Simplifying Matching Methods for Causal Inference¹

Gary King²

Institute for Quantitative Social Science Harvard University

(Talk at the U.S. Food and Drug Administration [CBER/OBE], 8/25/2015)

 $^{^{1}\}mbox{Based}$ on joint work with Rich Nielsen, Chris Lucas, Stefano lacus, and Giuseppe Porro

$\mathsf{Part}\ 1\ (\mathsf{of}\ 3)$

Imbalance → Model Dependence → Researcher Discretion → Bias

Replication of Doyle and Sambanis, APSR 2000 (From: King and Zeng, 2007)

• Data: 124 Post-World War II civil wars

Replication of Doyle and Sambanis, APSR 2000 (From: King and Zeng, 2007)

Data: 124 Post-World War II civil wars

Dependent var: peacebuilding success

Replication of Doyle and Sambanis, APSR 2000 (From: King and Zeng, 2007)

• Data: 124 Post-World War II civil wars

Dependent var: peacebuilding success

• Treatment: multilateral UN peacekeeping intervention (0/1)

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status,...

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status....
- Counterfactual question: Switch UN intervention for each war

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status....
- Counterfactual question: Switch UN intervention for each war
- Data analysis: Logit model

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status....
- Counterfactual question: Switch UN intervention for each war
- Data analysis: Logit model
- The question: How model dependent are the results?

Two Logit Models, Apparently Similar Results

Two Logit Models, Apparently Similar Results

Effect of Multilateral UN Intervention on Peacebuilding Success

Two Logit Models, Apparently Similar Results

Effect of Multilateral UN Intervention on Peacebuilding Success

	Original "Interactive" Model			Modified Model		
Variables	Coeff	SE	P-val	Coeff	SE	P-val
Wartype	-1.742	.609	.004	-1.666	.606	.006
Logdead	445	.126	.000	437	.125	.000
Wardur	.006	.006	.258	.006	.006	.342
Factnum	-1.259	.703	.073	-1.045	.899	.245
Factnum2	.062	.065	.346	.032	.104	.756
Trnsfcap	.004	.002	.010	.004	.002	.017
Develop	.001	.000	.065	.001	.000	.068
Exp	-6.016	3.071	.050	-6.215	3.065	.043
Decade	299	.169	.077	-0.284	.169	.093
Treaty	2.124	.821	.010	2.126	.802	.008
UNOP4	3.135	1.091	.004	.262	1.392	.851
Wardur*UNOP4	_	_	_	.037	.011	.001
Constant	8.609	2.157	0.000	7.978	2.350	.000
N	122			122		
Log-likelihood	-45.649			-44.902		
Pseudo R ²		.423			.433	

Model Dependence: Same Fit, Different Predictions

Part 2 (of 3)

Coarsened Exact Matching

A simple (and ancient) method of causal inference, with surprisingly powerful properties

1. Preprocess (X, T) with CEM:

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as a histogram

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as a histogram
 - (B) Perform exact matching on the coarsened X, C(X)

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as a histogram
 - (B) Perform exact matching on the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as a histogram
 - (B) Perform exact matching on the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as a histogram
 - (B) Perform exact matching on the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - (C) Pass on original (uncoarsened) units except those pruned

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as a histogram
 - (B) Perform exact matching on the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - (C) Pass on original (uncoarsened) units except those pruned
- 2. Analyze as without matching (adding weights for stratum-size)

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as a histogram
 - (B) Perform exact matching on the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - (C) Pass on original (uncoarsened) units except those pruned
- Analyze as without matching (adding weights for stratum-size)
 (Or apply other matching methods within CEM strata & they inherert CEM's properties)

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as a histogram
 - (B) Perform exact matching on the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - (C) Pass on original (uncoarsened) units except those pruned
- Analyze as without matching (adding weights for stratum-size)
 (Or apply other matching methods within CEM strata & they inherert CEM's properties)
- → A version of CEM: Last studied 45 years ago by Cochran

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as a histogram
 - (B) Perform exact matching on the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - (C) Pass on original (uncoarsened) units except those pruned
- Analyze as without matching (adding weights for stratum-size)
 (Or apply other matching methods within CEM strata & they inherert CEM's properties)
- → A version of CEM: Last studied 45 years ago by Cochran
- → First used many decades before that

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as a histogram
 - (B) Perform exact matching on the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - (C) Pass on original (uncoarsened) units except those pruned
- Analyze as without matching (adding weights for stratum-size)
 (Or apply other matching methods within CEM strata & they inherert CEM's properties)
- → A version of CEM: Last studied 45 years ago by Cochran
- → First used many decades before that
- → We prove: many new properties, uses, & extensions,

- 1. Preprocess (X, T) with CEM:
 - (A) Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as a histogram
 - (B) Perform exact matching on the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - (C) Pass on original (uncoarsened) units except those pruned
- Analyze as without matching (adding weights for stratum-size)
 (Or apply other matching methods within CEM strata & they inherert CEM's properties)
- → A version of CEM: Last studied 45 years ago by Cochran
- → First used many decades before that
- → We prove: many new properties, uses, & extensions, and show how it resolves many problems in the literature

• Don't eliminate the extrapolation region

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data:

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES);

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y;

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X;

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance;

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice:

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose n

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose *n*-match

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose *n*-match-check,

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose *n*-match-check, tweak

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose *n*-match-check, tweak-match

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose *n*-match-check, tweak-match-check,

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose n-match-check, tweak-match-check, tweak

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose n-match-check, tweak-match-check, tweak-match

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose n-match-check, tweak-match-check, tweak-match-check,

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose n-match-check, tweak-match-check, tweak-match-check, tweak

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose n-match-check, tweak-match-check, tweak-match-check, tweak-match

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose n-match-check, tweak-match-check, tweak-match-check, tweak-match-check,

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose *n*-match-check, tweak-match-check, tweak-match-check, tweak-match-check, · · ·

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose *n*-match-check, tweak-match-check, tweak-match-check, tweak-match-check, · · ·
 - Actual practice:

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose *n*-match-check, tweak-match-check, tweak-match-check, tweak-match-check, · · ·
 - Actual practice: choose n,

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose *n*-match-check, tweak-match-check, tweak-match-check, tweak-match-check, · · ·
 - Actual practice: choose n, match,

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose *n*-match-check, tweak-match-check, tweak-match-check, tweak-match-check, · · ·
 - Actual practice: choose n, match, publish,

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose n-match-check, tweak-match-check, tweak-match-check, tweak-match-check, · · ·
 - Actual practice: choose *n*, match, publish, STOP.

- Don't eliminate the extrapolation region
- Don't work with multiply imputed data
- Violate the congruence principle
- Matching methods from the largest class (EPBR, e.g., PSM, MDM) don't apply to real data: require normal data (or DMPES); all X's must have same effect on Y; Y must be a linear function of X; aim only for expected (not in-sample) imbalance; → in practice, we're lucky if mean imbalance is reduced
- Not well designed for observational data:
 - Least important (variance): matched *n* chosen ex ante
 - Most important (bias): imbalance reduction checked ex post
- Hard to use: Improving balance on 1 variable can reduce it on others
 - Best practice: choose n-match-check, tweak-match-check, tweak-match-check, tweak-match-check, · · ·
 - Actual practice: choose n, match, publish, STOP.
 (Is balance even improved?)

• Coarsening is intrinsic to measurement

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories
 - Examples: male/female, rich/middle/poor, black/white, war/nonwar.

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories
 - Examples: male/female, rich/middle/poor, black/white, war/nonwar.
 - Better measurements (e.g., telescopes) → better resolution

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories
 - Examples: male/female, rich/middle/poor, black/white, war/nonwar.
 - Better measurements (e.g., telescopes) → better resolution
- Data analysts routinely coarsen, thinking grouping error is less risky than measurement error. E.g.:

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories
 - Examples: male/female, rich/middle/poor, black/white, war/nonwar.
 - Better measurements (e.g., telescopes) → better resolution
- Data analysts routinely coarsen, thinking grouping error is less risky than measurement error. E.g.:
 - 7 point Party ID → Democrat/Independent/Republican

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories
 - Examples: male/female, rich/middle/poor, black/white, war/nonwar.
 - Better measurements (e.g., telescopes) → better resolution
- Data analysts routinely coarsen, thinking grouping error is less risky than measurement error. E.g.:
 - 7 point Party ID → Democrat/Independent/Republican
 - Likert Issue questions → agree/{neutral,no opinion}/disagree

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories
 - Examples: male/female, rich/middle/poor, black/white, war/nonwar.
 - Better measurements (e.g., telescopes) → better resolution
- Data analysts routinely coarsen, thinking grouping error is less risky than measurement error. E.g.:
 - 7 point Party ID → Democrat/Independent/Republican
 - Likert Issue questions → agree/{neutral,no opinion}/disagree
 - multiparty voting → winner/losers

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories
 - Examples: male/female, rich/middle/poor, black/white, war/nonwar.
 - Better measurements (e.g., telescopes) → better resolution
- Data analysts routinely coarsen, thinking grouping error is less risky than measurement error. E.g.:
 - 7 point Party ID → Democrat/Independent/Republican
 - Likert Issue questions \leadsto agree/{neutral,no opinion}/disagree
 - multiparty voting → winner/losers
 - Religion, Occupation, SEC industries, ICD codes, etc.

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories
 - Examples: male/female, rich/middle/poor, black/white, war/nonwar.
 - Better measurements (e.g., telescopes) → better resolution
- Data analysts routinely coarsen, thinking grouping error is less risky than measurement error. E.g.:
 - 7 point Party ID → Democrat/Independent/Republican
 - Likert Issue questions → agree/{neutral,no opinion}/disagree
 - multiparty voting → winner/losers
 - Religion, Occupation, SEC industries, ICD codes, etc.
- Temporary Coarsening for CEM; e.g.:

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories
 - Examples: male/female, rich/middle/poor, black/white, war/nonwar.
 - Better measurements (e.g., telescopes) → better resolution
- Data analysts routinely coarsen, thinking grouping error is less risky than measurement error. E.g.:
 - 7 point Party ID → Democrat/Independent/Republican
 - Likert Issue questions → agree/{neutral,no opinion}/disagree
 - multiparty voting → winner/losers
 - Religion, Occupation, SEC industries, ICD codes, etc.
- Temporary Coarsening for CEM; e.g.:
 - Education: grade school, middle school, high school, college, graduate

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories
 - Examples: male/female, rich/middle/poor, black/white, war/nonwar.
 - Better measurements (e.g., telescopes) → better resolution
- Data analysts routinely coarsen, thinking grouping error is less risky than measurement error. E.g.:
 - 7 point Party ID → Democrat/Independent/Republican
 - Likert Issue questions → agree/{neutral,no opinion}/disagree
 - multiparty voting → winner/losers
 - Religion, Occupation, SEC industries, ICD codes, etc.
- Temporary Coarsening for CEM; e.g.:
 - Education: grade school, middle school, high school, college, graduate
 - Income: poverty level threshold, or larger bins for higher income

- Coarsening is intrinsic to measurement
 - We think of measurement as clarity between categories
 - But measurement also involves homogeneity within categories
 - Examples: male/female, rich/middle/poor, black/white, war/nonwar.
 - Better measurements (e.g., telescopes) → better resolution
- Data analysts routinely coarsen, thinking grouping error is less risky than measurement error. E.g.:
 - 7 point Party ID → Democrat/Independent/Republican
 - Likert Issue questions → agree/{neutral,no opinion}/disagree
 - multiparty voting → winner/losers
 - Religion, Occupation, SEC industries, ICD codes, etc.
- Temporary Coarsening for CEM; e.g.:
 - Education: grade school, middle school, high school, college, graduate
 - Income: poverty level threshold, or larger bins for higher income
 - Age: infant, child, adolescent, young adult, middle age, elderly

• Define: ϵ as largest (coarsened) bin size ($\epsilon=0$ is exact matching)

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for:

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means,

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances,

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness,

- Define: ϵ as largest (coarsened) bin size ($\epsilon=0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances,

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments,

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness,

- Define: ϵ as largest (coarsened) bin size ($\epsilon=0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis,

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles,

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles, and full multivariate histogram.

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles, and full multivariate histogram.
 - \implies Setting ϵ controls all multivariate treatment-control differences, interactions, and nonlinearities, up to the chosen level (matched n is determined ex post)

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles, and full multivariate histogram.
 - \implies Setting ϵ controls all multivariate treatment-control differences, interactions, and nonlinearities, up to the chosen level (matched n is determined ex post)
- By default, both treated and control units are pruned: CEM estimates a quantity that can be estimated without model dependence

- Define: ϵ as largest (coarsened) bin size ($\epsilon=0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles, and full multivariate histogram.
 - \implies Setting ϵ controls all multivariate treatment-control differences, interactions, and nonlinearities, up to the chosen level (matched n is determined ex post)
- By default, both treated and control units are pruned: CEM estimates a quantity that can be estimated without model dependence
- What if ϵ is set . . .

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles, and full multivariate histogram.
 - \implies Setting ϵ controls all multivariate treatment-control differences, interactions, and nonlinearities, up to the chosen level (matched n is determined ex post)
- By default, both treated and control units are pruned: CEM estimates a quantity that can be estimated without model dependence
- What if ϵ is set . . .
 - too large?

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles, and full multivariate histogram.
 - \implies Setting ϵ controls all multivariate treatment-control differences, interactions, and nonlinearities, up to the chosen level (matched n is determined ex post)
- By default, both treated and control units are pruned: CEM estimates a quantity that can be estimated without model dependence
- What if ∈ is set . . .

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles, and full multivariate histogram.
 - \implies Setting ϵ controls all multivariate treatment-control differences, interactions, and nonlinearities, up to the chosen level (matched n is determined ex post)
- By default, both treated and control units are pruned: CEM estimates a quantity that can be estimated without model dependence
- What if ∈ is set . . .
 - too large? → You're left modeling remaining imbalances
 - too small?

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles, and full multivariate histogram.
 - \implies Setting ϵ controls all multivariate treatment-control differences, interactions, and nonlinearities, up to the chosen level (matched n is determined ex post)
- By default, both treated and control units are pruned: CEM estimates a quantity that can be estimated without model dependence
- What if ∈ is set . . .
 - too large? → You're left modeling remaining imbalances

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles, and full multivariate histogram.
 - \implies Setting ϵ controls all multivariate treatment-control differences, interactions, and nonlinearities, up to the chosen level (matched n is determined ex post)
- By default, both treated and control units are pruned: CEM estimates a quantity that can be estimated without model dependence
- What if ϵ is set . . .

 - as large as you're comfortable with, but *n* is still too small?

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles, and full multivariate histogram.
 - \implies Setting ϵ controls all multivariate treatment-control differences, interactions, and nonlinearities, up to the chosen level (matched n is determined ex post)
- By default, both treated and control units are pruned: CEM estimates a quantity that can be estimated without model dependence
- What if ϵ is set . . .

 - as large as you're comfortable with, but n is still too small?
 → No magic method of matching can save you;

- Define: ϵ as largest (coarsened) bin size ($\epsilon = 0$ is exact matching)
- We Prove: setting ϵ bounds the treated-control group difference, within strata and globally, for: means, variances, skewness, covariances, comoments, coskewness, co-kurtosis, quantiles, and full multivariate histogram.
 - \implies Setting ϵ controls all multivariate treatment-control differences, interactions, and nonlinearities, up to the chosen level (matched n is determined ex post)
- By default, both treated and control units are pruned: CEM estimates a quantity that can be estimated without model dependence
- What if ϵ is set . . .
 - too large? → You're left modeling remaining imbalances
 - too small? \rightsquigarrow *n* may be too small
 - as large as you're comfortable with, but n is still too small?
 - → No magic method of matching can save you;
 → You're stuck modeling or collecting better data

Automatically eliminates extrapolation region (no separate step)

- Automatically eliminates extrapolation region (no separate step)
- Bounds: model dependence, researcher discretion, bias, estimation error

- Automatically eliminates extrapolation region (no separate step)
- Bounds: model dependence, researcher discretion, bias, estimation error
- Meets the congruence principle

- Automatically eliminates extrapolation region (no separate step)
- Bounds: model dependence, researcher discretion, bias, estimation error
- Meets the congruence principle
 - ullet The principle: data space = analysis space

- Automatically eliminates extrapolation region (no separate step)
- Bounds: model dependence, researcher discretion, bias, estimation error
- Meets the congruence principle
 - The principle: data space = analysis space
 - Estimators that violate it are nonrobust and counterintuitive

- Automatically eliminates extrapolation region (no separate step)
- Bounds: model dependence, researcher discretion, bias, estimation error
- Meets the congruence principle
 - The principle: data space = analysis space
 - Estimators that violate it are nonrobust and counterintuitive
 - CEM: ϵ_j is set using each variable's units

- Automatically eliminates extrapolation region (no separate step)
- Bounds: model dependence, researcher discretion, bias, estimation error
- Meets the congruence principle
 - The principle: data space = analysis space
 - Estimators that violate it are nonrobust and counterintuitive
 - CEM: ϵ_i is set using each variable's units
 - E.g., calipers (strata centered on each unit):

- Automatically eliminates extrapolation region (no separate step)
- Bounds: model dependence, researcher discretion, bias, estimation error
- Meets the congruence principle
 - The principle: data space = analysis space
 - Estimators that violate it are nonrobust and counterintuitive
 - CEM: ϵ_i is set using each variable's units
 - E.g., calipers (strata centered on each unit): would bin college drop out with 1st year grad student;

- Automatically eliminates extrapolation region (no separate step)
- Bounds: model dependence, researcher discretion, bias, estimation error
- Meets the congruence principle
 - The principle: data space = analysis space
 - Estimators that violate it are nonrobust and counterintuitive
 - CEM: ϵ_i is set using each variable's units
 - E.g., calipers (strata centered on each unit): would bin college drop out with 1st year grad student; and not bin Bill Gates & Warren Buffett

- Automatically eliminates extrapolation region (no separate step)
- Bounds: model dependence, researcher discretion, bias, estimation error
- Meets the congruence principle
 - The principle: data space = analysis space
 - Estimators that violate it are nonrobust and counterintuitive
 - CEM: ϵ_i is set using each variable's units
 - E.g., calipers (strata centered on each unit): would bin college drop out with 1st year grad student; and not bin Bill Gates & Warren Buffett
- Approximate invariance to measurement error:

CEM PSM MDM Genetic % Common Units 96.5 70.2 80.9 80.0

- Automatically eliminates extrapolation region (no separate step)
- Bounds: model dependence, researcher discretion, bias, estimation error
- Meets the congruence principle
 - The principle: data space = analysis space
 - Estimators that violate it are nonrobust and counterintuitive
 - CEM: ϵ_i is set using each variable's units
 - E.g., calipers (strata centered on each unit): would bin college drop out with 1st year grad student; and not bin Bill Gates & Warren Buffett
- Approximate invariance to measurement error:
 CEM PSM MDM Genetic
 - % Common Units 96.5 70.2 80.9 80.0
- Fast and memory-efficient even for large n; can be fully automated

- Automatically eliminates extrapolation region (no separate step)
- Bounds: model dependence, researcher discretion, bias, estimation error
- Meets the congruence principle
 - The principle: data space = analysis space
 - Estimators that violate it are nonrobust and counterintuitive
 - CEM: ϵ_i is set using each variable's units
 - E.g., calipers (strata centered on each unit): would bin college drop out with 1st year grad student; and not bin Bill Gates & Warren Buffett
- Approximate invariance to measurement error:

CEM PSM MDM Genetic % Common Units 96.5 70.2 80.9 80.0

- Fast and memory-efficient even for large n; can be fully automated
- Simple to teach: coarsen, then exact match

Monte Carlo:

Monte Carlo: $\mathbf{X}_{\mathcal{T}} \sim \mathcal{N}_5(\mathbf{0}, \Sigma)$ and $\mathbf{X}_{\mathcal{C}} \sim \mathcal{N}_5(\mathbf{1}, \Sigma)$.

Monte Carlo: $\mathbf{X}_{T} \sim N_{5}(\mathbf{0}, \Sigma)$ and $\mathbf{X}_{C} \sim N_{5}(\mathbf{1}, \Sigma)$. n = 2,000, reps=5,000;

Monte Carlo: $\mathbf{X}_T \sim N_5(\mathbf{0}, \Sigma)$ and $\mathbf{X}_C \sim N_5(\mathbf{1}, \Sigma)$. n = 2,000, reps=5,000; Allow MDM & PSM to match with replacement;

Monte Carlo: $\mathbf{X}_T \sim N_5(\mathbf{0}, \Sigma)$ and $\mathbf{X}_C \sim N_5(\mathbf{1}, \Sigma)$. n=2,000, reps=5,000; Allow MDM & PSM to match with replacement; use automated CFM

Monte Carlo: $\mathbf{X}_T \sim N_5(\mathbf{0}, \Sigma)$ and $\mathbf{X}_C \sim N_5(\mathbf{1}, \Sigma)$. n=2,000, reps=5,000; Allow MDM & PSM to match with replacement; use automated CEM

Difference in means

Monte Carlo: $\mathbf{X}_T \sim N_5(\mathbf{0}, \Sigma)$ and $\mathbf{X}_C \sim N_5(\mathbf{1}, \Sigma)$. n=2,000, reps=5,000; Allow MDM & PSM to match with replacement; use automated CEM

Difference in means

Monte Carlo: $\mathbf{X}_T \sim N_5(\mathbf{0}, \Sigma)$ and $\mathbf{X}_C \sim N_5(\mathbf{1}, \Sigma)$. n=2,000, reps=5,000; Allow MDM & PSM to match with replacement;use automated CEM

Difference in means
$$X_1$$
 X_2 X_3 X_4 X_5 L_1 Seconds

Monte Carlo: $\mathbf{X}_T \sim N_5(\mathbf{0}, \Sigma)$ and $\mathbf{X}_C \sim N_5(\mathbf{1}, \Sigma)$. n=2,000, reps=5,000; Allow MDM & PSM to match with replacement; use automated CEM

	Difference in means						
	X_1	X_2	X_3	X_4	X_5	L_1	Seconds
initial	1.00	1.00	1.00	1.00	1.00	.50	

Monte Carlo: $\mathbf{X}_T \sim N_5(\mathbf{0}, \Sigma)$ and $\mathbf{X}_C \sim N_5(\mathbf{1}, \Sigma)$. n=2,000, reps=5,000; Allow MDM & PSM to match with replacement; use automated CFM

	Difference in means						
	X_1	X_2	X_3	X_4	X_5	L_1	Seconds
initial	1.00	1.00	1.00	1.00	1.00	.50	
MDM	.45	.45	.45	.45	.45	.34	.28

Monte Carlo: $\mathbf{X}_T \sim N_5(\mathbf{0}, \Sigma)$ and $\mathbf{X}_C \sim N_5(\mathbf{1}, \Sigma)$. n=2,000, reps=5,000; Allow MDM & PSM to match with replacement; use automated CFM

\Box	iffarar	nco in	means	-
U	ifferer	ice in	means	5

	X_1	X_2	X_3	X_4	X_5	L_1	Seconds
initial	1.00	1.00	1.00	1.00	1.00	.50	
MDM	.45	.45	.45	.45	.45	.34	.28
PSM	.32	.32	.32	.32	.32	.31	.16

Monte Carlo: $\mathbf{X}_T \sim N_5(\mathbf{0}, \Sigma)$ and $\mathbf{X}_C \sim N_5(\mathbf{1}, \Sigma)$. n=2,000, reps=5,000; Allow MDM & PSM to match with replacement;use automated CEM

D:1	C	:	
ווע	ference	111	means

	X_1	X_2	X_3	X_4	X_5	L_1	Seconds
initial	1.00	1.00	1.00	1.00	1.00	.50	
MDM	.45	.45	.45	.45	.45	.34	.28
PSM	.32	.32	.32	.32	.32	.31	.16
CEM	.04	.04	.08	.06	.07	.21	.08

Monte Carlo: $\mathbf{X}_T \sim N_5(\mathbf{0}, \Sigma)$ and $\mathbf{X}_C \sim N_5(\mathbf{1}, \Sigma)$. n=2,000, reps=5,000; Allow MDM & PSM to match with replacement; use automated CFM

Difference	in	maanc
I Jillerence	111	means

	X_1	X_2	X_3	X_4	X_5	L_1	Seconds
initial	1.00	1.00	1.00	1.00	1.00	.50	
MDM	.45	.45	.45	.45	.45	.34	.28
PSM	.32	.32	.32	.32	.32	.31	.16
CEM	.04	.04	.08	.06	.07	.21	.08

Monte Carlo: Exact replication of Diamond and Sekhon (2005), using data from Dehejia and Wahba (1999). CEM coarsening automated.

BIAS SD RMSE Seconds L_1

Monte Carlo: Exact replication of Diamond and Sekhon (2005), using data from Dehejia and Wahba (1999). CEM coarsening automated.

BIAS SD RMSE Seconds L_1

	BIAS	SD	RMSE	Seconds	L_1
initial	-423.7	1566.5	1622.6	.00	1.28

	BIAS	SD	RMSE	Seconds	L_1
initial	-423.7	1566.5	1622.6	.00	1.28
MDM	784.8	737.9	1077.2	.03	1.08

	BIAS	SD	RMSE	Seconds	L_1
initial	-423.7	1566.5	1622.6	.00	1.28
MDM	784.8	737.9	1077.2	.03	1.08
PSM	260.5	1025.8	1058.4	.02	1.23

	BIAS	SD	RMSE	Seconds	L_1
initial	-423.7	1566.5	1622.6	.00	1.28
MDM	784.8	737.9	1077.2	.03	1.08
PSM	260.5	1025.8	1058.4	.02	1.23
GEN	78.3	499.5	505.6	27.38	1.12

	BIAS	SD	RMSE	Seconds	L_1
initial	-423.7	1566.5	1622.6	.00	1.28
MDM	784.8	737.9	1077.2	.03	1.08
PSM	260.5	1025.8	1058.4	.02	1.23
GEN	78.3	499.5	505.6	27.38	1.12
CEM	8.	111.4	111.4	.03	.76

Monte Carlo: Exact replication of Diamond and Sekhon (2005), using data from Dehejia and Wahba (1999). CEM coarsening automated.

	BIAS	SD	RMSE	Seconds	L_1
initial	-423.7	1566.5	1622.6	.00	1.28
MDM	784.8	737.9	1077.2	.03	1.08
PSM	260.5	1025.8	1058.4	.02	1.23
GEN	78.3	499.5	505.6	27.38	1.12
CEM	8.	111.4	111.4	.03	.76

CEM Extensions I

CEM Extensions I

• Many binary variables:

CEM Extensions I

• Many binary variables: → coarsen sums of related vars

- Many binary variables: → coarsen sums of related vars
- Missing Data and/or Measurement Error

- Missing Data and/or Measurement Error
 - 1. Multiply Impute (missing) or Overimpute (measurement error)

- Missing Data and/or Measurement Error
 - 1. Multiply Impute (missing) or Overimpute (measurement error)
 - 2. Put missing observation in stratum where plurality of imputations fall

- Missing Data and/or Measurement Error
 - 1. Multiply Impute (missing) or Overimpute (measurement error)
 - Put missing observation in stratum where plurality of imputations fall
 - 3. Pass on uncoarsened imputations to analysis stage

- Missing Data and/or Measurement Error
 - 1. Multiply Impute (missing) or Overimpute (measurement error)
 - 2. Put missing observation in stratum where plurality of imputations fall
 - 3. Pass on uncoarsened imputations to analysis stage
 - 4. Use the usual MI combining rules to analyze

- Missing Data and/or Measurement Error
 - 1. Multiply Impute (missing) or Overimpute (measurement error)
 - 2. Put missing observation in stratum where plurality of imputations fall
 - 3. Pass on uncoarsened imputations to analysis stage
 - 4. Use the usual MI combining rules to analyze
- Multicategory treatments: No modification necessary; keep all strata with ≥ 1 unit having each value of T

- Missing Data and/or Measurement Error
 - 1. Multiply Impute (missing) or Overimpute (measurement error)
 - Put missing observation in stratum where plurality of imputations fall
 - 3. Pass on uncoarsened imputations to analysis stage
 - 4. Use the usual MI combining rules to analyze
- Multicategory treatments: No modification necessary; keep all strata with ≥ 1 unit having each value of T
- Blocking in Randomized Experiments: no modification needed; randomly assign T within CEM strata

- Missing Data and/or Measurement Error
 - 1. Multiply Impute (missing) or Overimpute (measurement error)
 - 2. Put missing observation in stratum where plurality of imputations fall
 - 3. Pass on uncoarsened imputations to analysis stage
 - 4. Use the usual MI combining rules to analyze
- Multicategory treatments: No modification necessary; keep all strata with ≥ 1 unit having each value of T
- Blocking in Randomized Experiments: no modification needed; randomly assign T within CEM strata
- Automating user choices

- Many binary variables: → coarsen sums of related vars
- Missing Data and/or Measurement Error
 - 1. Multiply Impute (missing) or Overimpute (measurement error)
 - Put missing observation in stratum where plurality of imputations fall
 - 3. Pass on uncoarsened imputations to analysis stage
 - 4. Use the usual MI combining rules to analyze
- Multicategory treatments: No modification necessary; keep all strata with ≥ 1 unit having each value of T
- Blocking in Randomized Experiments: no modification needed; randomly assign T within CEM strata
- Automating user choices Histogram bin size calculations,

- Missing Data and/or Measurement Error
 - 1. Multiply Impute (missing) or Overimpute (measurement error)
 - Put missing observation in stratum where plurality of imputations fall
 - 3. Pass on uncoarsened imputations to analysis stage
 - 4. Use the usual MI combining rules to analyze
- Multicategory treatments: No modification necessary; keep all strata with ≥ 1 unit having each value of T
- Blocking in Randomized Experiments: no modification needed; randomly assign T within CEM strata
- Automating user choices Histogram bin size calculations, Estimated SATT error bound,

- Many binary variables: → coarsen sums of related vars
- Missing Data and/or Measurement Error
 - 1. Multiply Impute (missing) or Overimpute (measurement error)
 - 2. Put missing observation in stratum where plurality of imputations fall
 - 3. Pass on uncoarsened imputations to analysis stage
 - 4. Use the usual MI combining rules to analyze
- Multicategory treatments: No modification necessary; keep all strata with ≥ 1 unit having each value of T
- Blocking in Randomized Experiments: no modification needed; randomly assign T within CEM strata
- Automating user choices Histogram bin size calculations, Estimated SATT error bound, Progressive Coarsening

- Missing Data and/or Measurement Error
 - 1. Multiply Impute (missing) or Overimpute (measurement error)
 - Put missing observation in stratum where plurality of imputations fall
 - 3. Pass on uncoarsened imputations to analysis stage
 - 4. Use the usual MI combining rules to analyze
- Multicategory treatments: No modification necessary; keep all strata with ≥ 1 unit having each value of T
- Blocking in Randomized Experiments: no modification needed; randomly assign T within CEM strata
- Automating user choices Histogram bin size calculations, Estimated SATT error bound, Progressive Coarsening
- Detecting Extreme Counterfactuals

• Most commonly used methods:

- Most commonly used methods:
 - cannot be used to eliminate extrapolation region

- Most commonly used methods:
 - cannot be used to eliminate extrapolation region
 - don't possess most other CEM properties

- Most commonly used methods:
 - cannot be used to eliminate extrapolation region
 - don't possess most other CEM properties
 - inherent CEM properties if applied within CEM strata

- Most commonly used methods:
 - cannot be used to eliminate extrapolation region
 - don't possess most other CEM properties
 - inherent CEM properties if applied within CEM strata
- Propensity Score matching:

- Most commonly used methods:
 - cannot be used to eliminate extrapolation region
 - don't possess most other CEM properties
 - inherent CEM properties if applied within CEM strata
- Propensity Score matching:
 - CEM strata can bound bias in PSM

- Most commonly used methods:
 - cannot be used to eliminate extrapolation region
 - don't possess most other CEM properties
 - inherent CEM properties if applied within CEM strata
- Propensity Score matching:
 - CEM strata can bound bias in PSM
 - Probably shouldn't be used in practice

- Most commonly used methods:
 - cannot be used to eliminate extrapolation region
 - don't possess most other CEM properties
 - inherent CEM properties if applied within CEM strata
- Propensity Score matching:
 - CEM strata can bound bias in PSM
 - Probably shouldn't be used in practice
- MDM: can apply within CEM strata

- Most commonly used methods:
 - cannot be used to eliminate extrapolation region
 - don't possess most other CEM properties
 - inherent CEM properties if applied within CEM strata
- Propensity Score matching:
 - CEM strata can bound bias in PSM
 - Probably shouldn't be used in practice
- MDM: can apply within CEM strata
- Genetic Matching: can constrain results to CEM strata

- Most commonly used methods:
 - cannot be used to eliminate extrapolation region
 - don't possess most other CEM properties
 - inherent CEM properties if applied within CEM strata
- Propensity Score matching:
 - CEM strata can bound bias in PSM
 - Probably shouldn't be used in practice
- MDM: can apply within CEM strata
- Genetic Matching: can constrain results to CEM strata
- Synthetic Matching, or Robins' weights: CEM can identify region to apply weights, increasing efficiency/robustness

- Most commonly used methods:
 - cannot be used to eliminate extrapolation region
 - don't possess most other CEM properties
 - inherent CEM properties if applied within CEM strata
- Propensity Score matching:
 - CEM strata can bound bias in PSM
 - Probably shouldn't be used in practice
- MDM: can apply within CEM strata
- Genetic Matching: can constrain results to CEM strata
- Synthetic Matching, or Robins' weights: CEM can identify region to apply weights, increasing efficiency/robustness
- Nonparametric Adjustments: can apply within CEM strata

Part 3 (of 3)

Imbalance

Number of Units Pruned

How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for $\underline{\text{all}} \binom{N}{n}$ subsets of rows of X_0

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for $\underline{\text{all}} \binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for $\underline{\text{all}} \binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for $\underline{\text{all}} \binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for $\underline{\text{all}} \binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - runs very fast

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for $\underline{\text{all}} \binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - · runs very fast
 - operate as "greedy" but we prove are optimal

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for $\underline{\text{all}} \binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., *N* > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as "greedy" but we prove are optimal
 - do not require evaluating every subset

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., *N* > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as "greedy" but we prove are optimal
 - do not require evaluating every subset
 - · work with very large data sets

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as "greedy" but we prove are optimal
 - do not require evaluating every subset
 - work with very large data sets
 - is the exact frontier (no approximation or estimation)

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as "greedy" but we prove are optimal
 - do not require evaluating every subset
 - work with very large data sets
 - is the exact frontier (no approximation or estimation)
 - → It's easy to calculate!

• To use, make 2 choices:

- To use, make 2 choices:
 - 1. Quantity of interest: SATT (prune Cs only) or FSATT

- To use, make 2 choices:
 - 1. Quantity of interest: SATT (prune Cs only) or FSATT
 - 2. Fixed- or variable-ratio matching

- To use, make 2 choices:
 - 1. Quantity of interest: SATT (prune Cs only) or FSATT
 - 2. Fixed- or variable-ratio matching
- Result:

- To use, make 2 choices:
 - 1. Quantity of interest: SATT (prune Cs only) or FSATT
 - 2. Fixed- or variable-ratio matching
- Result:
 - Algorithm finds the whole frontier

- To use, make 2 choices:
 - 1. Quantity of interest: SATT (prune Cs only) or FSATT
 - 2. Fixed- or variable-ratio matching
- Result:
 - Algorithm finds the whole frontier
 - Simple to use (free easy software available)

- To use, make 2 choices:
 - 1. Quantity of interest: SATT (prune Cs only) or FSATT
 - 2. Fixed- or variable-ratio matching
- Result:
 - Algorithm finds the whole frontier
 - Simple to use (free easy software available)
 - No need to choose or use a matching method

- To use, make 2 choices:
 - 1. Quantity of interest: SATT (prune Cs only) or FSATT
 - 2. Fixed- or variable-ratio matching
- Result:
 - Algorithm finds the whole frontier
 - Simple to use (free easy software available)
 - No need to choose or use a matching method
 - All solutions are optimal

- To use, make 2 choices:
 - 1. Quantity of interest: SATT (prune Cs only) or FSATT
 - 2. Fixed- or variable-ratio matching
- Result:
 - Algorithm finds the whole frontier
 - Simple to use (free easy software available)
 - No need to choose or use a matching method
 - All solutions are optimal
 - No iteration or diagnostics required

- To use, make 2 choices:
 - 1. Quantity of interest: SATT (prune Cs only) or FSATT
 - 2. Fixed- or variable-ratio matching
- Result:
 - · Algorithm finds the whole frontier
 - Simple to use (free easy software available)
 - No need to choose or use a matching method
 - All solutions are optimal
 - No iteration or diagnostics required
 - No cherry picking possible; you see everything optimal

Job Training Data: Frontier and Causal Estimates

- 185 Ts; pruning most 16,252 Cs won't increase variance much
- Huge bias-variance trade-off after pruning most Cs
- Estimates converge to experiment after removing bias
- No mysteries: basis of inference clearly revealed

Warning: figure omits details and the proof!

- Warning: figure omits details and the proof!
- Very fast; works with any continuous imbalance metric

Short version:

1. Calculate bins

- 1. Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- 1. Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- 1. Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- 1. Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- 1. Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- 1. Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

- 1. Calculate bins
- 2. Until balance stops improving, greedily prune a control unit from the bin with the largest proportional difference between control and treated units

• Matching:

- Matching:
 - An excellent method of improving causal inferences

- Matching:
 - An excellent method of improving causal inferences
 - Helps reduce: imbalance, model dependence, researcher discretion, bias

- Matching:
 - An excellent method of improving causal inferences
 - Helps reduce: imbalance, model dependence, researcher discretion, bias
- Propensity Score Matching: low standards, dangerous in practice; DNR

- Matching:
 - An excellent method of improving causal inferences
 - Helps reduce: imbalance, model dependence, researcher discretion, bias
- Propensity Score Matching: low standards, dangerous in practice; DNR
- Most other methods of matching: excellent

- Matching:
 - An excellent method of improving causal inferences
 - Helps reduce: imbalance, model dependence, researcher discretion, bias
- Propensity Score Matching: low standards, dangerous in practice; DNR
- Most other methods of matching: excellent
- Coarsened Exact Matching: especially powerful; simple to understand and use

- Matching:
 - An excellent method of improving causal inferences
 - Helps reduce: imbalance, model dependence, researcher discretion, bias
- Propensity Score Matching: low standards, dangerous in practice; DNR
- Most other methods of matching: excellent
- Coarsened Exact Matching: especially powerful; simple to understand and use
- Matching Frontier: Automates what's left to automate

- Matching:
 - An excellent method of improving causal inferences
 - Helps reduce: imbalance, model dependence, researcher discretion, bias
- Propensity Score Matching: low standards, dangerous in practice; DNR
- Most other methods of matching: excellent
- Coarsened Exact Matching: especially powerful; simple to understand and use
- Matching Frontier: Automates what's left to automate
- In applications, focus on the substance:

- Matching:
 - An excellent method of improving causal inferences
 - Helps reduce: imbalance, model dependence, researcher discretion, bias
- Propensity Score Matching: low standards, dangerous in practice; DNR
- Most other methods of matching: excellent
- Coarsened Exact Matching: especially powerful; simple to understand and use
- Matching Frontier: Automates what's left to automate
- In applications, focus on the substance:
 - All observational methods must assume ignorability

- Matching:
 - An excellent method of improving causal inferences
 - Helps reduce: imbalance, model dependence, researcher discretion, bias
- Propensity Score Matching: low standards, dangerous in practice; DNR
- Most other methods of matching: excellent
- Coarsened Exact Matching: especially powerful; simple to understand and use
- Matching Frontier: Automates what's left to automate
- In applications, focus on the substance:
 - All observational methods must assume ignorability
 - Automated methods to choose variables: Insufficient

- Matching:
 - An excellent method of improving causal inferences
 - Helps reduce: imbalance, model dependence, researcher discretion, bias
- Propensity Score Matching: low standards, dangerous in practice; DNR
- Most other methods of matching: excellent
- Coarsened Exact Matching: especially powerful; simple to understand and use
- Matching Frontier: Automates what's left to automate
- In applications, focus on the substance:
 - All observational methods must assume ignorability
 - Automated methods to choose variables: Insufficient
 - Claims of invariance: Always fail

- Matching:
 - An excellent method of improving causal inferences
 - Helps reduce: imbalance, model dependence, researcher discretion, bias
- Propensity Score Matching: low standards, dangerous in practice; DNR
- Most other methods of matching: excellent
- Coarsened Exact Matching: especially powerful; simple to understand and use
- Matching Frontier: Automates what's left to automate
- In applications, focus on the substance:
 - All observational methods must assume ignorability
 - Automated methods to choose variables: Insufficient
 - · Claims of invariance: Always fail
 - Trying to be invariant to the substance: be wary of methods claiming to be invariant to what you know!

For more information, papers, & software

GaryKing.org

Part 4 (of 3), :-)

Matching Theories of Inference (in one slide)

Assumptions to Justify Current Practice

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

Alternative Theory of Inference: It's Gonna be OK!

Existing Theory of Inference: Stop What You're Doing!

• Framework: simple random sampling from a population

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Alternative Theory of Inference: It's Gonna be OK!

• Framework: stratified random sampling from a population

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
 - Set-wide Unconfoundedness: T⊥Y(0) | A

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
 - Set-wide Unconfoundedness: T⊥Y(0) | A
 - Set-wide Common support: Pr(T = 1|A) < 1

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
 - Set-wide Unconfoundedness: T⊥Y(0) | A
 - Set-wide Common support: Pr(T = 1|A) < 1
- Fits all common matching methods & practices; no asymptotics

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
 - Set-wide Unconfoundedness: T⊥Y(0) | A
 - Set-wide Common support: Pr(T = 1|A) < 1
- · Fits all common matching methods & practices; no asymptotics
- Easy extensions for: multi-level, continuous, & mismeasured treatments; A too wide, n too small