Index nhm

Abu-Mostafa, Y., 148
actuarial science, 1
Actuary Department, U.K., 26
adjacency matrix, 59, 193, 249
age profiles, 1, 191-92; baseline and, 177;
centered, $33,101-2$; covariate choice and, 108-12; deterministic forecasting and, 139-41; discretizing and, 85-86; jaggedness and, 88,178 ; leading causes of death by, 6-7; Lebesgue measure and, 131; Lee-Carter approach and, 34-42; linear trends and, 178-82; mortality patterns and, 22-24; nonzero mean and, 107; partial pooling and, 12-13; population extrapolation and, 25-26; principal component analysis (PCA) and, 28-34; priors and, 69-73, 92 (see also priors); smoothing and, 83, 86-91, 98-100, 104-8, 131-33, 178-82, 187-89; time trends and, 133
AIDS, 3n2, 4, 6, 24
Aitchison, J., 211
Alho, J. M, 39
Argentina, 190-95
Armstrong, J. Scott, 25
Arsenin, V. Y., 66n3
autoregressive models, 46-47; integrated moving average (ARIMA) models, 36-37, 57; linear trends and, 178; priors and, 79n1
backcast, 47
basis, 224-25
Bayesian models, xv, 1, 12; all-cause mortality and, 197-98; comparative analyses and, 196-210; conditional densities and, 147; dependent variables and, 64-69; empirical inference and, 148-51; hierarchical approach and, 57-73, 148-51; ignorance representation and, 74-75; likelihood choice and, 112-23; literature implications and, 15-16; logical

Bayesianism and, 74-75; neighboring states and, 15-16; pooling and, 2; priors and, 57-93 (see also priors); robust analysis and, 75 ; specific probability density and, 74-75; splines and, 105; summary measure estimation and, 141-44
Beck, Nathaniel, 17
Bedrick, Edward J., 66
Belize, 178
Bell, W. R., 28, 31
Beltrami, E., 234
Berger, James, 75
Bergmann, K. E., 34
Besag, Julian, 59, 75, 128
bias, $12,14,102$; covariate methods and, 38-39, 47-50, 53-54, 65, 108; intercept correction and, 49; Lee-Carter approach and, 38-39; maximum likelihood (ML) and, 47-48; Poisson methods and, 119
Biggs, N. L., 128
Bishop, Christopher M., 148
Bishop, Y.M.M., 36
Blattberg, R. C., 57n1
Boe, C., 34
Booth, Heather, 34
bootstrapping, 98
borrowing strength, 12
Bozik, J. E., 28, 31
Brazil, 23
Breas, J., 28
breast cancer, 3n2, 23-24, 121, 187-89, 205-6
Bulgaria, 181
bumps, 89-90, 95
burn-in iterations, 164-65, 169

Cameron, A. C., 44
Canada, 26, 193, 195
Capocaccia, Riccardo, 51-52
cardiovascular disease, 3n2, 65, 119; age
and, 6 ; Europe and, 9 ; females and, 31-32; males and, 6, 9, 12, 23-24, 47, 115-16,

120-21, 210; South Africa and, 12; United Kingdom and, 31-32; United States and, 47; variance specification and, 120-23
Carlin, Bradley P., 149
Carter, Lawrence R., 10, 28, 34, 36
cause-specific methods, 51-53
Chen, Ming-Hui, 66
Chile, 190-95
Christensen, Ronald, 66
Clements, M. P., 49
Clogg, Clifford C., 66
clusters, 3n2
Coale, Ansley, 127
coefficients: comparative analyses and, 196-210; conditional densities and, 147; defining distances and, 145-47; hierarchical models and, 148-51; linear trends and, 181-82; Markov Chain Monte Carlo estimation and, 161-69; Maximum A Posteriori (MAP) estimator and, 170-73; nonlinear trends and, 182-87; priors and, 61-68, 92-93; projection operators and, 227-29; simultaneous smoothing and, 131-32; smoothing over countries and, 127-31; smoothing over time and, 124-27; virtual examples and, 147-48
Collier, David, 17
Colombia, 193
comparability ratios, 153
comparative analyses, 196; all-cause mortality in males and, 197-200; breast cancer and, 205-6; cardiovascular disease and, 210; least squares method and, 202-5; Lee-Carter method and, 196-206, 210; lung disease and, 200-204; Murray-Lopez model and, 197; OECD countries and, 206-10; transportation accidents and, 208-9
comparativists, 2-3, 16-18
complementary subspaces, 226
conceptual stretching, 17
conditional Maximum A Posteriori
estimator, 172-73
consequentialism, 75
Cook Islands, 116
Costa Rica, 193
countries: all-causes mortality and, 197-200; breast cancer and, 205-6; cardiovascular disease and, 210; comparative analyses and, 196-210; GDP proxy and, 189-90; lung disease and, 200-204; OECD,

206-10; parameter choice and, 193-95; smoothing over, 127-31, 133-34, 189-95; standard deviation and, 194-95; time trends and, 133-34; transportation accidents and, 208-9. See also specific country
covariates, 46 ; changes in meaning and, 153-57; choosing, 108-12; comparative analyses and, 196-210; distance definition and, 145-47; forecasting with, 187-89; forecasting without, 178-87; Gibbs sampling and, 164-69; indifference analysis and, 125-27; null space and, 109-12, 125-27; orthogonal, 110; smoothing over age, 187-89; smoothing over countries, 189-95; smoothing over time, 124-27, 187-89; variance over age groups and, 111-12
Croatia, 187-89
cross validation, 98
Cuba, 193

Dawid, A. P., 75
De Angelis, Giovanni, 51-52
de Boor, C., 66n3, 81-82
Demeny, Paul, 127
demography, 1; age profiles and, 22-24 (see also age profiles); dependent variables and, 64-69; estimator optimality and, 21-22; inference theories and, 21-22; Lee-Carter approach and, 34-42; methods without covariates, 21-42; nonparametric approaches and, 28-34; parametric approaches and, 13, 26-28; population extrapolation approaches and, 25-26; principal components and, 28-34; statistics and, 11-15; vector mapping and, 13-14
dependent variables, 64, 72, 104-8; all-cause mortality and, 198; changes in meaning and, 153-57; comparability ratios and, 153; cross-sectional index and, 80-91; defining distances and, 145-47; discretizing and, 85-86; expected value of, 65-69; general interactions and, 134-36; grouped, 80-93; indifference analysis and, 128-30; linear trends and, 178-82; meaning changes and, 153-57; multiple smoothing parameters and, 136-44; nonlinear trends and, 182-87; nonzero mean and, 107, 152n2; notation
for, 215-16; null space and, 83-85; piecewise polynomials and, 155-57; simultaneous smoothing and, 131-32; smoothing data without forecasting and, 151-53; smoothing over countries, 127-31; smoothing over time, 124-27; time trend interactions and, 132-34; virtual examples and, 147-48
digestive disease, 3 n 2
dimension, 224-25
direct decomposition methods, 51-52
direct sum, 226
discretization: derivative operator and, 247-48; general interactions and, 134-36; piecewise polynomials and, 155-57; priors and, 85-86, 90-91; simultaneous smoothing and, 131-32; smoothing over countries and, 127-31; smoothing over time and, 124-27; time trend interactions and, 132-34
distance, 145-47, 220
disturbance correlations, 50-51
domain, 223
drift parameter, 37
economic issues, $8-9,17,48$
Edwards, A.W.F., 75
Efron, B., 98, 197
eigenvalues, 242-43, 246; grouped variables
and, 86 ; methods without covariates, 34 , 36; null space and, 128-29; smoothing choice and, 106; symmetric matrices and, 232-35
El Salvador, 121
epidemics, 153
equation-by-equation maximum likelihood (ML), 48, 53-54; computing forecasts and, 46-47; least squares and, 44-46; Poisson regression and, 43-44; priors and, 57-58
equations: age profile, $98-100$; comparative analyses, 198; conditional densities, 147; discretization of derivative operator, 247; distance definition, 146; eigenvalue/eigenvector decomposition, 233; generalized inverse, 237-38; Gompertz, 26; hierarchical models, 148-51; improper normal priors, 241-46; indifference analysis, 76-78; least squares method, 45-46, 147; Lee-Carter, 34-35, 37-38; likelihood function, 58; linear trends, 178-81; log-mortality rate matrix,

25; McNown-Rogers, 26; Markov Chain Monte Carlo estimation, 161-69;
Maximum A Posteriori estimator, 170-72; mortality variance over age and time, 178-80; multiple smoothing parameters, 137; Murray-Lopez, 48; nonlinear trends, 183-87; nullity, 231; null space, 109-11; PIAMOD, 51-52; Poisson, 44, 113, 115; posterior density, 58,64 ; principal components, 28-29, 33-34; priors, 58-59, 62, 64 (see also priors); probability density, 239-40; projection operators, 228; quadratic form identity, 238-39; range, 229, 231; rank, 230, 232;
simultaneous smoothing, 131-32; singular values decomposition, 234-36; smoothing over age, 178-81, 188; smoothing over countries, 127-28, 130, 191; smoothing over time, $125,181,188$; smoothing without forecasting, 151-52; smoothing with piecewise polynomials, 155 ; standard smoothness functional, 95; time trend interactions, 133-36; variance specification, 120, 123
estimation: Markov Chain Monte Carlo, 161-69; Maximum A Posteriori (MAP), 170-73
Eubank, R. L., 82
Euclidean spaces, 219-20
fat consumption, $4,187,210$
fertility rates, $1,4,13,28$
Fienberg, S. E., 36
forecasting, 177, 211-12; autoregressive models and, 46-47; comparative analyses and, 196-210; covariates and, 43-54, 187-89; defined, 9; deterministic, 139-41; economic issues and, $8-9$; efficiency and, 13 ; in-sample period and, 10 ; intercept correction and, 49; Lee-Carter approach and, 34-42; linear trends and, 178-82; Markov Chain Monte Carlo estimation and, 160-69; Maximum A Posteriori (MAP) estimator and, 170-73; methods without covariates, 21-42, 178-87; multiple parameters and, 136-44; nonlinear trends and, 182-87; nonparametric approaches and, 28-34; out-of-sample period and, 10; parametric approaches and, 26-28; population extrapolation approaches and, 25-26; principal components and, 28-34;
qualifications for, 9-10; time-of-death predictions and, 10; uncertainties and, 9-11; YourCast and, 9
France, 23
Friedman, J., 98
Frobenius norm, 223, 235-36
full rank, 229-32

Gakidou, Emmanuela, 3n1
Gamma priors, 58, 163, 165-67
Gelfand, A. E., 164
Gelman, Andrew, 14n4, 57n1, 162, 170
Geman, Donald, 128, 164
Geman, Stuart, 128, 164
gender, 178; all-cause mortality and,
197-200; breast cancer and, 23-24, 187-89, 205-6; cardiovascular disease and, $6,9,12,23-24,31-32,47,115-16$, 120-21, 210; leading causes of death by, 6-7; Lee-Carter approach and, 42; lung disease and, 200-202; population extrapolation and, 25-26; suicide and, 24 , 40-42; tobacco and, 198, 200-202; transportation accidents and, 208-9; variance specification and, 120-23
generalized cross validation, 98
generalized inverse, 236-38
George, E. I., 57n1
Gibbs sampling, 131, 152; all-cause mortality and, 198; burn-in iterations and, 164-65, 169; Gamma priors and, 165-67; hyperparameters and, 164 ; linear trends and, 180; Markov Chain Monte Carlo estimation and, 164-69; Maximum A Posteriori (MAP) estimator and, 170-73; prior densities and, 164-69
Gilks, W. R., 164
Gill, Jeff, 57n1, 164
Girosi, Federico, 3, 34, 36, 38, 148
global oscillation, 89-90
Golub, G. M., 98
Gompertz, B., 13, 26
Goodman, Leo, 61
Goss, Stephen C., 26
graph theory, 248-49
Graunt, John, 22
Greenland, Sander, 61, 66, 170
gross domestic product (GDP) measurement,
13, 187, 198; Murray-Lopez model and,
48; null space and, 109, 111; priors and,
62,65 ; smoothing over time and, 126-27
Guillot, Michel, 22, 127

Haberland, J., 34
Hand, David, 197
Harrison, Jeff, 66
Hastie, Trevor, 98
Heath, M., 98
Henderson, R., 66n3
Hendry, D. F., 49
Heuveline, Patrick, 22, 127
hierarchical models, 148-51
Higdon, David M., 128
Hill, Jennifer, 57n1
HIV, 9
Holland, 36
homicide, 3 n 2
Honduras, 120
Hsu, J.S.J., 170
Hungary, 39, 198

Ibrahim, Joseph G., 66
inference theories, 21-22
inner product space, 221-23
intercept correction, 49
International Classification of Diseases (ICD), 153
interpretation, 13, 59n2, 106, 147-48; covariates and, 53; grouped variables and, 77, 86, 92; Markov Chain Monte Carlo estimation and, $165,167-68$; null space and, 130; projection operators and, 228; smoothing and, 68-73, 181
Inter-University Consortium for Political and Social Research, 17
inverse Gamma priors, 58, 162-63
islands, 128-29
Italy, 29
Iversen, Edwin W., 59
Jacobians, 243
jaggedness, 88, 178
Japan, 31, 209
Jee, Sun Ha, 26
Jeffreys, H., 66
Jensen's inequality, 114
Johnson, Wesley, 66
Jordan, C., 234
Kadane, Joseph B., 64, 66
Kass, Robert E., 75
Katz, Jonathan, 17, 211
Keohane, Robert O., 17
Keyfitz, N., 13, 26
Kimeldorf, G. S., 66n3, 79n1, 105

King, Gary, 3, 10, 14n4, 17, 178; compositional data and, 211; ecological inference problem and, 61 ; least-squares method and, 44-46; Lee-Carter approach and, $34,36,38$; likelihood theory of inference and, 75; Poisson regression and, 44, 113
Kooperberg, Charles, 59, 75
Kuwait, 121
LaPalombara, Joseph, 17
Laplacians, 75, 250
Laud, Purushottam W., 66
least-squares method, 187; comparative analyses and, 202-3, 205; equation-by-equation maximum likelihood and, 44-46; Lee-Carter method and, 202-3, 205; smoothing over countries and, 190-91
Lebesgue measure, 83n2, 131
Ledermann, S., 28
Lee, Ronald D., 10, 28, 34, 36
Lee-Carter approach, 42, 57, 178; all-cause mortality and, 34, 197-200; ARIMA models and, $36-37$; bias and, 38 ; breast cancer and, 205-6; comparative analyses and, 196-206, 210; description of, 34-36; drift parameter and, 37; estimation and, 36; forecasting and, 36-38; least-squares method and, 202-3, 205; lung disease and, 200-204; plot stratification and, 200; properties and, 38-41; random walks and, 36-38; re-estimation step and, 36; row independence and, 36 ; singular value decomposition and, 36
Leonard, T., 170
Li, S. Z., 34, 128
life tables, 28, 127
likelihood, 124n1; function choice and, 112-23; Gibbs sampling and, 164-69; Markov Chain Monte Carlo estimation and, 161-69; Maximum A Posteriori (MAP) estimator and, 170-73; normal specification derivation and, 112-14; null space and, 79-80; Poisson approximation accuracy and, 114-20; priors and, 74-93 (see also priors); smoothing and, 98 (see also smoothing); variance specification and, 120-23
Lilienfeld, David E., 25
Lin, Hsin Ying, 66
linear algebra: definiteness, 234;
eigenvalues, 232-33; Frobenius norm, 223, 235-36; generalized inverse, 236-38; null space, 229-32; quadratic form identity, 238-39; range, 229-32; rank, 229-32, 235; singular values
decomposition (SVD), 234-36
Liu, Chuanhai, 14n4
liver cancer, $3 n 2$
local oscillation, 89-90
logical Bayesianism, 74-75
log-likelihood function, 44
log-mortality rate, 6-7, 12, 106; age group patterns and, 22-24; changes in meaning and, 153-57; comparability ratios and, 153; GDP proxy and, 189-90; Jensen's inequality and, 114; least-squares method and, 44-46; matrices and, 24-25;
nonparametric approaches and, 28-32; parametric approaches and, 26-28; Poisson process and, 112-20; principal component analysis (PCA) and, 28-34; smoothness over coefficients and,
100-104; U-shaped pattern and, 189-90
Louis, Thomas A., 149
Lu, Ying, 3n1
lung cancer, 3n2, 26, 31; deterministic forecasts and, 139; males and, 200-202; summary measure ands, 143; tobacco and, 4, 61, 184-85, 200-202

McNown, Robert, 26-28, 39
Macridis, Roy C., 16
macroepidemiology, 1
Mahalanobis norm, 146
Mahon, James E., Jr., 17
Maindonald, John, 34
malaria, 3n2, 6, 24
Malta, 198
mappings, 223
marginal Maximum A Posteriori estimator, 171-72
Markov Chain Monte Carlo estimation, 75, 123; burn-in iterations and, 164-65, 169; closed form solutions and, 162;
coefficients and, 161-64; fast estimation without, 170-73; Gamma priors and, 163, 165-67; Gibbs sampling algorithm and, 164-69; hyperparameters and, 162, 164; inverse Gamma priors and, 162-63; Maximum A Posteriori (MAP) estimator and, 173; model summary, 161-64; prior densities and, 162-69

Markov Random Fields, 59, 128
maternal conditions, 3 n 2
matrices: adjacency, 59, 193, 249;
definiteness and, 234; discretization of derivative operator and, 247-48; eigenvalues and, 232-33; Frobenius norm, 223, 235-36; generalized inverse, 236-38; graph theory and, 249-50; identity, 216; improper normal priors and, 241-46; indifference analysis and, 128-30; islands and, 128-29; neighbors and, 60; notation for, 215-16; null space and, 79-80; oriented incidence, 249; parameter reduction and, 95 ; positive semidefinite, 234; projection operators and, 227-29; singular values decomposition (SVD) and, 234-36; smoothness and, 86-91; subspace and, 225
Maximum A Posteriori (MAP) estimator, 170-73
maximum likelihood (ML): bias and, 48; equation-by-equation, 43-48, 53-54, 57-58; Gibbs sampling and, 164-69; least squares and, 44-46; noise and, 47; Poisson regression and, 43-44
metric space, 219-20
Mexico, 26
microsimulation methods, 52-53
Migon, Helio S., 66
military conflict, 3 n 2 , 9
Miller, Timothy, 36
model selection: covariate choice and, 108-12; likelihood and, 112-23; log-normal approximation to Poisson, 114-20; normal specification and, 112-14; smoothness and, 94-108; variance function and, 112-23
Monsell, B. C., 28, 31
Moodaley, L. C., 66
Morozov, V. A., 66n3
mortality, 211-12; age group patterns and, 5-8, 22-24; all-cause, 4-5, 22-26, 29, 34, $39,42,73,87,90,115,197-200$; clusters and, 3 n 2 ; comparative analyses and, 196-210; exogenous shocks and, 21; forecasting, 3-11 (see also forecasting); Lee-Carter approach and, 34-41; linear trends and, 178-82; log-mortality rate and, 114-20 (see also log-mortality rate); methods with covariates, 43-54; methods without covariates, 21-42; nonlinear trends and, 182-87; Poisson process and,

114-20; population extrapolation and, 24-25; registration data and, 3 ; variance specification and, 120-23; World Health Organization (WHO) and, 1-4
Murray, Christopher J. L., 153
Murray-Lopez model, 48-49, 53-54, 197
natural disasters, 9
neighbors, 60 ; graph theory and, 249-50; hierarchical models and, 151 ; null space and, 128-29; smoothing over countries and, 127-28
New Zealand, 39
Nicaragua, 120
Niyogi, P., 148
nonparametric approaches: Lee-Carter model and, 28, 34-42; principal component analysis (PCA) and, 28-34; regression analysis and, 75
normalization factors, 62-63
normed space, 221
nullity, 231-32
null space, 76,95 ; bumps and, 95 ; content of, 110-12; covariate choice and, 109-12; dimension and, 110; indifference analysis and, 125-30; linear trends and, 180; priors and, 76, 79-80, 83-91, 108-12; rank and, 229-32; size of, 109-10; smoothness and, 95-97, 100, 106

O’Hagan, A., 66
Oman, Samuel D., 66
operators, 223; derivative, 247-48; discretization and, 247-48; projection, 77, 227-29
optimality, 173, 284: comparative analysis and, 196-210; covariates and, 31, 33, 186-89; cross validation and, 98 ; parametric approaches and, 27, 200-202; pooling and, 48-49
Organization for Economic Co-operation and Development (OECD), 4, 206-10
orthant, 150
orthogonal complement, 226
orthonormality, 225
oscillation, 89-90
Palau, 116
partial pooling, 12-13, 50-51
perinatal conditions, 3 n 2
Perl, Daniel P., 25
Peru, 184
philosophy, 74-75
PIAMOD (prevalence, incidence, analysis model), 51-53
piecewise polynomials, 155-57
Plackett, R. L., 45, 116
Poggio, T., 148
Poisson process: large lambda case and, 115-16; likelihood choice and, 112-14; log-normal accuracy and, 114-20; normal specification derivation and, 112-14; randomness and, 119; regression and, 43-44; small lambda case and, 116-19; very small lambda case and, 119-20
political science, 1, 3, 16-18
Pólya process, 113
pooling, 2, 14; cross-sectional, 48-51; disturbance correlations and, 50-51; Murray-Lopez model and, 48-49; partial, 12-13, 50-51; post-estimation intercept correction and, 49; time series and, 48-50
population extrapolation approaches, 24-25
Portugal, 40
positive semidefinite matrix, 234
posterior distribution, 164, 170-73
predictive interference, 66
Press, William H., 247
Preston, Samuel H., 22, 34, 127
principal component analysis (PCA):
appearance of, 28; centered profiles and, 33 ; estimation and, 32-34; fertility rates and, 28; Lee-Carter model and, 28, 34-42; parsimonious data representation and, 28-32; singular value decomposition and, 28, 31-34
principal components, 28-34
priors, 177 ; bootstrapping and, 98 ; changes in meaning and, 153-57; choice of, 97-104; coefficients and, 59-68, 92-93; comparisons and, 145-48; country trends and, 133-34; covariate choice and, 65, 108-12; default solution and, 75 ; defining distances and, 145-47; densities and, 58, 66-67, 74-75, 147, 162-69; dependent variables and, 64-69, 72, 80-93, 153-57 (see also dependent variables); discretization and, 85-86, 90-91; empirical inference and, 148-51; equivalence class and, 79 ; extensions and, 148-57; Gamma, 58, 162-63, 165-67; general interactions and, 134-36; generalized cross validation and, 98 ; graph theory and, 248-49; hand built, 91;
ignorance representation and, 74-75; improper, 59-60, 240-45; indifference analysis and, 74-80, 83-85, 125-30; linear trends and, 178-82; literature on, 74-75; Markov Chain Monte Carlo estimation and, 161-69; Markov Random Field, 59; Maximum A Posteriori (MAP) estimator and, 170-73; multiple smoothing parameters and, 136-44; neighbors and, 60 ; nonlinear trends and, 182-87; nonparametric, 98-100; nonzero mean and, 107, 152n2; normalization factors and, 62-63; null space and, 76, 79-80, 83-91, 108-12; parametric, 97-98; piecewise polynomials and, 155-57; problems with, 59-65; projectors and, 77; random walks and, 72-73; reference, 75; shrinkage, 149-51; smoothing and, 69-73, 75, 81-91, 97-104; standard deviation and, 100-102, 137-41, 169, 181, 194-95; summary measure estimation and, 102, 141-44; translation and, 62-63, 67-68; virtual examples and, 147-48
probability densities, 216; Gamma distribution, 238-39; improper normal priors and, 240-45; log-normal distribution, 239; normal distribution, 238; priors and, 74-75
projection operators, 77, 226-25
public health, 1 ; clusters and, 3 n 2 ;
comparativists and, 2-3, 16-18;
cross-national research and, 16-18;
forecasting and, 10 (see also forecasting)
quadratic form identity, 231-38
randomness, 38, 245; ARIMA models and, 36-37; Poisson process and, 119; priors and, 72-73
range, 223, 228-31
rank, 228-31, 234
Raymer, James, 26
real analysis: basis, 223-24; dimension,
223-24; direct sum, 225; functions, 222-23; mapping, 222; metric space, 219; normed space, 220; operators, 222,
226-28; orthogonal complement, 225; orthonormality, 224; projection, 226-28; scalar product space, 220-22; span, 223; subspace, 224; vector space, 218-19 registration data, 3 regularization theory, $1,66 \mathrm{n} 3$
Richardson, S., 164, 246

Rofman, R., 34
Rogers, Andrei, 27-28
R Project for Statistical Computing (R
Development Core Team), xv-xvi
Salomon, Joshua A., 53
Sartori, Giovanni, 17
scalar products, 218-22
Schoenberg, I. J., 66n3, 81
Schumaker, L. L., 82
seemingly unrelated regression models (SURM), 50-51
semidefinite symmetric matrix, 59
semidistance, 219
semi norm, 222
sets, 216
severe acute respiratory syndrome (SARS), 9
shrinkage priors, $149-51$
Signorino, Curtis S., 44, 113
singular value decomposition (SVD):
eigenvalues and, 233-35; generalized inverse, 237; Lee-Carter approach and, 36; principal component analysis (PCA) and, 28, 31-34
Sivamurthy, M., 28
Smith, A.F.M., 164
Smith, Len, 34
smoking. See tobacco
smoothing, 12, 27, 66n3, 177, 211-12; age profiles and, 83, 86-91, 98-100, 104-8, 131-33, 178-82, 187-89; average variance and, 98-100; bootstrapping and, 98; bumps and, 89-90; changes in meaning and, 153-57; choosing where to smooth, 104-8; discretization and, 85-86, 90-91; functional choice and, 94-97; with general interactions, 134-36; generalized cross validation and, 98; global shape and, 95; graph theory and, 249-50; jaggedness and, 88,178 ; linear trends and, 178-82; local behavior and, 94-95; multiple parameters and, 136-44; nonlinear trends and, 182-87; nonparametric prior and, 98-100; null space and, 95-97, 100, 106; optimality and, 98 ; oscillation and, 89-90; over coefficients, 100-104; over countries, 127-34, 189-95; over time, 124-27, 131-32, 181-82, 187-89; priors and, $69-73,75,81-91,97-104$; as random variable, 98 ; simultaneous, 131-32; standard functional, 95 ; structural risk minimization and, 98 ; summary measure
estimation and, 141-44; time trend interactions and, 132-34; uncertainty level and, 100; univariate, 98-100; varying degree of, 83 ; without forecasting and, 151-53
sociology, 2, 16-18
South Korea, 26
Spanish influenza, 9
spans, 224
Speckman, P., 75, 79n1
Spiegelhalter, D. J., 164
splines, $27 \mathrm{n} 1,66 \mathrm{n} 3,81,105$
Sri Lanka, 106
SSE, 165-66, 171-72
stabilizers, 66 n 3
statistics, 1, 211-12; bias and, 12 (see also bias); covariate choice and, 108-12; demographers and, 11-12, 21-22; dependent variables and, 64-69; estimator optimality and, 21-22; inference theories and, 21-22; Lee-Carter approach and, 34-42; likelihood and, 112-23 (see also likelihood); log-normal approximation to Poisson, 114-20; methods with covariates, 43-54; methods without covariates, 21-42; model selection and, 94-123; nonparametric approaches and, 28-34; normal specification and, 112-14; parametric approaches and, 26-28; pooling and, 12-14; population extrapolation approaches and, 25-26; principal components and, 28-34; prior specification and, 57-73; qualitative overview, 11-15; smoothing and, 12, 94-108 (see also smoothing); specific probability density and, 74-75; time series and, 11-12; unified framework for, 24-25; variance and, $12,14,112-23$; vector mapping and, 13-14
Stewart, G. W., 233
Stimson, James A., 17
stomach cancer, 3n2, 31
Strang, G., 234
structural risk minimization, 98
subspaces, 224-25; generalized inverse, 235-37; null space and, 228-31; range and, 228-31
suicide, $3 n 2$, 24 , 40-42
Sun, D., 75, 79n1
Tabeau, Ewa, 26, 57
Tanner, Martin A., 161, 164

Taylor, G., 66 n 3
terrorism, 9
Tibshirani, R., 98
Tikhonov, A. N., 66n3
time, 4, 11-12, 80; country smoothing and, 190-95; cross-sectional pooling and, 48-50; equation-by-equation maximum likelihood (ML) and, 43-48; Gibbs sampling and, 164-69; Lebesgue measure and, 131; Lee-Carter approach and, 34-42; linear trends and, 181-82; monotonic decrease and, 124 n 1 ; Murray-Lopez model and, 48-49; nonlinear trends and, 182-87; parametric approaches and, 26-28; postestimation intercept correction and, 49 ; principal component analysis (PCA) and, 28-34; smoothing and, 124-27, 131-32, 181-82, 187-89; trend interactions and, 132-34
tobacco, $13,43,208$; breast cancer and, 205; gender and, 198, 200-202; increased access to, 183; lung disease and, 4,61 , 184-85, 200-202; null space and, 126; smoking rates and, 47 ; smoothing over time and, 187
Tobago, 184
translation, 62-63, 67-68
transportation accidents, 3n2, 6, 40-41, 189-90, 208-9
traveling problem, 17
triangle inequality, 219
Trinidad, 184
Trivedi, P. K., 44
Tsutakawa, Robert K., 66
tuberculosis, 3n2, 6, 24
Tucker, Richard, 17
Tuljapurkar, S., 28, 34
Ukraine, 184
United Kingdom, 26, 31-32, 42
United States, 17-18, 39, 193, 195;
cardiovascular disease and, 23, 116, 121;
cross-sectional pooling and, 48;
Lee-Carter method and, 34, 197; male mortality and, 178; Poisson method and, 116; population extrapolation and, 26; suicide and, 40
U.S. Census Bureau, 26, 34
U.S. Social Security Administration, 5
U.S. Social Security Technical Advisory

Panels, 34
utilitarianism, 75
Vapnik, Vladimir N., 98
variance function: choice of, 112-23; normal specification derivation and, 112-14; Poisson approximation accuracy and, 114-20
vectors: basis and, 223-24; conditional densities and, 147; dimension and, 223-24; discretization of derivative operator and, 246-47; eigenvectors and, 231-32; equivalence class and, 79; functional, 223; higher-dimensional metric space and, 146; Mahalanobis norm and, 146; normed space, 221 ; null space and, 228-31; orthogonal parts and, 77; orthonormal, 225; projection operators and, 226-28; range and, 228-31; scalar products and, 218-22; span and, 223; subspace and, 224-25; summer, 214; virtual examples and, 147-48; zero, 218
vector space, 218-19
Verba, Sidney, 17
Verdecchia, Arduino, 51-52
Verrall, R. J., 66n3
virtual examples, 147-48
Wahba, Grace, 66n3, 75, 79n1, 81-82, 98, 105
Wang, Yan, 66
war, 3n2, 9
Wasserman, Larry, 75
wavelets, 66
Weinstein, Milton C., 53
Weiss, Robert E., 66
West, Mike, 66
Western, Bruce, 17, 57n1
Whittaker, E. T., $66 n 3$
Wilmoth, John R., 34, 36
Woodward, E. G., 66
World Health Organization (WHO), 1-4
YourCast, xv-xvi, 9
Zellner, A., 50
Zeng, Langche, 10, 61, 75
Zorn, Christopher, 17

