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o Intentionally biasing today's forecast towards yesterday’s ~~» much
smoother over time than related forecasts
@ When the Technical Panel recommends a change in a parameter:
o If Goss has good evidence: he engages the Panel and convinces them
o If the Panel has good evidence: he ignores the panel
o If the Panel has very strong evidence: he adjusts the parameter part
way, and adjusts another so the forecast is unchanged
e Many quotes; e.g. Goss: “The hard part is trying to balance the need
to change on the basis of new ideas and understanding with the desire
for consistency and stability over time” 16/1
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@ Technical Panel Substantive Recommendations
e For some: token dismissals in the Trustees Report
o For others: the Trustees Report contradicts the Panel, repeats
identically worded assertions year after year, without engaging the
Panel or the crucial issues raised
o The Trustees and Technical Panel agree on many issues too, but the
lack of engagement or mutual understanding is obvious
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our paper)
@ Actuaries hunkered down, insulated themselves, refused to budge
when Democrats & Republicans pushed hard for changes

@ In the process, they also insulated themselves from the facts:
Especially since 2000, Americans started living unexpectedly longer
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Informal forecasting methods ~~ the potential for bias

Civil servants working hard to resist intense pressure ~~ insulation from
the data as well

Nontransparency, little data sharing ~> no course corrections
Systematically & increasingly biased forecasts since 2000

Without better procedures, you or | could not do better

Solution: Professionalize

Remove human judgment where possible, via formal statistical methods
— via the data science revolution

Institute formal structural procedures when human judgment is
required — via the social psychological revolution

Require transparency and data sharing to catch errors that slip through
— via the scientific revolution

For more information:

GaryKing.org
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