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The Spectacular Success of Quantitative Social Science

What university research has had the biggest impact on you?

• The genetics revolution?

• The Higgs-like particle?

• Exoplanets? The Mars rovers?

• Doubling life expectancy in the last century?
...

• Quantitative social science (aka “big data,” “data analytics,”
“data science” applied to people): transformed most Fortune
500 firms; established new industries; altered friendship
networks; increased human expressive capacity (social media);
changed political campaigns; transformed public health;
changed legal analysis; impacted crime and policing;
reinvented economics; transformed sports; set standards for
evaluating public policy; etc.; etc., etc.
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The Value in Big Data: the Analytics

• Data:

• easy to come by; often a free byproduct of IT improvements
• becoming commoditized
• Ignore it & every institution will have more every year
• With a bit of effort: huge data production increases

• Where the Value is: the Analytics

• Output can be highly customized
• Moore’s Law (doubling speed/power every 18 months)

v. One good data scientist (1000x speed increase in 1 day)

• $2M computer v. 2 hours of algorithm design
• Low cost; little infrastructure; mostly human capital needed
• Innovative analytics: enormously better than off-the-shelf

• Exciting data, useless without novel analytics

• Opinions of activists:

A few thousand interviews  billions of
political opinions in social media posts (650M/day)

• Exercise:

A survey: “How many times did you exercise last
week?  500K people carrying cell phones with accelerometers
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How to Read a Trillion Social Media Posts
& Classify Deaths without Physicians

• Examples of Bad Analytics:

• Physicians’ “Verbal Autopsy” analysis
• Sentiment analysis via word counts

• Unrelated substantive problems, same analytics solution:

• Key to both methods: classifying (deaths, social media posts)
• Key to both goals: estimating %’s

• Modern Data Analytics: New method led to:

1.

  

2. Worldwide cause-of-death estimates for
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Modern Analytics to Improve Student Learning

• The problem:

• How many students buy the book?

<50%

• How many students do reading assignments?

20-30%

• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall

• A new type of collaborative e-reader

, with novel data analytics,
and cutting-edge behavioral research

• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:

• How many students buy the book?

<50%

• How many students do reading assignments?

20-30%

• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall

• A new type of collaborative e-reader

, with novel data analytics,
and cutting-edge behavioral research

• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book?

<50%
• How many students do reading assignments?

20-30%

• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall

• A new type of collaborative e-reader

, with novel data analytics,
and cutting-edge behavioral research

• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%

• How many students do reading assignments?

20-30%

• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall

• A new type of collaborative e-reader

, with novel data analytics,
and cutting-edge behavioral research

• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments?

20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall

• A new type of collaborative e-reader

, with novel data analytics,
and cutting-edge behavioral research

• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%

• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall

• A new type of collaborative e-reader

, with novel data analytics,
and cutting-edge behavioral research

• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall

• A new type of collaborative e-reader

, with novel data analytics,
and cutting-edge behavioral research

• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall

• A new type of collaborative e-reader

, with novel data analytics,
and cutting-edge behavioral research

• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader

, with novel data analytics,
and cutting-edge behavioral research

• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics

,
and cutting-edge behavioral research

• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research

• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading

• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading
• Solitary reading assignments  engaging collective activities

• Intrinsic motivation:

collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation:

collaborative annotation in threads
• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation: collaborative annotation in threads

• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation: collaborative annotation in threads
• Extrinsic motivation:

automated grading of annotations &
engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation: collaborative annotation in threads
• Extrinsic motivation: automated grading of annotations &

engagement

(better than instructors can do on their own)
• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation: collaborative annotation in threads
• Extrinsic motivation: automated grading of annotations &

engagement (better than instructors can do on their own)

• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation: collaborative annotation in threads
• Extrinsic motivation: automated grading of annotations &

engagement (better than instructors can do on their own)
• Novel data analytics:

keep students on track, with automated
personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation: collaborative annotation in threads
• Extrinsic motivation: automated grading of annotations &

engagement (better than instructors can do on their own)
• Novel data analytics: keep students on track, with automated

personal guidance, nudges,

non-adversarial grading
• Instructors save time, stay engaged: automated student

confusion reports
• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation: collaborative annotation in threads
• Extrinsic motivation: automated grading of annotations &

engagement (better than instructors can do on their own)
• Novel data analytics: keep students on track, with automated

personal guidance, nudges, non-adversarial grading

• Instructors save time, stay engaged: automated student
confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation: collaborative annotation in threads
• Extrinsic motivation: automated grading of annotations &

engagement (better than instructors can do on their own)
• Novel data analytics: keep students on track, with automated

personal guidance, nudges, non-adversarial grading
• Instructors save time, stay engaged: automated student

confusion reports

• Want to try it at SJTU? see Perusall.com

5/13



Modern Analytics to Improve Student Learning

• The problem:
• How many students buy the book? <50%
• How many students do reading assignments? 20-30%
• How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
• A new type of collaborative e-reader, with novel data analytics,

and cutting-edge behavioral research
• >90% of students do the reading
• Solitary reading assignments  engaging collective activities
• Intrinsic motivation: collaborative annotation in threads
• Extrinsic motivation: automated grading of annotations &

engagement (better than instructors can do on their own)
• Novel data analytics: keep students on track, with automated

personal guidance, nudges, non-adversarial grading
• Instructors save time, stay engaged: automated student

confusion reports
• Want to try it at SJTU? see Perusall.com

5/13



Bias in U.S. Social Security Administration Forecasts

• Social Security: single largest government program; lifted a
whole generation out of poverty; extremely popular

• Forecasts: used for programs comprising > 50% of the US
expenditures;

e.g., if retirees draw benefits longer than
expected, the Trust Fund runs out

• First evaluation of SSA forecasts in 85 years:

• Methods:

little changed; mostly qualitative; a time when we’ve
learned more about forecasting than at any time in history

• Results:

unbiased until 2000; systematically biased after

• Actuaries hunkered down, insulated themselves, refused to
budge when Democrats & Republicans pushed hard for changes

• In the process, they also insulated themselves from the facts:

Especially since 2000, Americans started living unexpectedly
longer lives (due to statins, early cancer detection, etc.)

• New customized analytics we developed:

• Logical consistency (e.g., older people have higher mortality)
• Far more accurate forecasts
•  Trust fund needs > $800 billion more than SSA thought
• Many other applications to different types of forecasts
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Humans are Terrible at Thinking of Keywords

• An experiment:

We have 10,000 twitter posts, each containing
the word “Boston,” from the time period surrounding the
Boston Marathon bombings. Please list any keywords which
come to mind that will select posts in this set related to the
bombings and will not select posts unrelated to the bombings.

• Examples:

Tsarnaev, #BostonBombings, horrifying, . . .

• Median keywords recalled by 43 undergrads:

8

• Unique keywords recalled:

149

• Keywords 42 of 43 failed to recall:

98 (66%)

•  Humans recognize keywords well, recall them poorly
• Thresher: New technology to discover the right keywords
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• An experiment: We have 10,000 twitter posts, each containing

the word “Boston,” from the time period surrounding the
Boston Marathon bombings. Please list any keywords which
come to mind that will select posts in this set related to the
bombings and will not select posts unrelated to the bombings.

• Examples: Tsarnaev, #BostonBombings, horrifying, . . .
• Median keywords recalled by 43 undergrads: 8
• Unique keywords recalled: 149
• Keywords 42 of 43 failed to recall: 98 (66%)
•  Humans recognize keywords well, recall them poorly

• Thresher: New technology to discover the right keywords
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Computer-Assisted Reading (Consilience)

• To understand many documents, humans create categories to
represent conceptualization, insight, etc.

• Most organizations: impose fixed categorizations to tally
complaints, sort reports, retrieve information

• Bad Analytics:

• Unassisted Human Categorization: time consuming; huge
efforts trying not to innovate!

• Fully Automated “Cluster Analysis”: Many widely available,
but none work (computers don’t know what you want!)

• Our alternative: Computer-assisted Categorization

• You decide what’s important, but with help
• Invert effort: you innovate; the computer categorizes
• Insights: easier, faster, better
• Technology: visualize the space of all possible clusterings
• (Lots of technology, but it’s behind the scenes)
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What Members of Congress Do

• Categorization from prior research:

1. advertising,
2. position taking,
3. credit claiming

• Data: 64,000 Senators’ press releases

• New Insight: partisan taunting

• Joe Wilson during Obama’s State of the Union: “You lie!”
• “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’ ”
• Basically anything said by a 2016 presidential candidate!

• How common is it?

27% of all Senatorial press releases!
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Reverse Engineering China’s “50c Party”

• Fabricates 450M social media posts a year!

• Does not argue; does not engage on controversial issues

• Distracts; redirects public attention from criticism and central
issues to cheerleading and positive discussions of valence
issues
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The End of The Quantitative-Qualitative Divide

• The Quant-Qual divide exists in every field.

• Qualitative researchers: overwhelmed by information; need
help

• Quantitative researchers: recognize the huge amounts of
information in qualitative analyses, now analyzing as data
unstructured text, video, audio, location, transactions,
conversations, etc.

• Expert-vs-analytics contests: Whenever enough information is
quantified, a right answer exists, and good analytics are
applied: analytics wins

• Moral of the story:

• Fully human is inadequate
• Fully automated fails
• We need computer assisted, human controlled technology
• (Technically correct, & politically much easier)
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How To Take Advantage of Big Analytics

• Its cheap and powerful; don’t skimp!

• Off-the-shelf analytics  big advances
• Innovative analytics  immensely better than off-the-shelf

• Save it for last first!

• The goal is “inference”:
using facts you know to learn about facts you don’t know

• The uncertainties in inference: not having the facts you need
(most statistics are designed solely to overcome data problems)

• Building analytics during design:

• avoids problems before they occur
• saves a fortune,
• opens many more possibilities

• Build a new discipline of data science
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For more information

GaryKing.org

Perusall.com

Institute for Quantitative Social Science
Harvard University
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