Demographic Forecasting: Incorporating Qualitative Insight in Quantitative Modeling

> Gary King Harvard University

Joint work with Federico Girosi (RAND) with contributions from Kevin Quinn and Gregory Wawro

Demographic Forecasting

æ

イロト イヨト イヨト イヨト

- ∢ ∃ ▶

- Mortality forecasts, which are studied in:
 - demography & sociology

- ∢ ∃ →

- demography & sociology
- public health & biostatistics

.∋...>

- demography & sociology
- public health & biostatistics
- economics & social security and retirement planning

- demography & sociology
- public health & biostatistics
- economics & social security and retirement planning
- actuarial science & insurance companies

- demography & sociology
- public health & biostatistics
- economics & social security and retirement planning
- actuarial science & insurance companies
- medical research & pharmaceutical companies

- demography & sociology
- public health & biostatistics
- economics & social security and retirement planning
- actuarial science & insurance companies
- medical research & pharmaceutical companies
- political science & public policy

- demography & sociology
- public health & biostatistics
- economics & social security and retirement planning
- actuarial science & insurance companies
- medical research & pharmaceutical companies
- political science & public policy
- A better forecasting method

- demography & sociology
- public health & biostatistics
- economics & social security and retirement planning
- actuarial science & insurance companies
- medical research & pharmaceutical companies
- political science & public policy
- A better forecasting method
- A better farcasting method

- demography & sociology
- public health & biostatistics
- economics & social security and retirement planning
- actuarial science & insurance companies
- medical research & pharmaceutical companies
- political science & public policy
- A better forecasting method
- A better farcasting method
- Other results we needed to achieve this original goal

- demography & sociology
- public health & biostatistics
- economics & social security and retirement planning
- actuarial science & insurance companies
- medical research & pharmaceutical companies
- political science & public policy
- A better forecasting method
- A better farcasting method
- Other results we needed to achieve this original goal
- Approach: Formalizing qualitative insights in quantitative models

E

B ▶ < B ▶

- Affects almost every field that studies human behavior
 - Medicine: clinical decisions vs. "evidence-based medicine"

- Medicine: clinical decisions vs. "evidence-based medicine"
- Law: jurisprudence vs. "empirical research"

- Medicine: clinical decisions vs. "evidence-based medicine"
- Law: jurisprudence vs. "empirical research"
- Political Science: Area studies vs. comparative politics

- Medicine: clinical decisions vs. "evidence-based medicine"
- Law: jurisprudence vs. "empirical research"
- Political Science: Area studies vs. comparative politics
- Sociology: qualitative vs. quantitative work

- Medicine: clinical decisions vs. "evidence-based medicine"
- Law: jurisprudence vs. "empirical research"
- Political Science: Area studies vs. comparative politics
- Sociology: qualitative vs. quantitative work
- Psychology: clinicians vs. scientists

- Medicine: clinical decisions vs. "evidence-based medicine"
- Law: jurisprudence vs. "empirical research"
- Political Science: Area studies vs. comparative politics
- Sociology: qualitative vs. quantitative work
- Psychology: clinicians vs. scientists
- Geography: place people vs. space people

- Medicine: clinical decisions vs. "evidence-based medicine"
- Law: jurisprudence vs. "empirical research"
- Political Science: Area studies vs. comparative politics
- Sociology: qualitative vs. quantitative work
- Psychology: clinicians vs. scientists
- Geography: place people vs. space people
- Qualitative information:

- Medicine: clinical decisions vs. "evidence-based medicine"
- Law: jurisprudence vs. "empirical research"
- Political Science: Area studies vs. comparative politics
- Sociology: qualitative vs. quantitative work
- Psychology: clinicians vs. scientists
- Geography: place people vs. space people
- Qualitative information:
 - Definition: information not quantified and formalized

- Medicine: clinical decisions vs. "evidence-based medicine"
- Law: jurisprudence vs. "empirical research"
- Political Science: Area studies vs. comparative politics
- Sociology: qualitative vs. quantitative work
- Psychology: clinicians vs. scientists
- Geography: place people vs. space people
- Qualitative information:
 - Definition: information not quantified and formalized
 - Anthropological, ethnographic, archival, participant observation, soaking and poking, contextual...

- Medicine: clinical decisions vs. "evidence-based medicine"
- Law: jurisprudence vs. "empirical research"
- Political Science: Area studies vs. comparative politics
- Sociology: qualitative vs. quantitative work
- Psychology: clinicians vs. scientists
- Geography: place people vs. space people
- Qualitative information:
 - Definition: information not quantified and formalized
 - Anthropological, ethnographic, archival, participant observation, soaking and poking, contextual...
 - All research is qualitative; some is also quantitative.

- Medicine: clinical decisions vs. "evidence-based medicine"
- Law: jurisprudence vs. "empirical research"
- Political Science: Area studies vs. comparative politics
- Sociology: qualitative vs. quantitative work
- Psychology: clinicians vs. scientists
- Geography: place people vs. space people
- Qualitative information:
 - Definition: information not quantified and formalized
 - Anthropological, ethnographic, archival, participant observation, soaking and poking, contextual...
 - All research is qualitative; some is also quantitative.
 - Goal: include as much information as possible from any source

Other Results (Needed to Develop Improved Forecasts)

ヨト イヨト

Image: Image:

3 K K 3 K

• Output: same as linear regression

- Output: same as linear regression
- Estimates a set of linear regressions together (over countries, age groups, years, etc.)

- Output: same as linear regression
- Estimates a set of linear regressions together (over countries, age groups, years, etc.)
- Can include *different covariates* in each regression

- Output: same as linear regression
- Estimates a set of linear regressions together (over countries, age groups, years, etc.)
- Can include *different covariates* in each regression
- New ways of creating Bayesian priors

- Output: same as linear regression
- Estimates a set of linear regressions together (over countries, age groups, years, etc.)
- Can include different covariates in each regression
- New ways of creating Bayesian priors
- Produces forecasts and farcasts using considerably more information

Resolving Disputes: Comparativists vs. Area Studies

3

過 ト イヨ ト イヨト

Resolving Disputes: Comparativists vs. Area Studies

• When a variable is not available in all countries, comparativists must choose:

∃ ▶ ∢ ∃ ▶

Resolving Disputes: Comparativists vs. Area Studies

- When a variable is not available in all countries, comparativists must choose:
 - Run separate regressions in each country

- When a variable is not available in all countries, comparativists must choose:
 - Run separate regressions in each country
 - risking large inefficiencies (huge standard errors)

- When a variable is not available in all countries, comparativists must choose:
 - Run separate regressions in each country
 - risking large inefficiencies (huge standard errors)
 - Omit variables not observed for all countries

- When a variable is not available in all countries, comparativists must choose:
 - Run separate regressions in each country
 - risking large inefficiencies (huge standard errors)
 - Omit variables not observed for all countries
 - risking omitted variable bias

- When a variable is not available in all countries, comparativists must choose:
 - Run separate regressions in each country
 - risking large inefficiencies (huge standard errors)
 - Omit variables not observed for all countries
 - risking omitted variable bias
 - Second text and te

- When a variable is not available in all countries, comparativists must choose:
 - Run separate regressions in each country
 - risking large inefficiencies (huge standard errors)
 - Omit variables not observed for all countries
 - risking omitted variable bias
 - Second transformed and the second transformed and transfo
 - risking selection bias

- When a variable is not available in all countries, comparativists must choose:
 - Run separate regressions in each country
 - risking large inefficiencies (huge standard errors)
 - Omit variables not observed for all countries
 - risking omitted variable bias
 - Second transformed and the second transformed and transfo
 - risking selection bias
- Our methods:

- When a variable is not available in all countries, comparativists must choose:
 - Run separate regressions in each country
 - risking large inefficiencies (huge standard errors)
 - Omit variables not observed for all countries
 - risking omitted variable bias
 - Exclude countries when some variables are not available — risking selection bias
- Our methods:
 - Allows different covariates in each regression

- When a variable is not available in all countries, comparativists must choose:
 - Run separate regressions in each country
 - risking large inefficiencies (huge standard errors)
 - Omit variables not observed for all countries
 - risking omitted variable bias
 - Exclude countries when some variables are not available — risking selection bias
- Our methods:
 - Allows different covariates in each regression
 - All are still estimated together

- When a variable is not available in all countries, comparativists must choose:
 - Run separate regressions in each country
 - risking large inefficiencies (huge standard errors)
 - Omit variables not observed for all countries
 - risking omitted variable bias
 - Exclude countries when some variables are not available — risking selection bias
- Our methods:
 - Allows different covariates in each regression
 - All are still estimated together
 - Can thereby forecast with much more local, contextual information

- When a variable is not available in all countries, comparativists must choose:
 - Run separate regressions in each country
 - risking large inefficiencies (huge standard errors)
 - Omit variables not observed for all countries
 - risking omitted variable bias
 - Second the second text and the second text and text an
 - risking selection bias
- Our methods:
 - Allows different covariates in each regression
 - All are still estimated together
 - Can thereby forecast with much more local, contextual information
 - Resolves analogous issues in predicting mortality by age, sex, and cause

• Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.

- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.
- One time series analysis for each of 155,856 cross-sections:

- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days

- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized:

- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model

- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:

- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
 - Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.

- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
 - Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
 - Numerous variables specific to a cause, age group, sex, and country

- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
 - Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
 - Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short.

- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
 - Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
 - Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short. A majority of countries have only a few isolated annual observations;

- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
 - Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
 - Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short. A majority of countries have only a few isolated annual observations; only 54 countries have at least 20 observations;

- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
 - Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
 - Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short. A majority of countries have only a few isolated annual observations; only 54 countries have at least 20 observations; Africa, AIDS, & Malaria are real problems

E

(日) (周) (三) (三)

Procedures:

Demographic Forecasting

B ▶ < B ▶

Procedures:

• Develop private forecasts qualitatively (i.e., informally)

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

Meaning of procedures

- 一司

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

Meaning of procedures

Forecasts use qualitative information (good!)

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

Meaning of procedures

- Forecasts use qualitative information (good!)
- Statistical models add little (bad!)

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

Meaning of procedures

- Forecasts use qualitative information (good!)
- Statistical models add little (bad!)
- Method is invulnerable to being proven wrong

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

Meaning of procedures

- Forecasts use qualitative information (good!)
- Statistical models add little (bad!)
- Method is invulnerable to being proven wrong
- Subtitle of my talk should be reversed:
 "Incorporating Quantitative Modeling into Qualitative Forecasts"

Preview of Results: Out-of-Sample Evaluation

æ

Mean Absolute Error in Males (over age and country)

Image: Image:

∃ ► < ∃ ►</p>

Mean Absolute Error in Males (over age and country)

	% Improvement	
	Over Best	to Best
	Previous	Conceivable
Cardiovascular	22	49
Lung Cancer	24	47
Transportation	16	31
Respiratory Chronic	13	30
Other Infectious	12	30
Stomach Cancer	8	24
All-Cause	12	22
Suicide	7	17
Respiratory Infectious	3	7

イロト イポト イヨト イヨト

Mean Absolute Error in Males (over age and country)

	% Improvement	
	Over Best	to Best
	Previous	Conceivable
Cardiovascular	22	49
Lung Cancer	24	47
Transportation	16	31
Respiratory Chronic	13	30
Other Infectious	12	30
Stomach Cancer	8	24
All-Cause	12	22
Suicide	7	17
Respiratory Infectious	3	7

• Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).

イロト イポト イヨト イヨト

Mean Absolute Error in Males (over age and country)

	% Improvement	
	Over Best	to Best
	Previous	Conceivable
Cardiovascular	22	49
Lung Cancer	24	47
Transportation	16	31
Respiratory Chronic	13	30
Other Infectious	12	30
Stomach Cancer	8	24
All-Cause	12	22
Suicide	7	17
Respiratory Infectious	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- % to best conceivable = % of the way our method takes us from the best existing to the best conceivable forecast.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

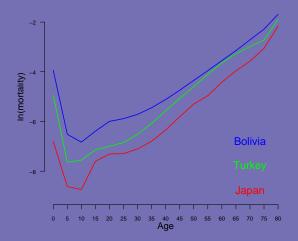
Mean Absolute Error in Males (over age and country)

	% Improvement	
	Over Best	to Best
	Previous	Conceivable
Cardiovascular	22	49
Lung Cancer	24	47
Transportation	16	31
Respiratory Chronic	13	30
Other Infectious	12	30
Stomach Cancer	8	24
All-Cause	12	22
Suicide	7	17
Respiratory Infectious	3	7

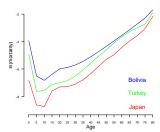
- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- % to best conceivable = % of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

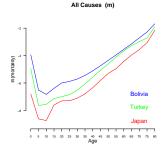
Mean Absolute Error in Males (over age and country)

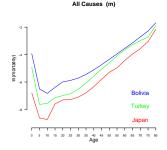

	% Improvement	
	Over Best	to Best
	Previous	Conceivable
Cardiovascular	22	49
Lung Cancer	24	47
Transportation	16	31
Respiratory Chronic	13	30
Other Infectious	12	30
Stomach Cancer	8	24
All-Cause	12	22
Suicide	7	17
Respiratory Infectious	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- % to best conceivable = % of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.
- Does *considerably* better with more informative covariates

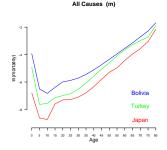

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

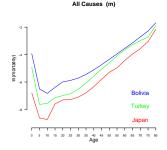
All-Cause Mortality Age Profile Patterns


All Causes (m)

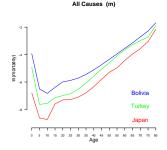


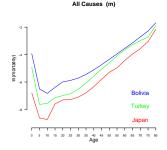
()

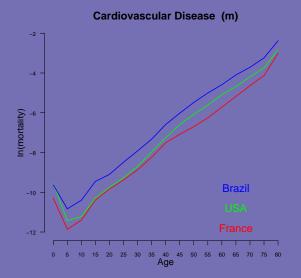

All Causes (m)

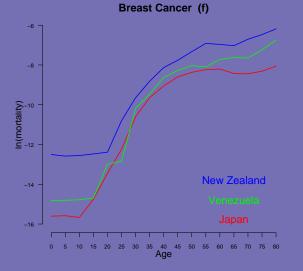


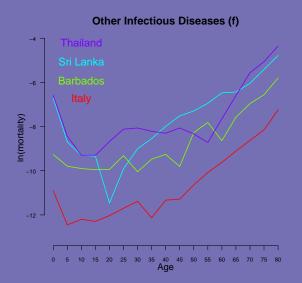
• Gompertz (1825): log-mortality is linear in age after age 20

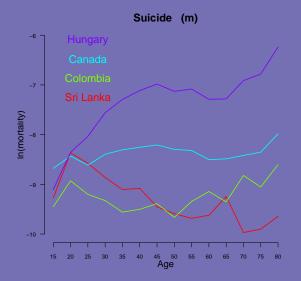

reduces 17 age-specific mortality rates to 2 parameters (intercept and slope)


- reduces 17 age-specific mortality rates to 2 parameters (intercept and slope)
- Then forecast only these 2 parameters


- reduces 17 age-specific mortality rates to 2 parameters (intercept and slope)
- Then forecast only these 2 parameters
- Reduces variance, constrains forecasts


- reduces 17 age-specific mortality rates to 2 parameters (intercept and slope)
- Then forecast only these 2 parameters
- Reduces variance, constrains forecasts
- Dozens of more general functional forms proposed


- reduces 17 age-specific mortality rates to 2 parameters (intercept and slope)
- Then forecast only these 2 parameters
- Reduces variance, constrains forecasts
- Dozens of more general functional forms proposed
- But does it fit anything else?


()

Demographic Forecasting

()

Parameterizing Age Profiles Does Not Work

Demographic Forecasting

3

(4 個)ト イヨト イヨト

Parameterizing Age Profiles Does Not Work

• No mathematical form fits all or even most age profiles

ヨト イヨト

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
 - Adjacent age groups have similar mortality rates

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
 - Adjacent age groups have similar mortality rates
 - Age profiles are more variable for younger ages

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
 - Adjacent age groups have similar mortality rates
 - Age profiles are more variable for younger ages
 - We don't know much about levels or exact shapes

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
 - Adjacent age groups have similar mortality rates
 - Age profiles are more variable for younger ages
 - We don't know much about levels or exact shapes
- Key question: how to include this qualitative information

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
 - Adjacent age groups have similar mortality rates
 - Age profiles are more variable for younger ages
 - We don't know much about levels or exact shapes
- Key question: how to include this qualitative information
- Also: Method ignores covariate information; the leading current method (McNown-Rogers) not replicable

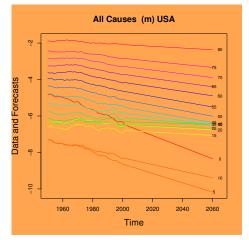
Deterministic Projections

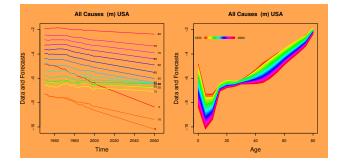
Demographic Forecasting

E

Image: A Image: A

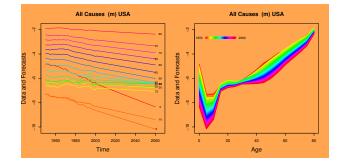
Deterministic Projections



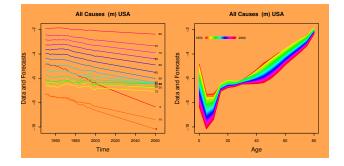

표 문 표

Deterministic Projections

All Causes (m) USA All Causes (m) USA Ņ Ņ 4 4 Data and Forecasts Data and Forecasts φ φ 15 ထု ထု 우 6-10 1960 1980 2020 2040 2060 20 40 60 80 2000 0 Time Age

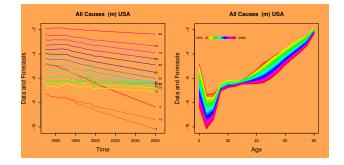

3

()

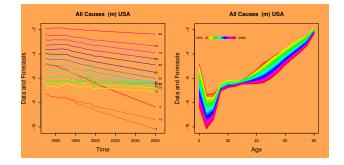


Ξ

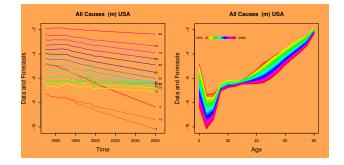
- 4 ⊒ →



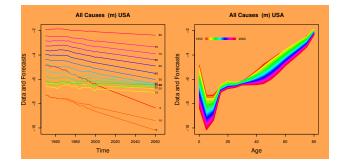
• Random walk with drift; Lee-Carter; least squares on linear trend



Random walk with drift; Lee-Carter; least squares on linear trend


• Pros: simple, fast, works well in appropriate data

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates



- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates; forecasts fan out

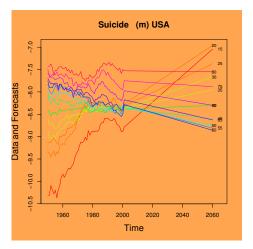
- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates; forecasts fan out; age profile becomes less smooth

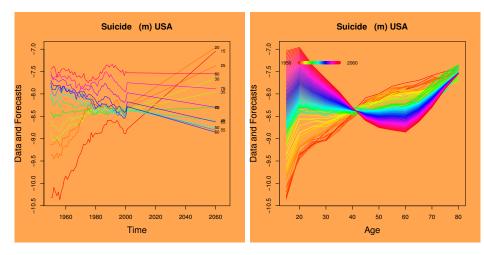
Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates; forecasts fan out; age profile becomes less smooth
- Does it fit elsewhere?

The same pattern?

Demographic Forecasting


E


<ロト <回ト < 回ト < 回ト

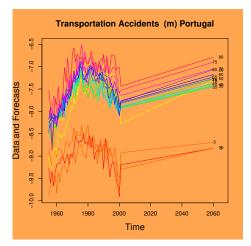
The same pattern? Random Walk with Drift \approx Lee-Carter \approx Least Squares

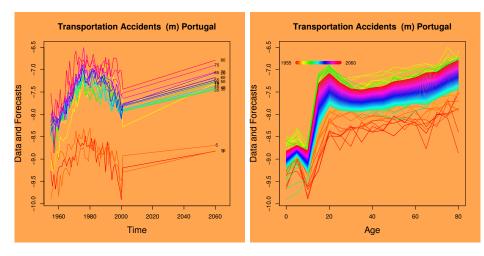
э

イロト イポト イヨト イヨト

The same pattern?

Demographic Forecasting


E


<ロト <回ト < 回ト < 回ト

The same pattern? Random Walk with Drift \approx Lee-Carter \approx Least Squares

3

イロト イポト イヨト イヨト

19 / 76

Deterministic Projections Do Not Work

3

∃ ► < ∃ ►</p>

Deterministic Projections Do Not Work

• Linearity does not fit most time series data

- Linearity does not fit most time series data
- Out-of-sample age profiles become unrealistic over time

Demographic Forecasting

Э

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Our Goal: Use all available information

3

イロト イポト イヨト イヨト

Our Goal: Use all available information

• Quantitative data

э

• • = • • = •

Our Goal: Use all available information

- Quantitative data
 - Use all mortality data

ヨト イヨト

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)

ヨト イヨト

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)
- Qualitative information

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)
- Qualitative information
 - Mortality age profiles are smooth

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)

- Mortality age profiles are smooth
- Younger age groups are more variable

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)

- Mortality age profiles are smooth
- Younger age groups are more variable
- Mortality trends smoothly over time

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)

- Mortality age profiles are smooth
- Younger age groups are more variable
- Mortality trends smoothly over time
- Neighboring age groups have similar mortality trends

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)

- Mortality age profiles are smooth
- Younger age groups are more variable
- Mortality trends smoothly over time
- Neighboring age groups have similar mortality trends
- Neighboring countries have similar trends in mortality

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)

- Mortality age profiles are smooth
- Younger age groups are more variable
- Mortality trends smoothly over time
- Neighboring age groups have similar mortality trends
- Neighboring countries have similar trends in mortality
- Statistical Modeling

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)

- Mortality age profiles are smooth
- Younger age groups are more variable
- Mortality trends smoothly over time
- Neighboring age groups have similar mortality trends
- Neighboring countries have similar trends in mortality
- Statistical Modeling
 - Priors on expected mortality rather than coefficients

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)

- Mortality age profiles are smooth
- Younger age groups are more variable
- Mortality trends smoothly over time
- Neighboring age groups have similar mortality trends
- Neighboring countries have similar trends in mortality
- Statistical Modeling
 - Priors on expected mortality rather than coefficients
 - Only choose parameter values we know something about

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)

Qualitative information

- Mortality age profiles are smooth
- Younger age groups are more variable
- Mortality trends smoothly over time
- Neighboring age groups have similar mortality trends
- Neighboring countries have similar trends in mortality

• Statistical Modeling

- Priors on expected mortality rather than coefficients
- Only choose parameter values we know something about
- Allow ignorance about specific patterns

Our Goal: Use all available information

• Quantitative data

- Use all mortality data
- Allows covariates (smoking causes lung cancer!)
- Allow different covariates in each regression (smoking doesn't help forecast infant mortality!)

Qualitative information

- Mortality age profiles are smooth
- Younger age groups are more variable
- Mortality trends smoothly over time
- Neighboring age groups have similar mortality trends
- Neighboring countries have similar trends in mortality

• Statistical Modeling

- Priors on expected mortality rather than coefficients
- Only choose parameter values we know something about
- Allow ignorance about specific patterns
- Allow variables to change meaning in different countries (such as GDP) or time periods (ICD changes)

How to Forecast Two Short Time Series?

Demographic Forecasting

Ξ

(4) E (4) (4) E (4)

э

∃ ► < ∃ ►</p>

U.S.:	$y_t = X_{t-1}\beta + \epsilon_t$	$(t = 1950, \dots, 2005)$
Mexico:	$y_t = X_{t-1}\beta + \epsilon_t$	$(t = 1950, \dots, 2005)$

э

∃ ► < ∃ ►</p>

U.S.:	$y_t = X_{t-1}\beta + \epsilon_t$	$(t = 1950, \dots, 2005)$
Mexico:	$y_t = X_{t-1}\beta + \epsilon_t$	$(t = 1950, \dots, 2005)$

Options:

3

イロト イポト イヨト イヨト

U.S.:
$$y_t = X_{t-1}\beta + \epsilon_t$$
 $(t = 1950, ..., 2005)$
Mexico: $y_t = X_{t-1}\beta + \epsilon_t$ $(t = 1950, ..., 2005)$

Options:

• Estimate regressions separately:

U.S.:
$$y_t = X_{t-1}\beta + \epsilon_t$$
 $(t = 1950, ..., 2005)$
Mexico: $y_t = X_{t-1}\beta + \epsilon_t$ $(t = 1950, ..., 2005)$

Options:

- Estimate regressions separately:
 - too few observations

U.S.:
$$y_t = X_{t-1}\beta + \epsilon_t$$
 $(t = 1950, ..., 2005)$
Mexico: $y_t = X_{t-1}\beta + \epsilon_t$ $(t = 1950, ..., 2005)$

Options:

- Estimate regressions separately:
 - too few observations
 - confidence intervals too wide

U.S.:
$$y_t = X_{t-1}\beta + \epsilon_t$$
 $(t = 1950, ..., 2005)$
Mexico: $y_t = X_{t-1}\beta + \epsilon_t$ $(t = 1950, ..., 2005)$

- Estimate regressions separately:
 - too few observations
 - confidence intervals too wide
- Pooling (Murray and Lopez, 1996):

U.S.:
$$y_t = X_{t-1}\beta + \epsilon_t$$
 $(t = 1950, ..., 2005)$
Mexico: $y_t = X_{t-1}\beta + \epsilon_t$ $(t = 1950, ..., 2005)$

- Estimate regressions separately:
 - too few observations
 - confidence intervals too wide
- Pooling (Murray and Lopez, 1996):
 - Pool over countries (political scientists mortified)

U.S.:
$$y_t = X_{t-1}\beta + \epsilon_t$$
 $(t = 1950, ..., 2005)$
Mexico: $y_t = X_{t-1}\beta + \epsilon_t$ $(t = 1950, ..., 2005)$

- Estimate regressions separately:
 - too few observations
 - confidence intervals too wide
- Pooling (Murray and Lopez, 1996):
 - Pool over countries (political scientists mortified)
 - Pool over age groups (public health scholars mortified)

U.S.:
$$y_t = X_{t-1}\beta + \epsilon_t$$
 $(t = 1950, ..., 2005)$
Mexico: $y_t = X_{t-1}\beta + \epsilon_t$ $(t = 1950, ..., 2005)$

- Estimate regressions separately:
 - too few observations
 - confidence intervals too wide
- Pooling (Murray and Lopez, 1996):
 - Pool over countries (political scientists mortified)
 - Pool over age groups (public health scholars mortified)
 - Enormous biases either way

U.S.:
$$y_t = X_{t-1}\beta + \epsilon_t$$
 $(t = 1950, ..., 2005)$
Mexico: $y_t = X_{t-1}\beta + \epsilon_t$ $(t = 1950, ..., 2005)$

- Estimate regressions separately:
 - too few observations
 - confidence intervals too wide
- Pooling (Murray and Lopez, 1996):
 - Pool over countries (political scientists mortified)
 - Pool over age groups (public health scholars mortified)
 - Enormous biases either way
 - Requires covariates with the same meaning in all cross-sections

U.S.:
$$y_t = X_{t-1}\beta + \epsilon_t$$
 $(t = 1950, ..., 2005)$
Mexico: $y_t = X_{t-1}\beta + \epsilon_t$ $(t = 1950, ..., 2005)$

- Estimate regressions separately:
 - too few observations
 - confidence intervals too wide
- Pooling (Murray and Lopez, 1996):
 - Pool over countries (political scientists mortified)
 - Pool over age groups (public health scholars mortified)
 - Enormous biases either way
 - Requires covariates with the same meaning in all cross-sections
- Qualitative knowledge: patterns are similar, not identical.

Demographic Forecasting

E

・ロト ・四ト ・ヨト ・ヨト

Just three easy steps:

E

イロト イヨト イヨト

How to do it?

Just three easy steps:

$$\begin{split} \mathsf{P}(y_{i}|\eta_{i}) &= \left\{ \prod_{s=1}^{S} \prod_{k=1}^{K_{s}} \left[F(\tau_{is}^{k}|\mu_{i},1) - F(\tau_{is}^{k-1}|\mu_{i},1) \right]^{\mathsf{I}(y_{is}=k)} \right\} \frac{\sqrt{\mathfrak{B}}P_{10}P_{11}}{\sqrt{\mathfrak{B}}P_{10} + P_{11}}, \\ L_{s}(\beta,\omega^{2},\gamma|y) &\propto \prod_{i=1}^{n} \int_{-\infty}^{\infty} \prod_{s=1}^{S} \prod_{k=1}^{K_{s}} \left[F(\tau_{is}^{k}|X_{i}\beta + \eta_{i},1) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi \right] \\ \mathsf{RD}_{\gamma} &= \sqrt{\mathfrak{B}}/(1 + \sqrt{\mathfrak{B}}) - 1/(1 + \sqrt{\mathfrak{B}}) - F(\tau_{is}^{k-1}|X_{i}\beta + \eta_{i},1) \right]^{\mathsf{I}(y_{is}=k)} N(\eta_{i}|0, \\ \Theta_{ab} &= \mathsf{Pr}(X_{a}|Y = b), \,\mathfrak{B} = (\Theta_{11}\Theta_{00})/(\Theta_{01}\Theta_{10}). \,\phi = (\mathfrak{B}\zeta 01^{2}/\zeta 11^{2})^{1/2} \\ &= \sqrt{\mathfrak{B}}\zeta 01/\zeta 11, \,\mathrm{and} \,\,\gamma = \sqrt{\mathfrak{B}}/(\sqrt{\mathfrak{B}} + \eta_{11}/\eta_{10}). \,\, \mathsf{Then}, \,\, \mathsf{RD}_{\gamma} \\ \eta_{11}\gamma &= \frac{\sqrt{\mathfrak{B}}\eta_{10}\Lambda_{11}}{\sqrt{\mathfrak{B}}\Lambda_{10} + \Lambda_{11}}, \qquad \Lambda_{01}\gamma &= \frac{\sqrt{\mathfrak{B}}\Lambda_{01}\Gamma_{10}}{\sqrt{\mathfrak{B}}\Gamma_{10} + \Gamma_{11}}, \,\zeta\Gamma GK \boxtimes \Phi\phi \\ \Gamma_{10}(1 - \gamma) &= \frac{\Gamma_{10}\Gamma_{11}}{\sqrt{\mathfrak{B}}\Gamma_{10} + P_{11}}, \qquad P_{00}(1 - \gamma) &= \frac{P_{11}P_{00}}{\sqrt{\mathfrak{B}}P_{10} + P_{11}}. \\ \mathsf{rd} \in [\mathsf{min}[\mathsf{rd}(\underline{\tau}_{j}), \mathsf{rd}(\overline{\tau}_{j})], \,\, \mathsf{max}[\mathsf{rd}(\underline{\tau}_{j}), \mathsf{rd}(\overline{\tau}_{j})]] \xrightarrow{\mathbb{R}} \to \mathbb{R} \to$$

Demographic Forecasting

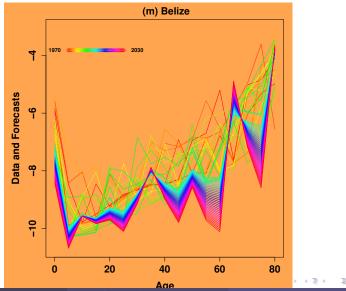
E

イロト イヨト イヨト イヨト

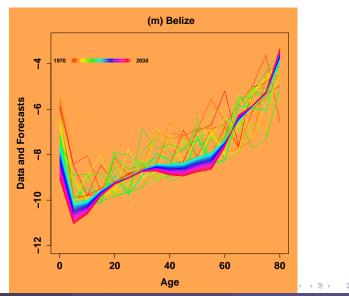
• Standard Bayesian technology smooths coefficients, requires considerable prior information

э

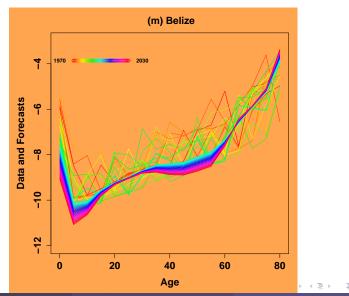
ヨト イヨト

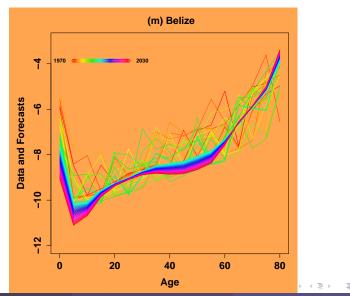

- Standard Bayesian technology smooths coefficients, requires considerable prior information
- We translate assumptions about mortality into assumptions about coefficients (E(y) = Xβ) so standard Bayesian machinery can be used

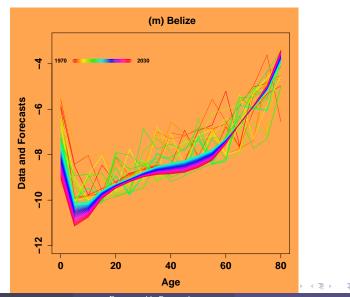
- Standard Bayesian technology smooths coefficients, requires considerable prior information
- We translate assumptions about mortality into assumptions about coefficients $(E(y) = X\beta)$ so standard Bayesian machinery can be used
- No extraneous assumptions; few adjustable parameters

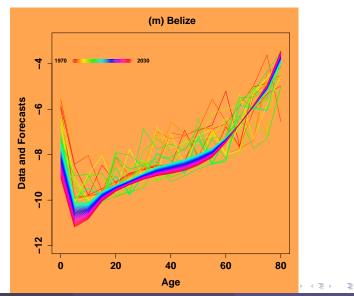

- Standard Bayesian technology smooths coefficients, requires considerable prior information
- We translate assumptions about mortality into assumptions about coefficients (E(y) = Xβ) so standard Bayesian machinery can be used
- No extraneous assumptions; few adjustable parameters
- Remaining parameters chosen based on real qualitative information

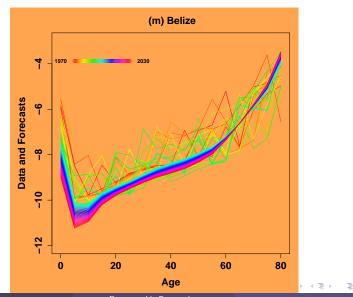
- Standard Bayesian technology smooths coefficients, requires considerable prior information
- We translate assumptions about mortality into assumptions about coefficients $(E(y) = X\beta)$ so standard Bayesian machinery can be used
- No extraneous assumptions; few adjustable parameters
- Remaining parameters chosen based on real qualitative information
- Added a wide array of ways to combine cross-sections

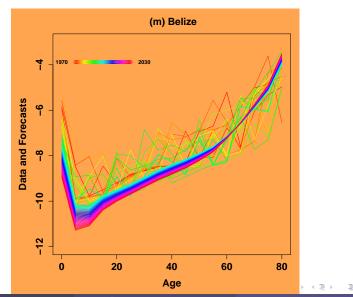

Mortality from Respiratory Infections, Males

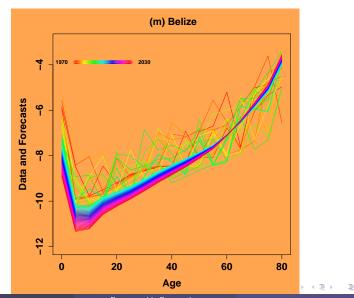

Demographic Forecasting


Demographic Forecasting

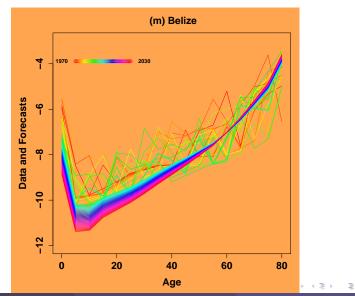

Demographic Forecasting


Demographic Forecasting

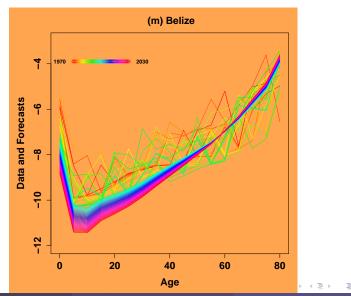

Demographic Forecasting


Demographic Forecasting

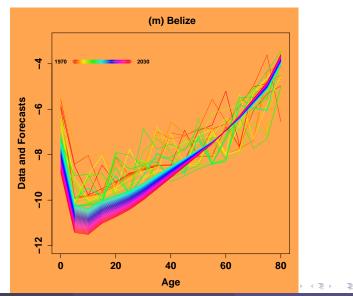
Demographic Forecasting

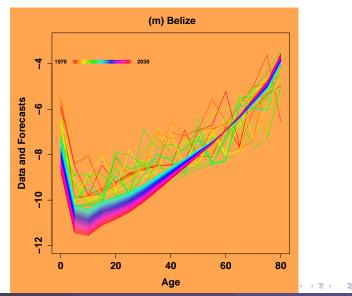


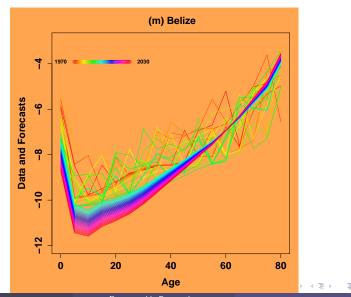
Demographic Forecasting

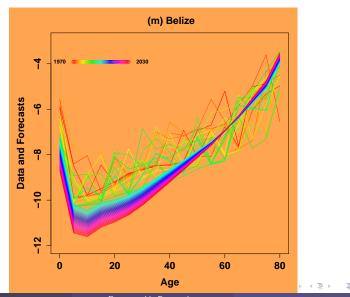


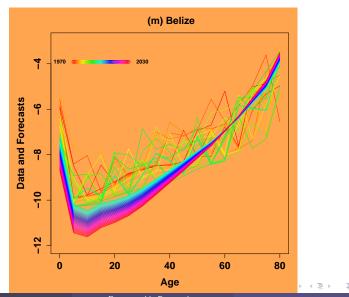
Demographic Forecasting

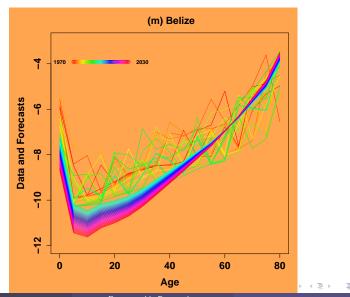

Mortality from Respiratory Infections, males, $\sigma = 0.21$ Smoothing over Age Groups

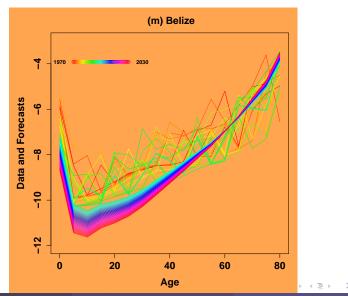

Demographic Forecasting

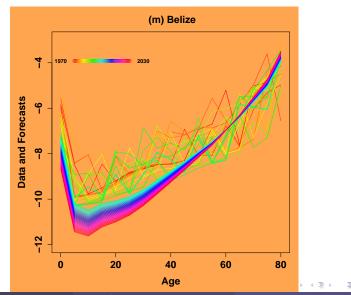

Demographic Forecasting


Demographic Forecasting

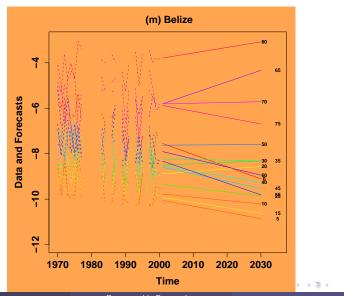

Demographic Forecasting


Demographic Forecasting

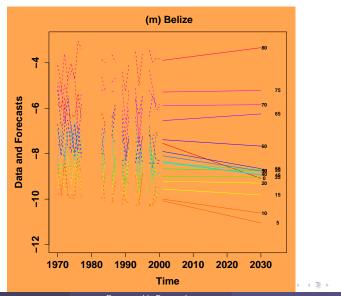

Demographic Forecasting


Demographic Forecasting

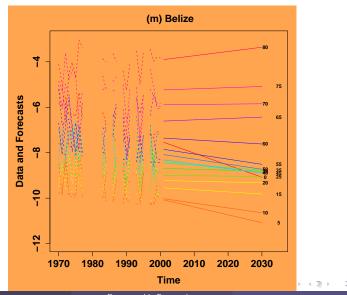
Demographic Forecasting



Demographic Forecasting

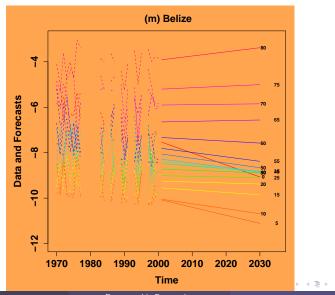

Demographic Forecasting

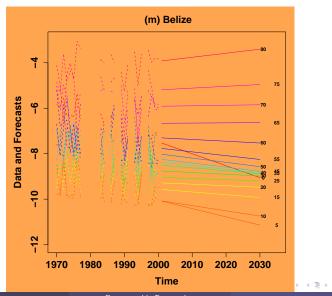
Mortality from Respiratory Infections, males Least Squares


Demographic Forecasting

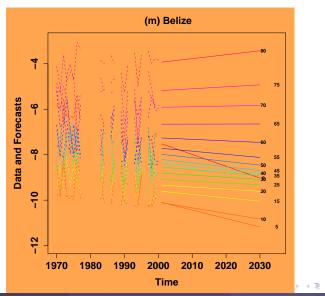
Mortality from Respiratory Infections, males, $\sigma = 2.00$ Smoothing over Age Groups

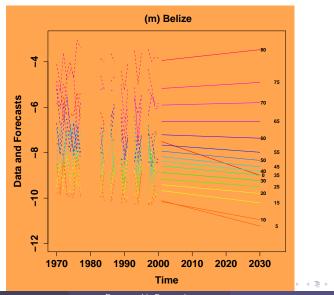
Demographic Forecasting

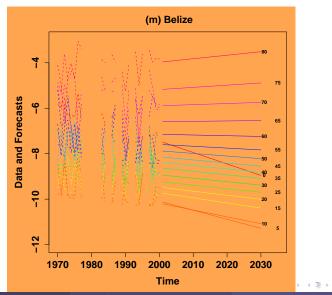

Mortality from Respiratory Infections, males, $\sigma = 1.51$

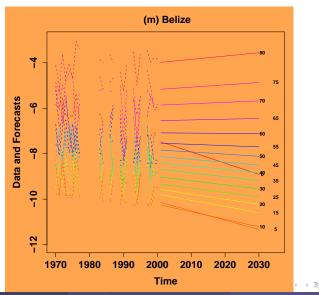

Demographic Forecasting

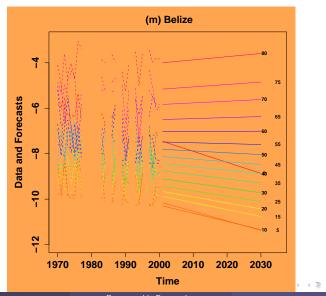
()

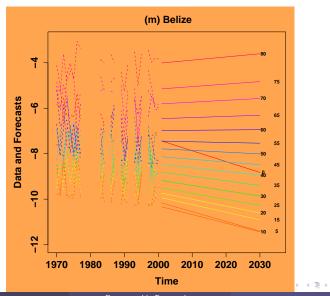

Mortality from Respiratory Infections, males, $\sigma=1.15$

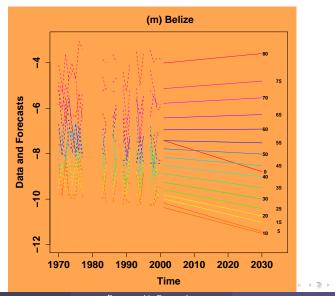

Mortality from Respiratory Infections, males, $\sigma = 0.87$ Smoothing over Age Groups

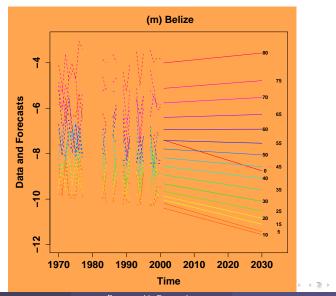

Mortality from Respiratory Infections, males, $\sigma = 0.66$

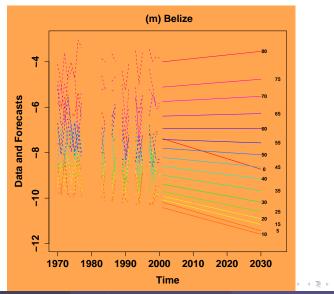

Mortality from Respiratory Infections, males, $\sigma = 0.50$ Smoothing over Age Groups

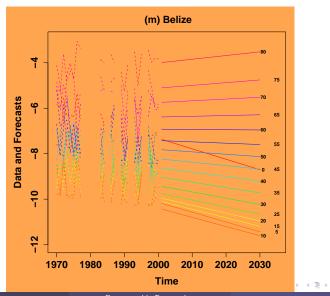

Mortality from Respiratory Infections, males, $\sigma=0.38$

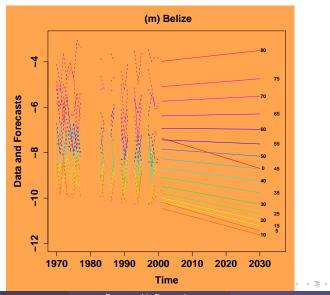

Mortality from Respiratory Infections, males, $\sigma = 0.28$

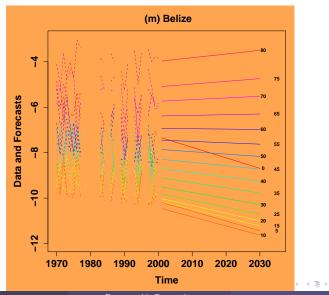

Mortality from Respiratory Infections, males, $\sigma = 0.21$ Smoothing over Age Groups

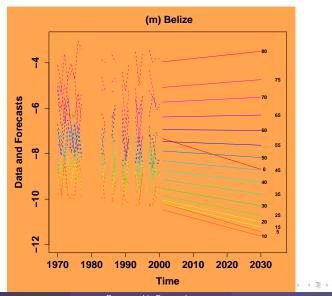

Mortality from Respiratory Infections, males, $\sigma=0.16$

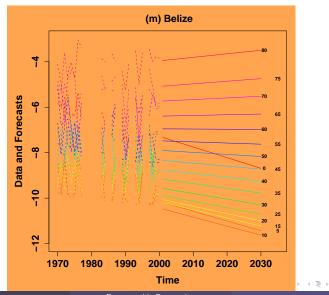

Mortality from Respiratory Infections, males, $\sigma=0.12$


Mortality from Respiratory Infections, males, $\sigma = 0.09$


Mortality from Respiratory Infections, males, $\sigma = 0.07$ Smoothing over Age Groups


Mortality from Respiratory Infections, males, $\sigma = 0.05$


Mortality from Respiratory Infections, males, $\sigma = 0.04$


Mortality from Respiratory Infections, males, $\sigma = 0.03$ Smoothing over Age Groups

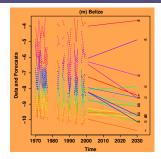
Mortality from Respiratory Infections, males, $\sigma=0.02$

Mortality from Respiratory Infections, males, $\sigma = 0.01$ Smoothing over Age Groups

Demographic Forecasting

э

Log-mortality in Belize males from respiratory infections

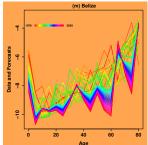

э

Log-mortality in Belize males from respiratory infections

Least Squares

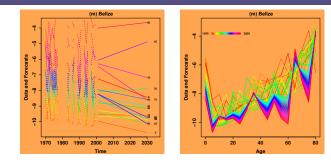
Log-mortality in Belize males from respiratory infections

Least Squares


Log-mortality in Belize males from respiratory infections

4 ŝ Data and Forecasts 8

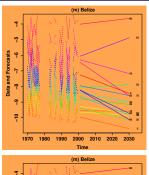
> 1970 1980 1990 2000 2010 2020 2030

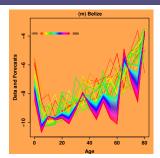

(m) Belize

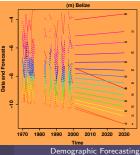
Time

Least Squares

Log-mortality in Belize males from respiratory infections

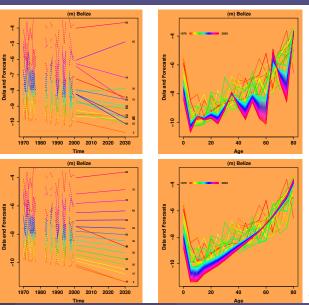

Least Squares


Smoothing Age Groups


Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Age Groups

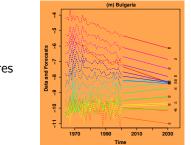


()

Log-mortality in Belize males from respiratory infections

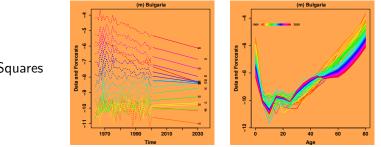
Least Squares

Smoothing Age Groups

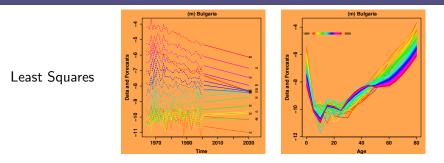

Log-Mortality in Bulgarian males from respiratory infections

Log-Mortality in Bulgarian males from respiratory infections

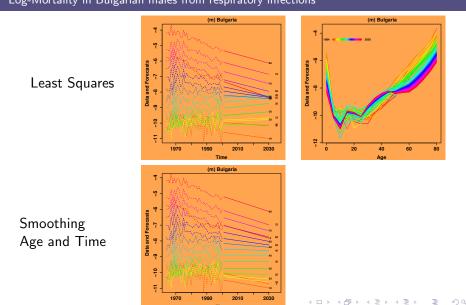
Least Squares


Demographic Forecasting

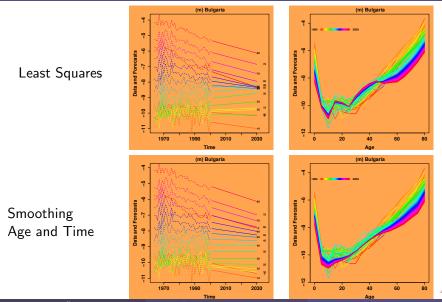
Log-Mortality in Bulgarian males from respiratory infections


Least Squares

Smoothing Trends over Age Groups and Time Log-Mortality in Bulgarian males from respiratory infections


Least Squares

Smoothing Trends over Age Groups and Time Log-Mortality in Bulgarian males from respiratory infections



Smoothing Age and Time

Smoothing Trends over Age Groups and Time Log-Mortality in Bulgarian males from respiratory infections

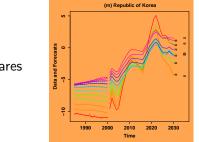
Smoothing Trends over Age Groups and Time Log-Mortality in Bulgarian males from respiratory infections

Using Covariates (GDP, tobacco, trend, log trend)

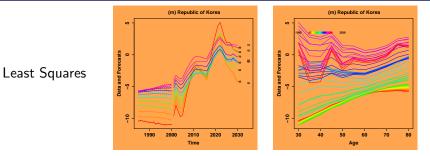
Demographic Forecasting

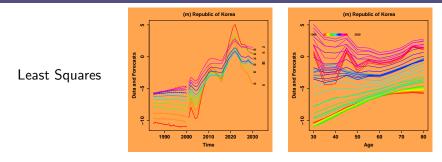
(4 回 ト 4 ヨ ト 4 ヨ ト

Using Covariates (GDP, tobacco, trend, log trend) Lung cancer in Korean Males

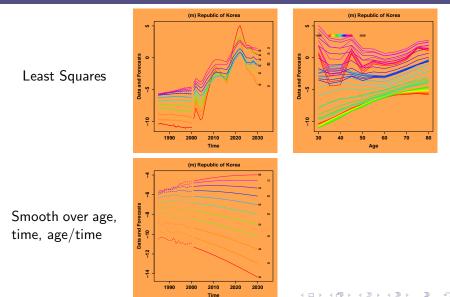

3

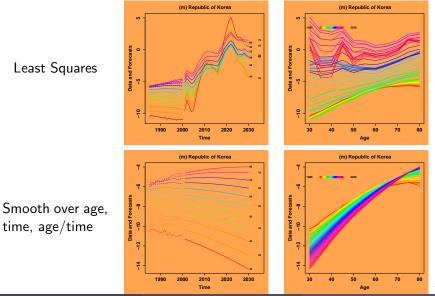
Using Covariates (GDP, tobacco, trend, log trend) Lung cancer in Korean Males


Least Squares



∃ ► < ∃ ►</p>



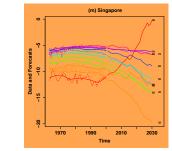

Least Squares

Smooth over age, time, age/time

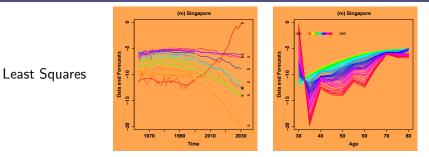
65 / 76

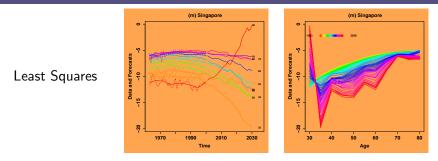
Using Covariates (GDP, tobacco, trend, log trend)

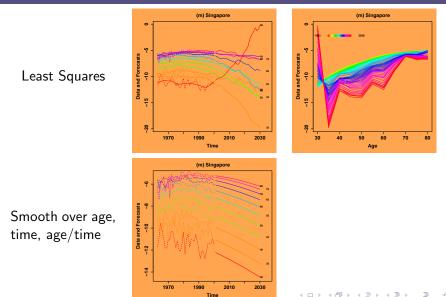
Demographic Forecasting

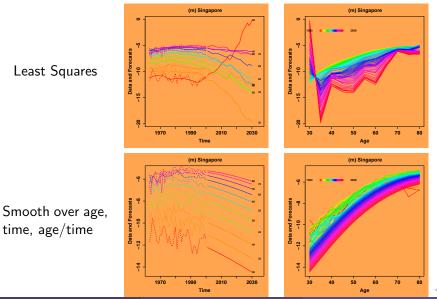

(4 回 ト 4 ヨ ト 4 ヨ ト

イロト イポト イヨト イヨト

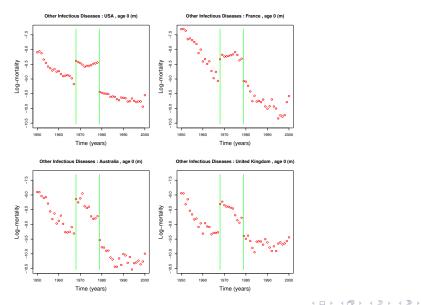

Least Squares

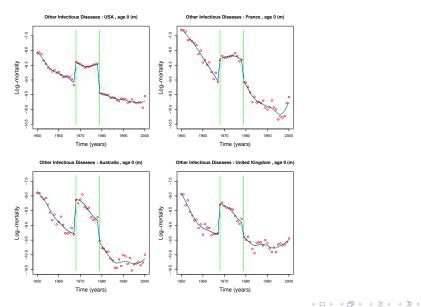

E + 4 E +


Least Squares



Demographic Forecasting


Smooth over age, time, age/time


66 / 76

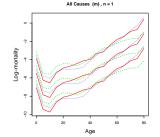
What about ICD Changes?

Ξ

Fixing ICD Changes

E

Formalizing (Prior) Indifference

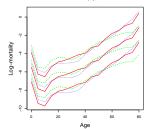

equal color = equal probability

3

イロト イポト イヨト イヨト

Formalizing (Prior) Indifference

equal color = equal probability

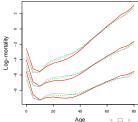

Level indifference

Ξ

E + 4 E +

Formalizing (Prior) Indifference

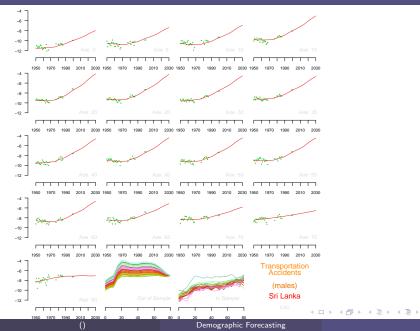
equal color = equal probability



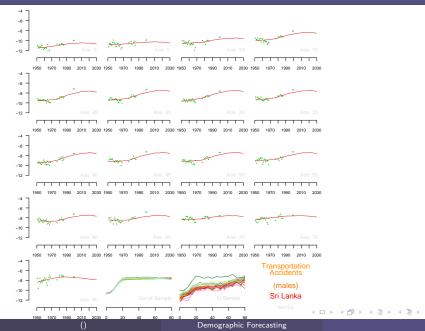
All Causes (m), n = 1

All Causes (m), n = 2

Level and slope indifference


Level indifference

A book manuscript, YourCast software, etc.


http://GKing.Harvard.edu

Without Country Smoothing

E

With Country Smoothing

E

Demographic Forecasting

E

<ロト <回ト < 回ト < 回ト

Standard Bayesian Approach

3

-

. < □ > < □ > <</p>

Standard Bayesian Approach

• Assume coefficients are similar

- Assume coefficients are similar
 - But we know little about the coefficients

- Assume coefficients are similar
 - But we know little about the coefficients
- Requires the same covariates in each cross-section

- Assume coefficients are similar
 - But we know little about the coefficients
- Requires the same covariates in each cross-section
 - Why measure water quality in the U.S.?

- Assume coefficients are similar
 - But we know little about the coefficients
- Requires the same covariates in each cross-section
 - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section

- Assume coefficients are similar
 - But we know little about the coefficients
- Requires the same covariates in each cross-section
 - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section
 - Does GDP mean the same thing in Botswana and the U.S.?

- Assume coefficients are similar
 - But we know little about the coefficients
- Requires the same covariates in each cross-section
 - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section
 Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality

Standard Bayesian Approach

- Assume coefficients are similar
 - But we know little about the coefficients
- Requires the same covariates in each cross-section
 - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section
 Does GDP mean the same thing in Botswana and the U.S.?

Imposes no assumptions on covariates or mortality

— If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E(y_t) = X_t\beta$ in each cross-section]

Standard Bayesian Approach

- Assume coefficients are similar
 - But we know little about the coefficients
- Requires the same covariates in each cross-section
 - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section
 Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality

— If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E(y_t) = X_t\beta$ in each cross-section]

Standard Bayesian Approach

- Assume coefficients are similar
 - But we know little about the coefficients
- Requires the same covariates in each cross-section
 - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section
 Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality

— If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E(y_t) = X_t\beta$ in each cross-section]

Alternative Approach

• Assume expected mortality is similar

Standard Bayesian Approach

- Assume coefficients are similar
 - But we know little about the coefficients
- Requires the same covariates in each cross-section
 - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section
 Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality

— If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E(y_t) = X_t\beta$ in each cross-section]

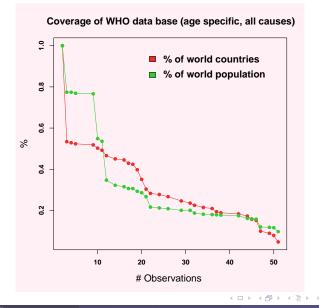
- Assume expected mortality is similar
- Coefficients are unobserved, mortality patterns are well known

Standard Bayesian Approach

- Assume coefficients are similar
 - But we know little about the coefficients
- Requires the same covariates in each cross-section
 - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section
 Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality

— If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E(y_t) = X_t\beta$ in each cross-section]

- Assume expected mortality is similar
- Coefficients are unobserved, mortality patterns are well known
- Different covariates allowed in each cross-section


Standard Bayesian Approach

- Assume coefficients are similar
 - But we know little about the coefficients
- Requires the same covariates in each cross-section
 - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section
 Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality

— If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E(y_t) = X_t\beta$ in each cross-section]

- Assume expected mortality is similar
- Coefficients are unobserved, mortality patterns are well known
- Different covariates allowed in each cross-section
- Covariates with the same name can have different meanings

Many Short Time Series

Preview of Results: Out-of-Sample Evaluation

3

E + 4 E +

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

∃ ► < ∃ ►</p>

	Mean Absolute Error			% Improvement	
	Best	Our	Best	Over Best	to Best
	Previous	Method	Conceivable	Previous	Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

э

イロト イポト イヨト イヨト

	Mean Absolute Error			% Improvement	
	Best	Our	Best	Over Best	to Best
	Previous	Method	Conceivable	Previous	Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

• Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).

	Mean Absolute Error			% Improvement	
	Best	Our	Best	Over Best	to Best
	Previous	Method	Conceivable	Previous	Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- % to best conceivable = % of the way our method takes us from the best existing to the best conceivable forecast.

	Mean Absolute Error			% Improvement	
	Best	Our	Best	Over Best	to Best
	Previous	Method	Conceivable	Previous	Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- % to best conceivable = % of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.

	Mean Absolute Error			% Improvement	
	Best	Our	Best	Over Best	to Best
	Previous	Method	Conceivable	Previous	Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- % to best conceivable = % of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.
- Does much better with better covariates

Demographic Forecasting

シックシード エル・ボット 中国・エロ・