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What this Talk is About

Mortality forecasts, which are studied in:

demography & sociology
public health & biostatistics
economics & social security and retirement planning
actuarial science & insurance companies
medical research & pharmaceutical companies
political science & public policy

A better forecasting method

A better farcasting method

Other results we needed to achieve this original goal

Approach: Formalizing qualitative insights in quantitative models
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The Quantitative-Qualitative Wars

Affects almost every field that studies human behavior

Medicine: clinical decisions vs. “evidence-based medicine”
Law: jurisprudence vs. “empirical research”
Political Science: Area studies vs. comparative politics
Sociology: qualitative vs. quantitative work
Psychology: clinicians vs. scientists
Geography: place people vs. space people

Qualitative information:

Definition: information not quantified and formalized
Anthropological, ethnographic, archival, participant observation,
soaking and poking, contextual. . .
All research is qualitative; some is also quantitative.
Goal: include as much information as possible from any source
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Other Results (Needed to Develop Improved Forecasts)

Output: same as linear regression

Estimates a set of linear regressions together (over countries, age
groups, years, etc.)

Can include different covariates in each regression

New ways of creating Bayesian priors

Produces forecasts and farcasts using considerably more information
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Resolving Disputes: Comparativists vs. Area Studies

When a variable is not available in all countries,
comparativists must choose:

1 Run separate regressions in each country

— risking large inefficiencies (huge standard errors)

2 Omit variables not observed for all countries

— risking omitted variable bias

3 Exclude countries when some variables are not available

— risking selection bias

Our methods:

Allows different covariates in each regression
All are still estimated together
Can thereby forecast with much more local, contextual information
Resolves analogous issues in predicting mortality by age, sex, and cause
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The Statistical Problem of Global Mortality Forecasting

Multidimensional Data Structures: 24 causes of death, 17 age groups,
2 sexes, 191 countries, 50 annual observations.

One time series analysis for each of 155,856 cross-sections:

with 1 minute to analyze each, one run takes 108 days

Every decision must be automated, systematized, and formalized:

the
same goal as including qualitative information in the model

Explanatory variables:

Available in many countries: tobacco consumption, GDP, human
capital, trends, fat consumption, total fertility rates, etc.
Numerous variables specific to a cause, age group, sex, and country

Most time series are very short.

A majority of countries have only a
few isolated annual observations; only 54 countries have at least 20
observations; Africa, AIDS, & Malaria are real problems
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How (Some) Existing Mortality Forecasts Work

Procedures:

Develop private forecasts qualitatively (i.e., informally)

Adopt a ‘toy’ statistical model

Get data; produce tentative forecasts with the model

Adjust model until forecasts fit private views

Present forecasts, with statistical model as your “method”

Meaning of procedures

Forecasts use qualitative information (good!)

Statistical models add little (bad!)

Method is invulnerable to being proven wrong

Subtitle of my talk should be reversed:
“Incorporating Quantitative Modeling into Qualitative Forecasts”
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Preview of Results: Out-of-Sample Evaluation

% Improvement

Over Best to Best
Previous Conceivable

Cardiovascular 22 49
Lung Cancer 24 47

Transportation 16 31
Respiratory Chronic 13 30

Other Infectious 12 30
Stomach Cancer 8 24

All-Cause 12 22
Suicide 7 17

Respiratory Infectious 3 7

Each row averages 6,800 forecast errors (17 age groups, 40 countries, and
10 out-of-sample years).
% to best conceivable = % of the way our method takes us from the best
existing to the best conceivable forecast.
The new method out-performs with the same covariates, for most
countries, causes, sexes, and age groups.
Does considerably better with more informative covariates
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All-Cause Mortality Age Profile Patterns
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Existing Method 1: Parameterize the Age Profile
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Gompertz (1825): log-mortality is linear in age after age 20

reduces 17 age-specific mortality rates to 2 parameters (intercept and
slope)
Then forecast only these 2 parameters
Reduces variance, constrains forecasts

Dozens of more general functional forms proposed

But does it fit anything else?
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Mortality Age Profile: The Same Pattern?
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Mortality Age Profile: The Same Pattern?
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Parameterizing Age Profiles Does Not Work

No mathematical form fits all or even most age profiles

Out-of-sample age profiles often unrealistic

The key empirical patterns are qualitative:

Adjacent age groups have similar mortality rates
Age profiles are more variable for younger ages
We don’t know much about levels or exact shapes

Key question: how to include this qualitative information

Also: Method ignores covariate information; the leading current
method (McNown-Rogers) not replicable
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Deterministic Projections
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Existing Method 2: Deterministic Projections
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Random walk with drift; Lee-Carter; least squares on linear trend

Pros: simple, fast, works well in appropriate data

Cons: omits covariates

; forecasts fan out;
age profile becomes less smooth

Does it fit elsewhere?
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Deterministic Projections Do Not Work

Linearity does not fit most time series data

Out-of-sample age profiles become unrealistic over time
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Specs for an Improved Forecasting Method

Quantitative data

Use all mortality data
Allows covariates (smoking causes lung cancer!)
Allow different covariates in each regression
(smoking doesn’t help forecast infant mortality!)

Qualitative information

Mortality age profiles are smooth
Younger age groups are more variable
Mortality trends smoothly over time
Neighboring age groups have similar mortality trends
Neighboring countries have similar trends in mortality

Statistical Modeling

Priors on expected mortality rather than coefficients
Only choose parameter values we know something about
Allow ignorance about specific patterns
Allow variables to change meaning in different countries (such as GDP)
or time periods (ICD changes)
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How to Forecast Two Short Time Series?

U.S.: yt= Xt−1β + εt (t = 1950, . . . , 2005)

Mexico: yt= Xt−1β + εt (t = 1950, . . . , 2005)

Options:

Estimate regressions separately:

too few observations
confidence intervals too wide

Pooling (Murray and Lopez, 1996):

Pool over countries (political scientists mortified)
Pool over age groups (public health scholars mortified)
Enormous biases either way
Requires covariates with the same meaning in all cross-sections

Qualitative knowledge: patterns are similar, not identical.
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Qualitative knowledge: patterns are similar, not identical.
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How to do it?

Just three easy steps:

P(yi |ηi ) =

{
S∏

s=1

Ks∏
k=1

[
F (τk

is |µi , 1)− F (τk−1
is |µi , 1)

]I(yis=k)
} √

BP10P11√
BP10 + P11

,

Ls(β, ω2, γ|y) ∝
n∏

i=1

∫ ∞

−∞

S∏
s=1

Ks∏
k=1

[
F (τk

is |Xiβ + ηi , 1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
φ

(
dφ

dΩ

)
rdγ =

√
B/(1 +

√
B)− 1/(1 +

√
B)− F (τk−1

is |Xiβ + ηi , 1)
]I(yis=k)

N(ηi |0, ω2)dηi

Θab = Pr(Xa|Y = b), B = (Θ11Θ00)/(Θ01Θ10). φ = (Bζ012/ζ112)1/2

=
√

Bζ01/ζ11, and γ =
√

B/(
√

B + η11/η10). Then, rdγ

η11γ =

√
Bη10Λ11√

BΛ10 + Λ11

, Λ01γ =

√
BΛ01Γ10√

BΓ10 + Γ11

, ζΓGK � Φφ

Γ10(1− γ) =
Γ10Γ11√

BΓ10 + P11

, P00(1− γ) =
P11P00√

BP10 + P11

.

rd ∈
[
min[rd(τ j), rd(τ̄j)], max[rd(τ j), rd(τ̄j)]

]
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How to do it

Standard Bayesian technology smooths coefficients,
requires considerable prior information

We translate assumptions about mortality into assumptions about
coefficients (E (y) = Xβ) so standard Bayesian machinery can be used

No extraneous assumptions; few adjustable parameters

Remaining parameters chosen based on real qualitative information

Added a wide array of ways to combine cross-sections
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Mortality from Respiratory Infections, Males
Least Squares
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Mortality from Respiratory Infections, males, σ = 2.00
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 1.51
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 1.15
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.87
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.66
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.50
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.38
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.28
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.21
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.16
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.12
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.09
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.07
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.05
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.04
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.03
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.02
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.01
Smoothing over Age Groups

0 20 40 60 80

−1
2

−1
0

−8
−6

−4

 (m) Belize

Age

D
at

a 
an

d 
F

or
ec

as
ts

1970 2030

() Demographic Forecasting 43 / 76



Mortality from Respiratory Infections, males
Least Squares
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Mortality from Respiratory Infections, males, σ = 2.00
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 1.51
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 1.15
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.87
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.66
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.50
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.38
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.28
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.21
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.16
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.12
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.09
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.07
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.05
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.04
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.03
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.02
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.01
Smoothing over Age Groups
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Smoothing Trends over Age Groups
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Smoothing Trends over Age Groups
Log-mortality in Belize males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups
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Smoothing Trends over Age Groups
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Smoothing Trends over Age Groups
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Smoothing Trends over Age Groups
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Smoothing Trends over Age Groups
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Smoothing Trends over Age Groups
Log-mortality in Belize males from respiratory infections
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Smoothing Trends over Age Groups and Time

Least Squares
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections
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Using Covariates (GDP, tobacco, trend, log trend)

Least Squares
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Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Korean Males
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Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Korean Males

Least Squares
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Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Korean Males
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What about ICD Changes?
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Fixing ICD Changes
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Formalizing (Prior) Indifference
equal color = equal probability
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A book manuscript, YourCast software, etc.

http://GKing.Harvard.edu
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With Country Smoothing
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Formalizing Similarity

Standard Bayesian Approach

Assume coefficients are similar

— But we know little about the coefficients

Requires the same covariates in each cross-section

— Why measure water quality in the U.S.?

Requires covariates with the same meaning in each cross-section

— Does GDP mean the same thing in Botswana and the U.S.?

Imposes no assumptions on covariates or mortality

— If covariates are dissimilar, then making coefficients similar makes
mortality dissimilar [since E (yt) = Xtβ in each cross-section]

Alternative Approach

Assume expected mortality is similar
Coefficients are unobserved, mortality patterns are well known
Different covariates allowed in each cross-section
Covariates with the same name can have different meanings
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Alternative Approach

Assume expected mortality is similar
Coefficients are unobserved, mortality patterns are well known
Different covariates allowed in each cross-section
Covariates with the same name can have different meanings
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Many Short Time Series
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Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error % Improvement

Best Our Best Over Best to Best
Previous Method Conceivable Previous Conceivable

Cardiovascular 0.34 0.27 0.19 22 49
Lung Cancer 0.36 0.27 0.17 24 47

Transportation 0.37 0.31 0.18 16 31
Respiratory Chronic 0.45 0.39 0.26 13 30

Other Infectious 0.55 0.48 0.32 12 30
Stomach Cancer 0.30 0.27 0.20 8 24

All-Cause 0.17 0.15 0.08 12 22
Suicide 0.31 0.29 0.18 7 17

Respiratory Infectious 0.49 0.47 0.28 3 7

Each row averages 6,800 forecast errors (17 age groups, 40 countries, and
10 out-of-sample years).
% to best conceivable = % of the way our method takes us from the best
existing to the best conceivable forecast.
The new method out-performs with the same covariates, for most
countries, causes, sexes, and age groups.
Does much better with better covariates
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