 → vMF 2 → Our Method 2 → K-Means 1 → K-Means 2

“Genetic testing”:

Our Method 1 → {Our Method 2, K-Means 1, K-means 2} → Dir Proc. 1 → Dir Proc. 2
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Evaluation: What Do Members of Congress Do?

- David Mayhew’s (1974) famous typology

- Advertising
- Credit Claiming
- Position Taking

- Data: 200 press releases from Frank Lautenberg’s office (D-NJ)

- Apply our method
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Example Discovery

: Partisan Taunting
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Partisan Taunting

The space of clusterings Found a region
with particularly insightful clusterings
Let’s look at one clustering in this
region Credit Claiming, Pork:
“Sens. Frank R. Lautenberg (D-NJ)
and Robert Menendez (D-NJ)
announced that the U.S. Department of
Commerce has awarded a $100,000
grant to the South Jersey Economic
Development District” Credit Claiming,
Legislation:
“As the Senate begins its recess,
Senator Frank Lautenberg today
pointed to a string of victories in
Congress on his legislative agenda
during this work period” Advertising:
“Senate Adopts Lautenberg/Menendez
Resolution Honoring Spelling Bee
Champion from New Jersey”
Partisan Taunting:
“Republicans Selling Out Nation on
Chemical Plant Security” “Senator
Lautenberg’s amendment would change
the name of. . . the Republican bill. . . to
‘More Tax Breaks for the Rich and
More Debt for Our Grandchildren
Deficit Expansion Reconciliation Act of
2006”’ Definition of Partisan Taunting:
Explicit, public, and negative attacks on
another political party or its members

Taunting ruins
deliberation
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In Sample Illustration of Partisan Taunting

Taunting ruins deliberation

Sen. Lautenberg
on Senate Floor
4/29/04

- “Senator Lautenberg Blasts
Republicans as ‘Chicken Hawks’ ”
[Government Oversight]

- “The scopes trial took place in
1925. Sadly, President Bush’s veto
today shows that we haven’t
progressed much since then”
[Healthcare]

- “Every day the House Republicans
dragged this out was a day that
made our communities less
safe.”[Homeland Security]
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Out of Sample Confirmation of Partisan Taunting

- Discovered using 200 press releases; 1 senator.

- Confirmed using 64,033 press releases; 301 senator-years.
- Apply supervised learning method: measure proportion of press

releases a senator taunts other party
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On Avg., Senators Taunt
 in 27 % of Press Releases
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Normative Implications of Taunting

Partisan taunting:

Very common
Makes deliberation less likely
Occurs more often in homogeneously partisan districts (i.e., when
preaching to the choir)

Incompatibility of the principles of representative democracy

To get reflection: Homogeneous (noncompetitive) districts
To get deliberation (no taunting): Heterogeneous (competitive)
districts
 you can’t have both!
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Some New Data Types

1 Unstructured text: emails (1 LOC every 10 minutes), speeches,
government reports, blogs, social media updates, web pages,
newspapers, scholarly literature

2 Commercial activity: credit cards, sales data, and real estate
transactions, product RFIDs

3 Geographic location: cell phones, Fastlane or EZPass transponders,
garage cameras

4 Health information: digital medical records, hospital admittances,
google/MS health, and accelerometers and other devices being
included in cell phones

5 Biological sciences: effectively becoming social sciences as genomics,
proteomics, metabolomics, and brain imaging produce huge numbers
of person-level variables.

6 Satellite imagery: increasing in scope, resolution, and availability.
7 Electoral activity: ballot images, precinct-level results, individual-level

registration, primary participation, and campaign contributions
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Some More New Data Examples

8 Social media: facebook, twitter, social bookmarking, blog comments,
product reviews, virtual worlds, game behavior, crowd sourcing

9 Web surfing artifacts: clicks, searches, and advertising clickthroughs.
(Google collects 1 petabyte/72 minutes on human behavior!)

10 Multiplayer web games and virtual worlds: Billions of highly
controlled experiments on human behavior

11 Government bureaucracies: moving from paper to electronic data
bases, increasing availability

12 Governmental policies: requiring more data collection, such e.g., “No
Child Left Behind Act”; allowing randomized policy experiments;
Obama pushing data distribution

13 Scholarly data: the replication movement in academia, led in part by
political science, is massively increasing data sharing
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Enormous Emerging Opportunities for Social Scientists

For the first time: technologies, policies, data, and methods are
making it feasible to attack some of the most vexing problems that
afflict human society

A massive change from studying problems to understanding and
solving problems

Opportunities require a change in our job descriptions, with new:
1 Computer-assisted methods: Traditional quantitative-only or

qualitative-only approaches are infeasible
2 Large-scale, interdisciplinary, collaborative research
3 New statistical methods & engineering required
4 Better theory: to respond to massive new evidence, privacy challenges,

data-driven science

And then there’s you & me:
In most legislatures, courts, academic departments, . . . , change comes
from replacement not conversion
Will we wait to be replaced? or put in the effort to convert and learn
how to use the new information?
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For more information

http://GKing.Harvard.edu
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