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e easy to come by; often a free byproduct of IT improvements
e becoming commoditized

e Ignore it & every institution will have more every year

e With a bit of effort: huge data production increases

e Where the Value is: the Analytics

Output can be highly customized

Moore's Law (doubling speed/power every 18 months)

v. Our Students (1000x speed increase in 1 day)

$2M computer v. 2 hours of algorithm design

Low cost; little infrastructure; mostly human capital needed
Innovative analytics: enormously better than off-the-shelf
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Exercise: A survey: “How many times did you exercise last
week? ~~ 500K people carrying cell phones with
accelerometers

Social contacts: A survey: “Please tell me your 5 best
friends” ~~ continuous record of phone calls, emails, text
messages, bluetooth, social media connections, address books

Economic development in developing countries: Dubious or
nonexistent governmental statistics ~~ satellite images of
human-generated light at night, road networks, other
infrastructure

Many, many, more. ..

In each: without new analytics, the data are useless
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help

e Quantitative researchers: recognize the huge amounts of
information in qualitative analyses, starting to analyze
unstructured text, video, audio as data

e Expert-vs-analytics contests: Whenever enough information is
quantified, a right answer exists, and good analytics are
applied: analytics wins

e Moral of the story:

Fully human is inadequate

Fully automated fails

We need computer assisted, human controlled technology
(Technically correct, & politically much easier)
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Successful: single largest government program; lifted a whole

The Solvency of Social Security

generation out of poverty; extremely popular

Solvency: depends on mortality forecasts: If retirees receive
benefits longer than expected, the Trust Fund runs out

SSA data: little change other than updates for 75 years
SSA analytics:

Few statistical improvements for 75 years

Ignore risk factors (smoking, obesity)

Mostly informal (subject to error & political influence)
Forecasts: inaccurate, inconsistent, overly optimistic

New customized analytics we developed:

Logical consistency (e.g., older people have higher mortality)
More accurate forecasts

~» Trust fund needs ~ $800 billion more than SSA thought
Other applications to insurance industry, public health, etc.
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The same task: (1) Government and industry analyst’s job, (2)
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Computer-Assisted Reading (Consilience)

To understand many documents, humans create categories to

represent conceptualization, insight, etc.

Most firms: impose fixed categorizations to tally customer
complaints, sort reports, retrieve information
Bad Analytics:

Unassisted Human Categorization: time consuming; huge
efforts trying not to innovate!

Fully Automated “Cluster Analysis”: Many widely available,
but none work (computers don't know what you want!)

Our alternative: Computer-assisted Categorization

You decide what's important, but with help

Invert effort: you innovate; the computer categorizes
Insights: easier, faster, better

(Lots of technology, but it's behind the scenes)
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1. What Members of Congress Do
e Data: 64,000 Senators’ press releases
o Categorization: (1) advertising, (2) position taking, (3) credit
claiming

o New Insight: partisan taunting
e Joe Wilson during Obama’s State of the Union: “You lie!”
e “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks

e How common is it? 27% of all Senatorial press releases!

2. Reverse Engineering Chinese Censorship
e Previous approach: manual effort to see what is taken down
e Data: We get posts before the Chinese censor them
e We analyzed 11 million posts, about 13% censored
e Previous understanding: they censor criticisms of the
government
Results:
e Uncensored: criticism of the government
e Censored: attempts at collective action
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For more information

GaryKing.org
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