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Abstract

We introduce a method for estimating incidence curves of several co-circulating infectious pathogens, where each infection
has its own probabilities of particular symptom profiles. Our deconvolution method utilizes weekly surveillance data on
symptoms from a defined population as well as additional data on symptoms from a sample of virologically confirmed
infectious episodes. We illustrate this method by numerical simulations and by using data from a survey conducted on the
University of Michigan campus. Last, we describe the data needs to make such estimates accurate.
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Introduction

Timely and accurate estimates of influenza virus infection

incidence rates in a population are difficult to obtain because most

infectious episodes are unaccounted for, while influenza-like illness

can have a variety of etiologies other than influenza virus infection.

Many countries use sentinel surveillance systems to ascertain rates of

medical consultations associated with influenza-like illness [1,2],

and these data typically track the influenza epidemic curve although

they cannot provide information about absolute infection rates

without additional data on sensitivity and specificity over time.

Serological surveillance can permit robust estimates of incidence

rates in a population, although it can be costly and has rarely been

employed in the US. To date the literature only contains one

serological study of influenza infection in the US during the 2009

H1N1 pandemic [3]. Under a number of assumptions, sentinel

surveillance data can be combined with virologic surveillance to

estimate infection rates using a multiplier-type approach [4].

Here we propose an alternative approach to estimating age-

specific infection incidence rates in a population based on

syndromic surveillance data. The idea is that different infections

generate different distributions of symptom profiles for symptom-

atic individuals, and data on reported symptom profiles can be

‘‘deconvolved’’ to estimate the underlying incidence of various

infections. For example, among children with acute respiratory

illness (ARI), fever is predictive of influenza virus infection

(hereafter referred to as influenza) as the etiology [5]. The

proportion of febrile cases among individuals with ARI during a

time period when influenza incidence is high is expected to be

greater compared to the time period when influenza incidence is

low. Data on symptomatic and febrile cases in age-stratified

random population samples combined with an estimate of the

proportion of influenza cases who develop fever can therefore

potentially be used to infer influenza incidence during various time

periods. More generally, using data on symptom profile distribu-

tions combined with symptom data collected through surveillance,

one can estimate the symptomatic incidence attributable to each

infection; the latter estimate is obtained using the Expectation-

Maximization algorithm [6,7]. Similar considerations, though

involving different estimation methodology for symptoms and

causes of death appeared in [8].

In this paper we present the deconvolution (estimation) process

in detail and describe the data needs for making such estimates

accurate. We test the effect of deconvolution on simulated

incidence and symptom profile curves. Additionally, we apply it

to syndromic data collected during the declining period of an

influenza outbreak on the University of Michigan campus.

Methods

Ethics Statement
The study from which symptom profile data were obtained was

approved by the Institutional Review Board at the University of
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Michigan (IRB # HUM00008566) under the ‘‘No more than

minimal risk’’ classification (http://clinicaltrials.gov/ct2/show/

NCT00490633).

1. Multinomial model
Suppose there are m different pathogens causing infection in a

population. Throughout this paper by ‘‘population’’ we denote a

group of people assumed to be homogeneous in the sense than the

distribution (probability) of symptoms associated with each of the

various circulating pathogens does not change in time for the

infected people in this population group. Correspondingly the

estimation method for disease incidence is restricted to such a

population for which symptom data is gathered.

Let the (unknown) symptomatic incidences of those infections in

the population on week t be I1
t, . . . ,Im

t (we assume that no co-

infections occur). Let Popbe the total population size, and let

pi
t~

Ii
t

Pop
be the (time dependent) probability that a randomly

selected person becomes symptomatic with infection i on week t.

Let S1, . . . ,SN be the set of possible symptom profiles observed

in patients. For instance if there are k possible symptoms then one

can take N~2k{1and the profiles are just the non-empty subsets

of 1,::,kf g. Use of this large number of profiles may lead to small

counts of the numbers of people experiencing each symptom

profile, so more parsimonious sets of symptom profiles may be

advantageous.

For each infection i let d(i)~(di
1, . . . di

N )be the probabilities of

particular symptom profiles for a person with that infection. For

identifiability of different infections we assume that the matrix

D~(di
j )has rank m, which in particular implies that mƒN and

that there is no infection for which the distribution of symptom

profiles can be expressed as a linear combination of the other

symptom profile distributions. Moreover we assume that for each

i,

X

j

di
j ~1 ð�Þ

Thus we are estimating symptomatic incidence, namely infections

for which one of the chosen symptom profiles is present.

Additional data on the proportion of individuals with each

infection who are ‘‘asymptomatic’’ (do not exhibit any of the

specified profiles) can allow one to estimate full incidence

(symptomatic and asymptomatic incidence of the corresponding

infection). For influenza, various estimates of the asymptomatic

fraction exist in the literature [9,10,11]. A separate study tailored

for the specific population and the circulating influenza strain

should render a more accurate estimate of the asymptomatic

fraction. Note that under this approach, estimation of the full

incidence for the etiology of interest does not require data on the

asymptomatic proportion for the other etiologies.

Suppose we have a weekly report from Qtindividuals on week t
on their symptoms during the preceding week. The weekly data

can be reduced to a vector (Qt
1, . . . ,Qt

N ,Qt
AS) where Qt

j is the

number of persons with symptom profile Sj on week t, Qt
AS is the

number of asymptomatic persons and

X

1ƒjƒN

Qt
jzQt

AS~Qt

For each week t let X t
ij be the (unobserved) number of people

among the Qt responders with infection i reporting symptom

profile Sjon week t (1ƒiƒm,1ƒjƒN). Thus

Qt
j~
X

i

X t
ij

Moreover let X t
AS be the number of asymptomatic persons. For a

randomly chosen person among the Qt responders, the probability

that he/she has infection i and reports symptom profile Sj (falls

into the category X t
ij ) is pt

i j
i. The probability that he/she is

asymptomatic is pt
AS~1{

Pm

i~1

pt
i . Therefore the distribution of the

(observed) symptom counts (Qt
1, . . . ,Qt

N ,Qt
AS) is multinomial with

size Qt and the parameters

((pi
t):(di

j ),p
t
AS) ð1Þ

where (pt
i)
:(di

j ) is a vector by matrix multiplication.

2. Symptom profile distributions
Equation (1) shows that the syndromic data alone cannot

identify the number of symptomatic individuals with each

infection. Therefore additional data on symptom profiles for

various infections are needed for the inference process. More

precisely, we assume that for each infection i we have data on

symptoms from Ni symptomatic individuals with infection i. Let

the observed counts of symptom profiles for those individuals be

(Oi
1, . . . ,Oi

N ),
X

Oi
j~Ni ð��Þ

Here the distribution of (Oi
1, . . . ,Oi

N ) is multinomial of size Ni and

parameters (di
1, . . . ,di

N ). In this section we describe how such

counts can be obtained from data; in the next section we describe

the inference process using the symptom surveillance data and the

symptom profile distribution data from equation (**).

Information about the distribution of symptoms for influenza

can be obtained during the course of an epidemic, or from

previous studies. We used the distribution of reported symptoms of

individuals with influenza confirmed by real-time polymerase

chain reaction (RT-PCR) in a community-based study [12].

Household contacts were recruited after index cases living in their

household presented for medical care with influenza-like symp-

toms. A contact was deemed infected if at least one RT-PCR test

was positive out of the 3 tests conducted during a 7-day follow-up

period. A contact was deemed having fever if the maximal

recorded tympanic temperature was 37.8uC or above. 118

influenza positive contacts in [12] had a presence of at least one

of the following four signs or symptoms: fever, cough, runny nose,

sore throat. We have examined the following two choices of

symptom profiles for the inference process and estimated their

distributions using data for those 118 individuals:

Choice 1:

1: Fever

2: No feverz1 of cough, runny nose, sorethroatð Þ

3: No feverz2 of cough, runny nose, sore throatð Þ

4: No feverzcoughzrunny nosezsore throat

ð2aÞ

Choice 2:

1: Fever

2: No feverzat least 1 of cough, runny nose, sore throatð Þ
ð2bÞ

Estimating Incidence Using Symptom Data
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The distribution of symptom profiles reported by cases with ARI

not associated with influenza may be quite specific to the location

and the circulating respiratory viruses. One may be able to use

symptom surveillance data itself during a period when one knows

that the percent of flu among symptomatic individuals is very low

to suggest that almost all symptoms are attributable to non-flu

causes. Thus overall counts of symptom profiles reported by all

symptomatic individuals during that period give an estimate of the

non-flu symptom profile distribution. In this case that period

should also be removed from subsequent inference of influenza

incidence.

3. Inference process
3.1 EM iterations. Estimation of the parameters (pt

i )and (di
j )

can be done with the aid of the Expectation Maximization (EM)

algorithm [6,7,13] which iterates in the space of parameters

(pt
i )and (di

j ) increasing the likelihood of observations (Qt
j ,O

i
j) with

each iteration. Specifically let (pt
i (n))and (di

j (n))be the values of the

parameters after n EM iterations. To understand the iterative

process, denote for any parameters (p,d) the expectation of the

variable X t
ij conditional on the observations Qt

j [13]:

E(X t
ij jQt,p,d)~Qt

j
:

pt
i
:di

jP
k

pt
k
:dk

j

ð3Þ

The parameter values after the next EM iteration are given by

pt
i (nz1)~

1

Qt

X

j

E(X t
ij jQt,p(n),d(n)) ð4Þ

and

di
j (nz1)~

P
t

E(X t
ij jQt,p(n),d(n))zOi

j

P
t

P
k

E(X t
ikjQt,p(n),d(n))zNi

ð5Þ

3.2 Inference Method 1. Several inference methods for the

model’s parameters are possible, and their robustness for a given

data set can be tested by the SEM algorithm [14], as well as by

bootstrapping. Similarly our inference process involves a choice of

certain symptom profiles for symptomatic individuals – e.g. the

one given by equation (2a) or (2b). Assessing the robustness of each

estimation method should also aid in the model selection for the

inference process.

Method 1 essentially assumes that the distribution of symptoms

is known. This deconvolution method based on equations (3) and

(4) was introduced in the optics literature [15,16] and subsequently

used in the epidemiological literature [13,17,18]:

Fix the initial estimate of the symptom profile distribution

d̂di
j ~

Oi
j

Ni

Using this estimate, iterate in the parameters (pt
i) using equation

(4) (keeping the parameters (di
j ) constant). Such iterates will

converge to the unique maximum likelihood estimate (p̂pt
i ) for the

incidence parameters conditional on the parameters (d̂di
j ) (see

section S1) regardless of the initial choice of non-zero initial

conditions.

3.3 Inference Method 2. Other inference methods involve

iterations in all of the model’s parameters (pt
i ) and (di

j )- the latter is

generally known as ‘‘blind deconvolution’’ in the optics literature

[19]. The advantage of those methods over Method 1 is that they

allow to update the symptom profile distributions from the initial,

data-derived estimate (d̂di
j ) by increasing the likelihood of all

observations (Qt
j ,O

i
j). However given the lack of identifiability of

the parameters using observations (Qt
i ) alone as specified by equation

(1), iterations in the symptom profile distribution parameters might

move them further away from their true value and worsen the

incidence curve estimates if the counts (Ni) are too small.

Several inference methods involving EM iterations in all the

parameters are possible, such as starting from an estimate in

Method 1 and using both equations (4) and (5) for subsequent

iterations. We have found that the classical EM scheme is fairly

robust for sufficiently large data sets:

Iterate all the parameters simultaneously using both equations

(4) and (5) in each step until convergence. An initial condition used

in this paper corresponded to expected weekly incidence 1 for each

infection in the survey sample (Qt:pt
i(0)~1).

4. Testing the deconvolution process by numerical
simulations

To test the deconvolution process we generated synthetic weekly

incidence curves both for influenza and non-influenza symptom-

atic cases over a 22-week period. The influenza incidence curve

corresponds to an epidemic with basic reproductive number 1.35

and the serial interval distribution with mean 2.6 days [20]

truncated at 7 days in a homogeneous population of 3,000,000.

We assumed that each week the number of individuals filling

out the symptom survey is random, Poisson distributed with mean

5000. For our simulations, we used both choices of the symptom

profiles described by equations (2a) and (2b), with their distribution

for symptomatic flu cases estimated from the data in [12].

Similarly, for illustration purposes we have generated the non-flu

symptom profile distribution for our simulations using the data

from [21] (see section 5 of the methods).

We used weekly synthetic incidence and distribution of

symptom profiles for flu and non-flu cases as described above to

perform the following independent 3-step simulations:

1. Generate the (weekly) symptom count curves using the given

incidence curves, symptom profile distributions and the weekly

number of survey respondents.

2. Assume that the estimate of the symptom profile distribution

dflu is obtained from data on 500 symptomatic flu cases. Re-

estimate the influenza symptom profile distribution by

multinomial binning of size 500 with the initial distribution

dflu. For non-flu symptoms, use the simulated symptom data

from the first 3 weeks and the last 3 weeks (weeks 20–22) of the

epidemic for an estimate the non-flu symptom profile

distribution. During that period there are 2055 expected

symptomatic cases given the incidence curves used in

simulations and 99.6% of them are non-flu cases.

3. Using the symptom data in step 1 for weeks 4–19 and the re-

estimates of the symptom profile distributions from step 2,

apply the deconvolution scheme from the corresponding

method; the output of the deconvolution process is an estimate

of incidence between weeks 4–19.

We wish to point out that the accuracy of the deconvolution

process depends not just on the number of individuals of survey

but also on the level of circulation of influenza as well as other

symptom causing pathogens in the community. Generally,

Estimating Incidence Using Symptom Data
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accuracy would be higher if the counts for symptom profiles

specific to influenza (primarily fever) in the survey are significantly

larger than the magnitude of the noise in the corresponding counts

for non-influenza symptomatic cases in the survey. In section S3

we perform various sensitivity analyses for the accuracy of the

deconvolution process (Figures S1, S2 and S4).

5. University of Michigan outbreak
We have used symptom surveillance data from a randomized

controlled trial of non-pharmaceutical interventions for preventing

transmission of influenza collected in February–March 2008 on

the University of Michigan campus [21]. With 1,000 individuals

initially recruited, the weekly number of survey respondents

ranged from 830 to 902. The eight weeks in the symptom

surveillance data represent a period after an apparent peak of a

seasonal influenza outbreak on the wider campus, as can be seem

from data on influenza positive tests and ILI consultations on the

campus medical facilities. The latter data suggest that flu

circulation during the last two of the eight weeks was particularly

low (figure S6 in section S5); surveillance data for those last two

weeks in the survey was used to assess the non-flu symptom profile

distribution. This symptom profile data from the last two weeks,

available for 642 symptomatic individuals was combined with

symptom data for the 118 RT-PCR positive household contacts of

flu cases, as specified in section 2 of the methods to assess the

influenza outbreak during weeks 1–6 in the survey period.

Weekly symptom profile counts attributable to influenza cases in

the survey were estimated to be quite low, of the same magnitude

as the noise (departure from expected values) in the symptom

profile counts attributable to non-flu cases. As result, weekly

estimates of flu incidence for such a small sample size in addition

to having wide confidence bounds are also generally upwardly

biased because they cannot go below 0. Consequently we have

combined all the surveillance data and were only able to estimate

the cumulative flu attack rate during the surveillance period, which

the bootstrap simulations have shown to be unbiased.

Results

1. Symptom profile distributions
Figure 1A plots the distribution of symptom profiles (as defined

in equation (2a) in the Methods) for flu cases taken from [12], as

described in section 3.1 of the methods. For our simulations we use

the symptom profile distribution for non-flu cases obtained from

the data in [21] (Figure 1B) – see also figure S5 in section S4.

Figure 1 suggests that fever is much more common for flu vs.

non-flu cases, and one non-fever symptom only (cough, runny

nose, or sore throat) is much more common for non-flu vs. flu

cases.

2. Synthetic incidence and symptom data deconvolution
2.1 Synthetic incidence curves. We have generated

synthetic incidence curves for flu and non-flu symptomatic cases

as described in the Methods; those curves are plotted in Figure 2.

2.2 Symptom profiles (2a). We have performed 600 3-step

simulations as specified in section 4 of the methods, both for

Method 1 and Method 2. Figure 3 plots two samples of 5

deconvolved influenza symptomatic incidence curves against the

original one (black) between weeks 4–19. One sample is for

Method 1 and another is for Method 2.

The cumulative number of symptomatic influenza cases

between weeks 4 and 19 was 993,693. For Method 1, for the

sample of 600 deconvolved symptomatic influenza incidence

curves, their cumulative incidences have mean 978,266, with 95%

of them falling between 762,556 and 1,197,579. For Method 2, the

mean is 1,004,402, with the 95% range between 823,519

and1,185,116. We see that Method 2 gives a somewhat sharper

estimate than Method 1 in this scenario.

2.3 Symptom profiles (2b). Figure 4 plots a sample of 5

deconvolved influenza symptomatic incidence curves against the

original one (black) between weeks 4–19, where symptom profiles

(2b) and deconvolution Method 2 were used.

The cumulative number of symptomatic influenza cases

between weeks 4 and 19 was 993,693. For the sample of 600

deconvolved symptomatic influenza incidence curves, their

cumulative incidences have mean 1,011,040, with 95% of them

falling between 793,340 and 1,209,297. We see that the estimates

are somewhat better using symptom profiles (2a) than (2b) in this

scenario.

3. University of Michigan outbreak
Figure 5 plots the weekly percentage of cases with fever among the

symptomatic cases during weeks 1–8 in the survey data from [21].

This percentage declined towards the end of the survey period,

Figure 1. Distribution of symptom profiles for flu (A) and non-flu (B) symptomatic cases, inferred from data in [12] and [21]. Profile
description is given in equation (2a).
doi:10.1371/journal.pone.0023380.g001
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Figure 2. Synthetic weekly symptomatic incidence curves (as described in section 4 of the Methods) used to test the robustness of
the deconvolution process: flu (black), non-flu (red).
doi:10.1371/journal.pone.0023380.g002

Figure 3. Two samples of 5 deconvolved influenza symptomatic incidence curves (as described in section 4 of the Methods) against
the original one (black). (A) Method 1 deconvolution. (B) Method 2 deconvolution.
doi:10.1371/journal.pone.0023380.g003

Estimating Incidence Using Symptom Data
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reflecting the decline in the flu outbreak. The latter decline is

statistically significant: for example during the first 3 weeks, 221/1555

(14.21%) of symptomatic individuals in the survey had fever; during

the next 3 weeks, 108/1004 (10.76%) of symptomatic individuals had

fever (OR 1.37, p-value 0.011 for the Fisher exact test).

The cumulative symptomatic attack rate of influenza during the

first 6 weeks was estimated to be 15.3%; however the 95%

confidence bounds were wide (2.2%,28.6%), suggesting that a

larger survey sample size is needed for an accurate estimate.

Discussion

Timely estimates of the progression of an influenza epidemic are

difficult to obtain. Currently available surveillance methods render

a limited assessment of the epidemic’s growth patterns while

serological surveillance is not commonly employed. Here we

propose an alternative method to estimate incidence based on

syndromic surveillance from population samples on regular times

intervals. Such surveillance (e.g. [22]), combined with estimates of

Figure 4. A sample of 5 deconvolved influenza symptomatic incidence curves (as described in section 4 of the Methods) against the
original one (black) for symptom profiles (2b), deconvolution method 2.
doi:10.1371/journal.pone.0023380.g004

Figure 5. Weekly percent of cases with fever among the symptomatic cases in the survey from [21].
doi:10.1371/journal.pone.0023380.g005
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the distribution of symptom profiles for symptomatic influenza

cases may, in principle, render an accurate estimate of the

influenza incidence curve via the deconvolution process. We have

proposed a collection of symptom profiles to be used in the

deconvolution process, suggested how the corresponding symptom

profile distributions can be estimated from data and tested the

robustness of our method by numerical simulations. We wish to

point out that while we restricted our methodology to influenza-

like symptoms, it could in principle be adapted to estimation of

incidence of other types of diseases (e.g. enteric infections),

particularly if the infection of interest has a profile of symptoms

which largely sets it apart from other related infections (similarly to

the presence of fever, which is much more common for flu than for

other respiratory infections).

The key potential limitation of our method is the ability to

accurately estimate the distribution of symptom profiles for

influenza and non-influenza cases. Estimate of the flu incidence

is particularly sensitive to an estimate of the non-flu symptom

profile distribution because there are many more symptomatic

non-flu cases compared to the number of symptomatic flu cases in

a survey, so a misattribution of a certain percentage of non-flu

cases to flu is magnified relative to the flu data. Since the

distribution of symptom profiles for non-flu cases may be specific

to the given population, we propose to consider a time period in

the surveillance data when very little influenza circulation is

known to have taken place and use the symptom surveillance data

for that period for an estimate of the symptom profile distribution

for non-influenza cases. In this way, large sample size for the

surveillance data would also ensure a more accurate estimate of

the non-flu symptom profile distribution. Additionally, larger

samples increase the size of the symptomatic counts attributable to

influenza both in absolute terms and also relative to the noise in

such counts attributable to non-flu cases, further improving the

accuracy of the deconvolution process.

An additional potential issue with the symptom profile

distribution for non-flu symptomatic cases is that it might change

in time. The latter might occur due to an outbreak of a particular

respiratory agent, such as human rhinovirus, coronavirus, or

respiratory syncytial virus. The symptom profile distribution of

these infections might be different from the overall distribution for

symptomatic non-flu cases. One way to deal with this is to include

this agent into the list of infections whose incidence is estimated

through the deconvolution process. Alternatively, one may stick

with flu and symptomatic non-flu cases as the two infectious

profiles and use the excess fever approach (symptom profiles given

by equation (2b)). The latter might still be robust because fever is

much more common for flu than for non-flu cases and excess fever

attributable to flu when flu circulation is sufficiently high should be

larger than excess fever attributable to the potential difference in

the probability of fever given non-flu symptoms during different

time periods. This issue is examined through simulations in section

S3, where a large non-flu outbreak with ‘‘atypical’’ symptoms is

added as an unobserved component (Figure S3).

For the influenza symptom profile distribution, the most accurate

estimates should be obtained using data for each specific (evolving)

influenza season. Here for illustration purposes we have used data

from [12] on RT-PCR positive household contacts recruited when a

household index influenza case sought medical care. It is known that

the accuracy of the PCR test is correlated with symptom

presentation [23]. While three RT-PCR tests were administered

on each household contact in [12], it is possible that some infected

household contacts have tested negative, and this group is correlated

with a weaker presentation of symptoms. Due to a relatively small

sample size in [12] we did not attempt to derive age-stratified

estimates of the symptom profile distribution. Some difference in

symptom profile distribution for seasonal influenza A and B cases is

possible (see section S2), though no statistically significant difference

could be detected for the small sample of cases where sub-typing was

performed. We believe that larger studies involving serology may

render more accurate, age-stratified assessment of the syndrome

distribution for seasonal influenza.

We have employed the above method for the data from a

seasonal influenza outbreak on the University of Michigan campus.

Those estimates have several potential limitations. The survey was

not initially designed for our estimation method, with its size being

too small for accurate estimates of influenza incidence. Data on

symptom profiles for influenza used in the deconvolution process for

the University of Michigan campus is obtained from a different

population in [12]. Our assumption, based on the campus medical

facilities data, that the influenza outbreak has waned towards the

end of the study period may not be representative of the whole

University of Michigan campus. Therefore our estimates for the

University of Michigan outbreak are mostly given for illustrative

purposes. A careful study design should be used to avoid some of

those issues. Such design should perhaps involve the recruitment of

a large number of individuals (larger than what is needed for a

weekly survey) with a commitment from them to complete a certain

number of surveys when prompted during the study period. The

latter should decrease the correlation between the weekly symptom

reports and increase the percent of weekly recruits who fill out a

report, taking away from the recruitment bias when participation

might be correlated with symptom presentation. Finally, serologic

data if available could validate the syndrome-based estimation of

infection attack rates.
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Figure S1 Two samples of 5 deconvolved influenza
symptomatic incidence curves (as described in section
S3) against the original one (black). (A) Method 1

deconvolution. (B) Method 2 deconvolution.

(TIF)

Figure S2 A sample of 5 deconvolved influenza symp-
tomatic incidence curves (as described in section S3)
against the original one (black). Symptom profiles (2b),

Method 2.

(TIF)

Figure S3 Adding an ‘‘unobserved’’ non-flu outbreak
with atypical symptoms (as described in section S3).
Symptomatic influenza incidence (black), ‘‘regular’’ non-flu

incidence (red) and ‘‘outbreak’’ non-flu incidence (dashed red).

(TIF)
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Figure S4 The effect of an ‘‘unobserved’’ non-flu
outbreak with atypical symptoms (as described in
section S3) on the deconvolution process. A sample of 5

deconvolved influenza symptomatic incidence curves against the

original one (black). Symptom profiles (2b), Method 2. Flu and

non-flu incidence curves given by Figure S3.

(TIF)

Figure S5 Symptom profile distribution for PCR nega-
tive, symptomatic household contacts from [12] (A). Non-

flu symptom profile distribution from the main body of the text (B).

(TIF)

Figure S6 Weekly incidence proxy on the University of
Michigan campus, inferred from survey and virological
testing data in [21].
(TIF)
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