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Part 1 (of 3)

Imbalance  Model Dependence  Researcher Discretion  Bias



Model Dependence Example

• Data: 124 Post-World War II civil wars

• Dependent var: peacebuilding success

• Treatment: multilateral UN peacekeeping intervention (0/1)

• Control vars: war type, severity, duration; development
status,. . .

• Counterfactual question: Switch UN intervention for each war

• Data analysis: Logit model

• The question: How model dependent are the results?
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Two Logit Models, Apparently Similar Results

Original “Interactive” Model Modified Model
Variables Coeff SE P-val Coeff SE P-val

Wartype −1.742 .609 .004 −1.666 .606 .006
Logdead −.445 .126 .000 −.437 .125 .000
Wardur .006 .006 .258 .006 .006 .342
Factnum −1.259 .703 .073 −1.045 .899 .245
Factnum2 .062 .065 .346 .032 .104 .756
Trnsfcap .004 .002 .010 .004 .002 .017
Develop .001 .000 .065 .001 .000 .068
Exp −6.016 3.071 .050 −6.215 3.065 .043
Decade −.299 .169 .077 −0.284 .169 .093
Treaty 2.124 .821 .010 2.126 .802 .008
UNOP4 3.135 1.091 .004 .262 1.392 .851
Wardur*UNOP4 — — — .037 .011 .001
Constant 8.609 2.157 0.000 7.978 2.350 .000

N 122 122
Log-likelihood -45.649 -44.902
Pseudo R2 .423 .433
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Model Dependence: Same Fit, Different Predictions
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Part 2 (of 3)

Coarsened Exact Matching



Coarsened Exact Matching (CEM)

1. Preprocess (X , T ) with CEM:

(A) Temporarily coarsen X as much as you’re willing

• e.g., Education (grade school, high school, college, graduate)
• Easy to understand, or can be automated as a histogram

(B) Perform exact matching on the coarsened X , C (X )

• Sort observations into strata, each with unique values of C(X )
• Prune any stratum with 0 treated or 0 control units

(C) Pass on original (uncoarsened) units except those pruned

2. Analyze as without matching (adding weights for stratum-size)

(Or apply other matching methods within CEM strata
& they inherert CEM’s properties)

 A version of CEM: Last studied 45 years ago by Cochran
 First used many decades before that
 We prove: many new properties, uses, & extensions,

and show how it resolves many problems in the literature
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Problems with Other Matching Methods

• Don’t eliminate the extrapolation region
• Don’t work with multiply imputed data
• Violate the congruence principle
• Matching methods from the largest class (EPBR, e.g., PSM,

MDM) don’t apply to real data:

require normal data (or
DMPES); all X ’s must have same effect on Y ; Y must be a
linear function of X ; aim only for expected (not in-sample)
imbalance;  in practice, we’re lucky if mean imbalance is
reduced

• Not well designed for observational data:

• Least important (variance): matched n chosen ex ante
• Most important (bias): imbalance reduction checked ex post

• Hard to use: Improving balance on 1 variable can reduce it on
others

• Best practice:

choose n-match-check, tweak-match-check,
tweak-match-check, tweak-match-check, · · ·

• Actual practice:

choose n, match, publish, STOP.
(Is balance even improved?)

8/25
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What’s Coarsening?

• Coarsening is intrinsic to measurement

• We think of measurement as clarity between categories
• But measurement also involves homogeneity within categories
• Examples: male/female, rich/middle/poor, black/white,

war/nonwar.
• Better measurements (e.g., telescopes)  better resolution

• Data analysts routinely coarsen, thinking grouping error is less
risky than measurement error. E.g.:

• 7 point Party ID  Democrat/Independent/Republican
• Likert Issue questions  agree/{neutral,no opinion}/disagree
• multiparty voting  winner/losers
• Religion, Occupation, SEC industries, ICD codes, etc.

• Temporary Coarsening for CEM; e.g.:

• Education: grade school, middle school, high school, college,
graduate

• Income: poverty level threshold, or larger bins for higher
income

• Age: infant, child, adolescent, young adult, middle age, elderly
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CEM as a Monotonic Imbalance Bounding Method

• Define: ε as largest (coarsened) bin size (ε = 0 is exact
matching)

• We Prove: setting ε bounds the treated-control group
difference, within strata and globally, for:

means, variances,
skewness, covariances, comoments, coskewness, co-kurtosis,
quantiles, and full multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control

differences, interactions, and nonlinearities, up to the chosen
level (matched n is determined ex post)

• By default, both treated and control units are pruned: CEM
estimates a quantity that can be estimated without model
dependence

• What if ε is set . . .

• too large?

 You’re left modeling remaining imbalances

• too small?

 n may be too small

• as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data
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difference, within strata and globally, for: means, variances,
skewness, covariances, comoments, coskewness, co-kurtosis,
quantiles, and full multivariate histogram.
=⇒ Setting ε controls all multivariate treatment-control
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Other CEM properties we prove

• Automatically eliminates extrapolation region (no separate
step)

• Bounds: model dependence, researcher discretion, bias,
estimation error

• Meets the congruence principle

• The principle: data space = analysis space
• Estimators that violate it are nonrobust and counterintuitive
• CEM: εj is set using each variable’s units
• E.g., calipers (strata centered on each unit):

would bin college
drop out with 1st year grad student; and not bin Bill Gates &
Warren Buffett

• Approximate invariance to measurement error:
CEM PSM MDM Genetic

% Common Units 96.5 70.2 80.9 80.0

• Fast and memory-efficient even for large n; can be fully
automated

• Simple to teach: coarsen, then exact match
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CEM in Practice: EPBR-Compliant Data

Monte Carlo: XT ∼ N5(0,Σ) and XC ∼ N5(1,Σ). n = 2, 000,
reps=5,000; Allow MDM & PSM to match with replacement;use
automated CEM

Difference in means

X1 X2 X3 X4 X5 L1 Seconds

initial 1.00 1.00 1.00 1.00 1.00 .50
MDM .45 .45 .45 .45 .45 .34 .28
PSM .32 .32 .32 .32 .32 .31 .16
CEM .04 .04 .08 .06 .07 .21 .08

 CEM dominates EPBR-methods in EPBR Data
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CEM in Practice: Non-EPBR Data

Monte Carlo: Exact replication of Diamond and Sekhon (2005),
using data from Dehejia and Wahba (1999). CEM coarsening
automated.

BIAS SD RMSE Seconds L1

initial −423.7 1566.5 1622.6 .00 1.28
MDM 784.8 737.9 1077.2 .03 1.08
PSM 260.5 1025.8 1058.4 .02 1.23
GEN 78.3 499.5 505.6 27.38 1.12
CEM .8 111.4 111.4 .03 .76

 CEM works well in non-EPBR data too
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CEM Extensions I

• Many binary variables:

 coarsen sums of related vars

• Missing Data and/or Measurement Error

1. Multiply Impute (missing) or Overimpute (measurement error)
2. Put missing observation in stratum where plurality of

imputations fall
3. Pass on uncoarsened imputations to analysis stage
4. Use the usual MI combining rules to analyze

• Multicategory treatments: No modification necessary; keep all
strata with ≥ 1 unit having each value of T

• Blocking in Randomized Experiments: no modification
needed; randomly assign T within CEM strata

• Automating user choices

Histogram bin size calculations,
Estimated SATT error bound, Progressive Coarsening

• Detecting Extreme Counterfactuals
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CEM Extensions II: Improving Existing Matching Methods

• Most commonly used methods:

• cannot be used to eliminate extrapolation region
• don’t possess most other CEM properties
• inherent CEM properties if applied within CEM strata

• Propensity Score matching:

• CEM strata can bound bias in PSM
• Probably shouldn’t be used in practice

• MDM: can apply within CEM strata

• Genetic Matching: can constrain results to CEM strata

• Synthetic Matching, or Robins’ weights: CEM can identify
region to apply weights, increasing efficiency/robustness

• Nonparametric Adjustments: can apply within CEM strata
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Part 3 (of 3)

The Matching Frontier
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How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:

• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:

•
(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:

• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:

• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:

•
(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:

• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:

•
(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:

• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:

•
(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:

• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:

•
(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:

• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:

•
(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:

• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:
•

(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:

• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:
•

(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”

• e.g., N > 300 requires more imbalance evaluations than
elementary particles in the universe

•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:

• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:
•

(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe

•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:

• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:
•

(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:

• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:
•

(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:

• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:
•

(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:
• runs very fast

• operate as “greedy” but we prove are optimal
• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:
•

(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:
• runs very fast
• operate as “greedy” but we prove are optimal

• do not require evaluating every subset
• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!

19/25



How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
• Start with matrix of N control units X0

• Calculate imbalance for all
(
N
n

)
subsets of rows of X0

• Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:
•

(
N
n

)
evaluations for each sample size n = N,N − 1, . . . , 1

• The combination is the (gargantuan) “power set”
• e.g., N > 300 requires more imbalance evaluations than

elementary particles in the universe
•  It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:
• runs very fast
• operate as “greedy” but we prove are optimal
• do not require evaluating every subset

• work with very large data sets
• is the exact frontier (no approximation or estimation)
•  It’s easy to calculate!
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The Matching Frontier Algorithm

• To use, make 2 choices:

1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching

• Result:

• Algorithm finds the whole frontier
• Simple to use (free easy software available)
• No need to choose or use a matching method
• All solutions are optimal
• No iteration or diagnostics required
• No cherry picking possible; you see everything optimal
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Job Training Data: Frontier and Causal Estimates
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• 185 Ts; pruning most 16,252 Cs won’t increase variance much

• Huge bias-variance trade-off after pruning most Cs

• Estimates converge to experiment after removing bias

• No mysteries: basis of inference clearly revealed
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Constructing the FSATT Mahalanobis Frontier
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• Warning: figure omits details and the proof!

• Very fast; works with any continuous imbalance metric
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Constructing the L1/L2 SATT Frontier

Short version:

1. Calculate bins

2. Until balance stops improving, greedily prune a control unit
from the bin with the largest proportional difference between
control and treated units
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Conclusions about Matching

• Matching:

• An excellent method of improving causal inferences
• Helps reduce: imbalance, model dependence, researcher

discretion, bias

• Propensity Score Matching: low standards, dangerous in
practice; DNR

• Most other methods of matching: excellent

• Coarsened Exact Matching: especially powerful; simple to
understand and use

• Matching Frontier: Automates what’s left to automate

• In applications, focus on the substance:

• All observational methods must assume ignorability
• Automated methods to choose variables: Insufficient
• Claims of invariance: Always fail
• Trying to be invariant to the substance: be wary of methods

claiming to be invariant to what you know!
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Part 4 (of 3), :-)

Matching Theories of Inference (in one slide)



Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You’re Doing!

• Framework: simple random sampling from a population
• Exact matching: Rarely possible; but would make estimation easy
• Assumptions:

• Unconfoundedness: T⊥Y (0) | X (Healthy & unhealthy get meds)
• Common support: Pr(T = 1|X ) < 1 (T = 0, 1 are both possible)

• Approximate matching (bias correction, new variance estimation): common, but all current
practices would have to change

Alternative Theory of Inference: It’s Gonna be OK!

• Framework: stratified random sampling from a population
• Define A: a stratum in a partition of the product space of X (“continuous” variables have

natural breakpoints)
• We already know and use these procedures: Group strong and weak partisans; Don’t match

college dropout with 1st year grad student
• Assumptions:

• Set-wide Unconfoundedness: T⊥Y (0) | A
• Set-wide Common support: Pr(T = 1|A) < 1

• Fits all common matching methods & practices; no asymptotics
• Easy extensions for: multi-level, continuous, & mismeasured treatments; A too wide, n too

small
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