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Abstract

This program is designed to improve causal inference via a method of matching that is
widely applicable in observational data and easy to understand and use (if you understand
how to draw a histogram, you will understand this method). The program implements the
coarsened exact matching (CEM) algorithm, described below. CEM may be used alone
or in combination with any existing matching method. This algorithm, and its statistical
properties, are described in Iacus, King, and Porro (2008).
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1. Introduction

1.1. Properties

Iacus et al. (2008) show that coarsened exact matching (CEM) is a monotonoic imbalance
bounding (MIB) matching method – which means both that the maximum imbalance between
the treated and control groups may be chosen by the user ex ante, rather than discovered
through the usual laborious process of ex post checking and repeatedly reestimating, and that
adjusting the maximum imbalance on one variable has no effect on the maximum imbalance
of any other.

This paper also shows that CEM bounds through ex ante user choice both the degree of
model dependence and the average treatment effect estimation error, eliminates the need for
a separate procedure to restrict data to common empirical support, meets the congruence
principle, is robust to measurement error, works well with multiple imputation and other
methods for missing data, can be completely automated, and is fast computationally even
with very large data sets. After preprocessing data with CEM, the analyst may then use a
simple difference in means, or whatever matching method or statistical model they would have
applied to the raw data. CEM also works for multicategory treatments, creating randomized
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blocks in experimental designs, and evaluating extreme counterfactuals.

1.2. Goal

Matching is not a method of estimation; it is a way to preprocess a data set so that estimation
of the sample average treatment effect on the treated (the“SATT”) based on the matched data
set will be less “model-dependent” (i.e., less a function of apparently small and indefensible
modeling decisions) than when based on the original full data set. Matching involves pruning
observations that have no close matches on pre-treatment covariates in both the treated
and control groups. The result is typically less model-dependence, bias, and (by removing
heterogeneity) inefficiency (King and Zeng 2006; Ho, Imai, King, and Stuart 2007; Iacus et al.
2008). If used for analyzing observational data, applications of CEM (and all other methods
of causal inference) require an assumption of ignorability (also known as “no omitted variable
bias” or “no confounding”).

The specific statistical goal is to estimate some version of a causal effect, such as the SATT.
Thus, let Yi be the dependent variable for unit i, Ti be a treatment variable, and Xi be a
vector of pre-treatment control variables. Although CEM works as easily with multicate-
gory treatment variables, we simplify this introductory description by assuming that Ti is
dichotmous and takes on the value 1 for “treated” units and 0 for “control” units. Then de-
fine the treatment effect for treated units as the difference between two potential outcomes:
TEi = Yi(Ti = 1) − Yi(Ti = 0), where Yi(Ti = 1) = Yi is always obseved and Yi(Ti = 0), the
value that Yi would have taken on if it were the case that Ti = 0, is always unobserved. Then
Yi(Ti = 0) is estimated with Yj from matched controls (i.e., among units for which Xi ≈ Xj),
either directly, Ŷi(Ti = 0) = Yj(Tj = 0), or via a model, Ŷi(Ti = 0) = ĝ(Xj). Then SATT can
be computed as a simple average: SATT = 1

nT

∑
i∈{Ti=1}TEi.

1.3. Algorithm

The CEM algorithm then involves three steps:

1. Temporarily coarsen each control variable in X as much as you are willing, for the
purposes of matching. For example, years of education might be coarsened into grade
school, middle school, high school, college, graduate school. Most researchers are in-
timately familiar with the concept and practice of coarsening, as it is widely used in
applied data analyses in many fields, although unlike its present use coarsening for data
analysis involves a permanent removal of information from the analysis and ultimate
estimates.

2. Sort all units into strata, each of which has the same values of the coarsened X.

3. Prune from the data set the units in any stratum that do not include at least one treated
and one control unit.

Following these three steps, the researcher can apply any method to the matched data that
they might have to the raw data to estimate the causal effect, with the addition of a weight that
equalizes the number of treated and control units within each stratum. Thus, any existing
method of matching may be used within CEM strata to further prune the data in other
ways, in which case the combined approach still inherits all of CEM’s properties. Whether
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or not another method of matching is applied, one must compute the causal effect, either
by a (weighted) difference in means in Y among the treated and control units, or with the
application of a statistical model.

If the coarsened bins are set to zero width, then CEM returns the exact matching solution,
in which case model dependence will be eliminated (other than the ignorability assumption),
but too few observations may be left. If instead the coarsened bins are set too wide, then few
observations will be discarded, but differences within the large strata must be spanned with
a statistical model, in which case model dependence may be an issue.

What if the level of coarsening is set as large as the researcher finds reasonable, but the
number of observations is still too small? This of course may happen with a single continuous
covariate with little or no coarsening or due to higher order interactions among a large set of
discrete covariates. We offer below a “progressive coarsening” procedure that may help you
rethink some of your coarsening choices by indicating how many more observations you would
recover by loosening up the coarsening level for each variable. But if the remaining sample
is still too small, the only possibilites involve collecting more data; setting the coarsening
level artificially large and relying on theory to rule out some of the model dependence; or
living with the model dependence and increasing the uncertainty with which you draw your
inferences and represent your conclusions. To be clear, in this situation, you are in a bind
and no method of matching or analysis is likely to save you. Statistics of course is not magic
and can only get you so far given limited information. When in this situation, it is best to
recognize the limits of your data relative to the question you are asking, and decide whether to
devote whatever resources at your disposal to collecting more data, developing better theory,
dealing with the uncertainty, or choosing a different research project.

1.4. Measuring balance

Although CEM is MIB, the actual degree of imbalance achieved in the matched sample may
be lower than the chosen maximum, and so we also introduce a simple and comprehensive
multivariate imbalance measure (Iacus et al. 2008). The measure is based on the L1 difference
between the multidimensional histogram of all pretreatment covariates in the treated group
and that in the control group. To do this, we first choose the number of bins for each con-
tinuous variable via standard automated univariate histogram methods and with categorical
variables left as is. These bin sizes must be defined separately from and prior to the coarsening
levels chosen for CEM. Although this initial choice poses all the usual issues and potential
problems when choosing bins in drawing histograms, we use it only as a fixed reference to
evaluate pre and post matching imbalance. Our functions compute these bin sizes automat-
ically using automated histogram methods (and with smaller bins than would typically be
chosen in running CEM), or they can optionally be set by the user, so long as this level is
fixed through all subseqent matching. Then, we cross-tabulate the discretized variables as
X1 × · · · × Xk for the treated and control groups separately, and record the k-dimensional
relative frequencies for the treated f`1···`k

and control g`1···`k
units. Finally, our measure of

imbalance is the absolute difference over all the cell values:

L1(f, g) =
1
2

∑
`1···`k

|f`1···`k
− g`1···`k

| (1)

and where the summation is over all cells of the multivariate histogram, but is feasible to



4 cem: Software for Coarsened Exact Matching

compute because it contains at most n nonzero terms. The L1 measure1 varies in [0, 1].
Perfect (up to discretization) global balance result in L1 = 0, and L1 = 1 indicates complete
separation of the multimensional histograms. Any value in the interval (0, 1) indicates the
amount of difference between k-dimensional frequencies of the two groups.

CEM also offers several other measures of imbalance such as the global difference in means
and the difference in means within the strata that are defined by every matching method.

2. Setup

cem works in conjunction with the R Project for Statistical Computing (R Development
Core Team 2009), and will run on any platform where R is installed (Windows, Linux, or
Mac). R is available free for download at the Comprehensive R Archive Network (CRAN)
at http://CRAN.R-project.org/package=cem.2 cem has been tested on the most recent
version of R.

cem may be run by installing the program directly, as indicated below, or by using the al-
ternative interface to cem provided by MatchIt (Ho, Imai, King, and Stuart 2009). Using
cem directly is faster. The MatchIt interface is easier for some applications and works seem-
lessly with Zelig (Imai, King, and Lau 2009) for estimating causal effects after matching, but
presently only offers a subset of features of the R version. A Stata (StataCorp. 2007) version
of cem is also available at the cem web site, http://gking.harvard.edu/cem/.

3. A user’s guide

We show here how to use CEM through a simple running example: the National Supported
Work (NSW) Demonstration data, also known as the Lalonde data set (Lalonde 1986). This
program provided training to selected individuals for 12–18 months and help finding a job in
the hopes of increasing their earnings. The treatment variable, treated, is 1 for participants
(the treatment group) and 0 for nonparticipants (the control group). The key outcome variable
is earnings in 1978 (re78).

Since participation in the program was not assigned strictly at random, we must control for a
set of pretreatment variables by the CEM algorithm. These pre-treatment variables include
age (age), years of education (education), marital status (married), lack of a high school
diploma (nodegree), race (black, hispanic), indicator variables for unemployment in 1974
(u74) and 1975 (u75), and real earnings in 1974 (re74) and 1975 (re75). Some of these
are dichotomous (married, nodegree, black, hispanic, u74, u75), some are categorical
(age and education), and the earnings variables are continuous and highly skewed with
point masses at zero. We modify these data by adding a (fictitious) variable to illustrate
discrete responses called q1, the answer to a survey question asking before assignment for
an opinion about this job training program, with possible responses strongly agree, agree,
neutral, strongly disagree, disagree, and no opinion; note that the last category is not on the
same ordered scale as the other responses. Ten percent of the observations have missing data
(added randomly by us to illustrate how CEM deals with missingness). We call this new data

1Prior to version 1.0.90 of the cem package the L1 measure did not include the factor 1/2.
2You may alternatively load the beta test version with the command install.packages("cem", repos =

"http://gking.harvard.edu")

http://CRAN.R-project.org/package=cem
http://gking.harvard.edu/cem/
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set the LeLonde (intentionally misspelling Lalonde); the original, unmodified Lalonde (1986)
data are contained in data set LL.

3.1. Basic evaluation and analysis of unmatched data

We begin with a naive estimate of SATT – the simple difference in means – which would
be useful only if the in-sample distribution of pre-treatment covariates were the same in the
treatment and control groups:

R> library("cem")

How to use CEM? Type vignette("cem")

R> data("LeLonde")

We remove missing data from the the data set before starting the analysis (we show better
procedures for dealing with missing data in Section 3.6).

R> Le <- data.frame(na.omit(LeLonde))

and then compute the size of the treated and control groups:

R> tr <- which(Le$treated == 1)

R> ct <- which(Le$treated == 0)

R> ntr <- length(tr)

R> nct <- length(ct)

Thus, the data include 258 treated units and 392 control units. The (unadjusted and therefore
likely biased) difference in means is then:

R> mean(Le$re78[tr]) - mean(Le$re78[ct])

[1] 759

Because the variable treated was not randomly assigned, the pre-treatment covariates dif-
fer between the treated and control groups. To see this, we focus on these pre-treatment
covariates:

R> vars <- c("age", "education", "black", "married", "nodegree",

+ "re74", "re75", "hispanic", "u74", "u75", "q1")

The overall imbalance is given by the L1 statistic:

We compute L1 statistic, as well as several unidimensional measures of imbalance via our
imbalance function. In our running example:

R> imbalance(group = Le$treated, data = Le[vars])
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Multivariate Imbalance Measure: L1=0.902
Percentage of local common support: LCS=9.1%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max
age -0.252373 (diff) 5.102e-03 0 0 0.0 -1.0 -6.0
education 0.153635 (diff) 8.464e-02 1 0 1.0 1.0 1.0
black -0.010323 (diff) 1.032e-02 0 0 0.0 0.0 0.0
married -0.009551 (diff) 9.551e-03 0 0 0.0 0.0 0.0
nodegree -0.081217 (diff) 8.122e-02 0 -1 0.0 0.0 0.0
re74 -18.160447 (diff) 5.551e-17 0 0 284.1 806.3 -2139.0
re75 101.501762 (diff) 5.551e-17 0 0 485.6 1238.4 490.4
hispanic -0.010145 (diff) 1.014e-02 0 0 0.0 0.0 0.0
u74 -0.045582 (diff) 4.558e-02 0 0 0.0 0.0 0.0
u75 -0.065555 (diff) 6.556e-02 0 0 0.0 0.0 0.0
q1 7.494021 (Chi2) 1.067e-01 NA NA NA NA NA

Only the overall L1 statistic measure includes imbalance with respect to the joint distribution,
including all interactions, of the covariates; in the case of our example, L1 = 0.902. The
unidimensional measures in the table are all computed for each variable separately.
The first column in the table of unidimensional measures, labeled statistic, reports the
difference in means for numerical variables (indicated by the second column, type, reporting
(diff)) or a chi-square difference for categorical variables (when the second column reports
(Chi2)). The second column, labeled L1, reports the Lj

1 measure, which is L1 computed for
the j-th variable separately (which of course does not include interactions). The remaining
columns in the table report the difference in the empirical quantile of the distributions of the
two groups for the 0th (min), 25th, 50th, 75th, and 100th (max) percentiles for each variable.
When the variable type is Chi2, the only variable-by-variable measure that is defined in this
table is Lj

1; others are reported missing.
This particular table shows that variables re74 and re75 are imbalanced in the raw data
in many ways and variable age is balanced in means but not in the quantiles of the two
distributions. This table also illustrates the point that balancing only the means between
the treated and control groups does not necessarily guarantee balance in the rest of the
distribution. Most important, of course, is the overall L1 measure, since even if the marginal
distribution of every variable is perfectly balanced, the joint distribution can still be highly
imbalanced.
As an aside, we note that for convenience that the function imbalance allows you to drop
some variables before computation:

R> todrop <- c("treated", "re78")

R> imbalance(group = Le$treated, data = Le, drop = todrop)

3.2. Coarsened exact matching

We now apply the coarsened exact matching algorithm by calling the function cem. The
CEM algorithm performs exact matching on coarsened data to determine matches and then
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passes on the uncoarsened data from observations that were matched to estimate the causal
effect. Exact matching works by first sorting all the observations into strata, each of which
has identical values for all the coarsened pre-treatment covariates, and then discarding all
observations within any stratum that does not have at least one observation for each unique
value of the treatment variable.

To run this algorithm, we must choose a type of coarsening for each covariate. We show
how this is done this via a fully automated procedures in Section 3.2.1. Then we show how
to use explicit prior knowledge to choose the coarsening in Section 3.2.2, which is normally
preferable when feasible.

In CEM, the treatment variable may be dichotomous or mutichotomous. Alternatively, cem
may be used for randomized block experiments without specifying a treatment variable; in this
case no strata are deleted and the treatment variable is (randomly) assigned to units within
each strata to ensure that each has at least one observation assigned each value of the treated
variable.

Automated coarsening

In our running example we have a dichotomous treatment variable. In the following code,
we match on all variables but re78, which is the outcome variable and so should never be
included. Hence we proceed specifying "re78" in argument drop:

R> mat <- cem(treatment = "treated", data = Le, drop = "re78")

The output object mat contains useful information about the match, including a (small) table
about the number of observations in total, matched, and unmatched, as well as the results
of a call to the imbalance function for information about the quality of the matched data
(unless eval.imbalance is set to FALSE). Since cem bounds the imbalance ex ante, the most
important information in mat is the number of observations matched. But the results also
give the imbalance in the matched data using the same measures as that in the original data
described in Section 3.1. Thus,

R> mat

G0 G1
All 392 258
Matched 95 84
Unmatched 297 174

Multivariate Imbalance Measure: L1=0.605
Percentage of local common support: LCS=30.5%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max
age 9.405e-02 (diff) 0.000e+00 0 0 1 0.0 0.0
education -2.222e-02 (diff) 2.222e-02 0 0 0 0.0 0.0
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black 1.110e-16 (diff) 0.000e+00 0 0 0 0.0 0.0
married 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
nodegree 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
re74 1.496e+02 (diff) 0.000e+00 0 0 0 463.3 889.5
re75 1.588e+02 (diff) 0.000e+00 0 0 0 843.7 -640.9
hispanic 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
u74 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
u75 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
q1 2.083e+00 (Chi2) 1.388e-17 NA NA NA NA NA

We can see from these results the number of observations matched and thus retained, as well
as those which were pruned because they were not comparable. By comparing the imbalance
results to the original imbalance table given in the previous section, we can see that a good
match can produce a substantial reduction in imbalance, not only in the means, but also in
the marginal and joint distributions of the data.

The function cem also generates weights for use in the evaluation of imbalance measures and
estimates of the causal effect (stored in mat$w).

Coarsening by explicit user choice

The power and simplicity of CEM comes from choosing the coarsening yourself rather than
using the automated algorithm as in the previous section. Choosing the coarsening enables
you to set the maximum level of imbalance ex ante, which is a direct function of the coarsening
you choose. By controlling the coarsening, you also put an explicit bound on the degree of
model dependence and the SATT estimation error.

Fortunately, the coarsening is a fundamentally substantive act, almost synonymous with the
measurement of the original variables. In other words, if you know something about the data
you are analyzing, you almost surely have enough information to choose the coarsening. (And
if you don’t know something about the data, you might ask why you are analyzing it in the
first place!)

In general, we want to set the coarsening for each variable so that substantively indistinguish-
able values are grouped and assigned the same numerical value. Groups may be of different
sizes if appropriate. Recall that any coarsening during CEM is used only for matching; the
original values of the variables are passed on to the analysis stage for all matched observations.

The function cem treats categorical and numerical variables differently.

For categorical variables, we use the grouping option. For example, variable q1 has the
following levels

R> levels(Le$q1)

[1] "agree" "disagree" "neutral"
[4] "no opinion" "strongly agree" "strongly disagree"

Notice that the levels are not ordered in the original data set. One can possibly tranform the
variable q1 from factor to ordered factor using the command ordered in R or may want to
group them in three groups as follows:
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R> q1.grp <- list(c("strongly agree", "agree"), c("neutral", "no opinion"),

+ c("strongly disagree", "disagree"))

For numerical variables, we use the cutpoints option. Thus, for example, in the US ed-
ucational system, the following discretization of years of education corresponds to different
levels of school: grade school (0–6), middle school (7–8), high school (9–12), college (13–16),
and graduate school (> 16). Using these natural breaks in the data to create the coarsening
is generally a good approach and usually better than caliper matching in this context, as it
would disregard these meaningful breaks. (The venerable technique of caliper matching of
course may be useful for certain other types of data.) Because in our data, no respondents
fall in the last category,

R> table(Le$education)

3 4 5 6 7 8 9 10 11 12 13 14 15
1 5 4 6 12 55 106 146 173 113 19 9 1

we define the cutpoints as:

R> educut <- c(0, 6.5, 8.5, 12.5, 17)

and run cem adding only the grouping and cutpoints options, leaving the rest unchanged:

R> mat1 <- cem(treatment = "treated", data = Le, drop = "re78",

+ cutpoints = list(education = educut), grouping = list(q1.grp))

R> mat1

G0 G1
All 392 258
Matched 137 91
Unmatched 255 167

Multivariate Imbalance Measure: L1=0.713
Percentage of local common support: LCS=28.1%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max
age 1.809e-01 (diff) 0.000e+00 0 0 1 0.0 0.0
education 5.716e-02 (diff) 5.754e-02 0 1 0 0.0 -2.0
black 0.000e+00 (diff) 6.245e-17 0 0 0 0.0 0.0
married 0.000e+00 (diff) 1.145e-16 0 0 0 0.0 0.0
nodegree 0.000e+00 (diff) 6.939e-17 0 0 0 0.0 0.0
re74 1.022e+02 (diff) 0.000e+00 0 0 0 463.3 889.5
re75 1.161e+02 (diff) 0.000e+00 0 0 0 843.7 -640.9
hispanic -6.939e-18 (diff) 5.898e-17 0 0 0 0.0 0.0
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u74 0.000e+00 (diff) 2.776e-17 0 0 0 0.0 0.0
u75 -1.110e-16 (diff) 1.110e-16 0 0 0 0.0 0.0
q1 2.064e+00 (Chi2) 7.633e-17 NA NA NA NA NA

As we can see, this matching solution differs from that resulting from our automated approach
in the previous section. For comparison, the automatic cutpoints produced by cem are stored
in the output object in slot breaks. So, for example, our automated coarsening produced:

R> mat$breaks$education

[1] 3.0 4.2 5.4 6.6 7.8 9.0 10.2 11.4 12.6 13.8 15.0

whereas we can recover our personal choice of cutpoints as

R> mat1$breaks$education

[1] 0.0 6.5 8.5 12.5 17.0

3.3. Progressive coarsening

Although the maximum imbalance is fixed ex ante by the user’s coarsening choices, the number
of observations matched is determined as a consequence of the matching procedure. If you
are dissatisfied with the number of observations available after matching, and you feel that
it is substantively appropriate to coarsen further, then just increase the coarsening (by using
fewer cutpoints). The result will be additional matches and of course a concommitant increase
in the maximum possible imbalance between the treated and control groups. This is easy
with CEM because CEM is a monotonic imbalance bounding (MIB) method, which means
that increasing the imbalance on one variable (by widening the coarsened bin sizes) will not
change the maximum imbalance on any other variable. MIB thus enables you to tinker with
the solution one variable at a time to quickly produce a satisfactory result, if one is feasible.

If, however, you feel that additional coarsening is not appropriate, than too few obserations
may indicate that your data contains insufficient information to estimate the causal effects
of interest without model dependence; in that situation, you either give up or will have to
attempt adjusting for the pre-treatment covariates via modeling assumptions.

Suppose, instead, that you are unsure whether to coarsen further or how much to coarsen,
and are willing to entertain alternative matching solutions. We offer here an automated
way to compute these solutions. The idea is to relax the initial cem solution selectively and
automatically, to prune equivalent solutions, and to present them in a convenient manner so
that users can ascertain where the difficulties in matching in these data can be found and what
choices would produce which outcomes in terms of the numbers of observations matched.

For categorical variables, the algorithm considers the numerical values associated to each level
of the variable. In R the numerical values associated to the levels go from 1 to the number
of levels, say k. The coarsening occurs by partitioning the interval [1, k] into intervals of
growing size starting from, say, ε = 1. So in all cases, coarsening occurs by grouping adjacent
levels from “left” to “right”. This is of course not completely appropriate for pure unordered
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categorical variables, but to treat them in a proper way additional combinatorics would be
necessary. The progressive coarsening is instead intended as an instrument which gives a
feeling on which variable is more likely to prevent matching for a given data set.

We start by illustrating what happens when we relax a CEM solution“by hand”. The following
three runs show the effect on the matching solution (in terms of the number of observations
and imbalance) when the coarsening for one variable (age) is relaxed from 10 to 6 to 3 bins.
As can be seen, fewer cutpoints (which means larger bins) produces more matched units and
high maximum (and in this case actual) imbalance:

R> cem("treated", Le, cutpoints = list(age = 10), drop = "re78",

+ grouping = q1.grp)

G0 G1
All 392 258
Matched 87 77
Unmatched 305 181

Multivariate Imbalance Measure: L1=0.644
Percentage of local common support: LCS=27.5%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max
age 1.405e-01 (diff) 0.000e+00 0 0 1.0 -1.0 0.0
education -4.762e-03 (diff) 4.762e-03 0 0 0.0 0.0 0.0
black 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.0 0.0
married 0.000e+00 (diff) 5.551e-17 0 0 0.0 0.0 0.0
nodegree 1.110e-16 (diff) 0.000e+00 0 0 0.0 0.0 0.0
re74 1.453e+02 (diff) 0.000e+00 0 0 378.5 385.3 889.5
re75 7.227e+01 (diff) 0.000e+00 0 0 275.9 695.1 -640.9
hispanic 0.000e+00 (diff) 5.551e-17 0 0 0.0 0.0 0.0
u74 5.551e-17 (diff) 2.776e-17 0 0 0.0 0.0 0.0
u75 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.0 0.0
q1 3.611e+00 (Chi2) 0.000e+00 NA NA NA NA NA

R> cem("treated", Le, cutpoints = list(age = 6), drop = "re78",

+ grouping = q1.grp)

G0 G1
All 392 258
Matched 131 101
Unmatched 261 157

Multivariate Imbalance Measure: L1=0.729
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Percentage of local common support: LCS=23.9%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max
age 0.20165 (diff) 0.000e+00 0 0 0.0 0.0 0.0
education -0.02871 (diff) 2.871e-02 0 0 0.0 0.0 0.0
black 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0
married 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0
nodegree 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0
re74 149.25677 (diff) 0.000e+00 0 0 369.3 481.7 889.5
re75 106.52881 (diff) 0.000e+00 0 0 202.6 556.8 -640.9
hispanic 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0
u74 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0
u75 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0
q1 1.25381 (Chi2) 1.388e-17 NA NA NA NA NA

R> cem("treated", Le, cutpoints = list(age = 3), drop = "re78",

+ grouping = q1.grp)

G0 G1
All 392 258
Matched 173 123
Unmatched 219 135

Multivariate Imbalance Measure: L1=0.783
Percentage of local common support: LCS=19.6%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max
age -2.923e-01 (diff) 5.551e-17 0 -1 0.0 -1.0 -7.0
education -7.724e-03 (diff) 7.724e-03 0 0 0.0 0.0 0.0
black 0.000e+00 (diff) 6.245e-17 0 0 0.0 0.0 0.0
married 0.000e+00 (diff) 5.898e-17 0 0 0.0 0.0 0.0
nodegree -1.110e-16 (diff) 6.939e-17 0 0 0.0 0.0 0.0
re74 -6.242e+01 (diff) 5.551e-17 0 0 0.0 -570.8 957.1
re75 -9.322e+01 (diff) 5.551e-17 0 0 -228.7 -400.8 640.9
hispanic 0.000e+00 (diff) 5.725e-17 0 0 0.0 0.0 0.0
u74 0.000e+00 (diff) 2.776e-17 0 0 0.0 0.0 0.0
u75 0.000e+00 (diff) 2.776e-17 0 0 0.0 0.0 0.0
q1 1.951e+00 (Chi2) 7.633e-17 NA NA NA NA NA

We automate this progressive coarsening procedure here in the relax.cem function. This
function starts with the output of cem and relaxes variables one (depth = 1), two (depth =
2), or three (depth = 3) at a time, while optionally keeping unchanged a chosen subset of
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Pre−relax: 84 matched (32.6 %)
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Figure 1: Example of the graphical output of relax.cem.

the variables which we know well or have important effects on the outcome (fixed). The
function also allows one to specify the minimal number of breaks of each variable (the default
limit being 1). We begin with this example (the argument perc = 0.3 is passed to the plot
function and implies that only the solutions with at least 30% of the units are matched)

R> tab <- relax.cem(mat, Le, depth = 1, perc = 0.3)

Executing 47 different relaxations
........[20%]....[40%].....[60%].....[80%]....[100%]

After all possible coarsening relaxations are attempted, the function returns a list of tables,
one per group (i.e. treated and control). Each row of the tables contain information about
the number of treated and control units matched, the value of the L1 measure, and the type
of relaxation made. Each table is the sorted according to the number of treated (or control)
units matched.

The user may want to see the output of tab$G1 or tab$G0 but these tables may be very
long, and so we provide a method plot to view these tables more conveniently. The output
of plot(tab) is plotted in Figure 1 from which it is seen that the most difficult variables
to match are age and education. On the x-axis of the plot the variable and the number of
equally sized bins used for the coarsening are used (color-coded by variable). On the y-axis
on the right is the absolute number of treated units matched, while the left side y-axis reports
the same number in percentages. The numbers below the dots in the graphs represent the L1

measure corresponding to that matching solution. This graph also gives a feeling of the MIB
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Figure 2: Example of reduced graphical output of relax.cem.

behaviour of cem. When the tables produced by relax.cem are too large, the plot function,
allows for some reduction like printing only the best matching solutions (in the terms of
number of treated units matched), removing duplicates (i.e. different coarsenings may lead
to the same matching solution), or printing only solution where at least some percentage of
treated units, have been matched, or a combination of these. For more information refer to
the reference manual for the function relax.plot which can be called directly instead of plot.

Here is one example of use of plot in which we specify that only solutions with at least 60%
of the treated units are matched and duplicated solutions are removed. The output can be
seen in Figure 2:

R> plot(tab, group = "1", perc = 0.35, unique = TRUE)

3.4. Restricting the matching solution to a k-to-k match

By default, CEM uses maximal information, resulting in strata that may include different
numbers of treated and control units. To compensate for the differential strata sizes, cem also
returns weights to be used in subsequent analyses. Although this is generally the best option,
a user with enough data may opt for a k-to-k solution to avoid the slight inconvenience of
needing to use weights.

The function k2k accomplishes this by pruning observations from a cem solution within each
stratum until the solution contains the same number of treated and control units in all strata.
Pruning occurs within a stratum (for which observations are indistuinguishable to cem proper)
by using nearest neighbor selection using a distance function specified by the user (including
euclidean, maximum, manhattan, canberra, binary, or minkowski). By default method is
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set to NULL, which means random matching inside cem strata, an option that may reduce the
chance for bias. (For the Minkowski distance the power can be specified via the argument
mpower. For more information on method != NULL, refer to dist help page.)

Here is an example of this approach. First, by running cem:

R> mat <- cem(treatment = "treated", data = Le, drop = "re78")

R> mat

G0 G1
All 392 258
Matched 95 84
Unmatched 297 174

Multivariate Imbalance Measure: L1=0.605
Percentage of local common support: LCS=30.5%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max
age 9.405e-02 (diff) 0.000e+00 0 0 1 0.0 0.0
education -2.222e-02 (diff) 2.222e-02 0 0 0 0.0 0.0
black 1.110e-16 (diff) 0.000e+00 0 0 0 0.0 0.0
married 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
nodegree 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
re74 1.496e+02 (diff) 0.000e+00 0 0 0 463.3 889.5
re75 1.588e+02 (diff) 0.000e+00 0 0 0 843.7 -640.9
hispanic 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
u74 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
u75 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
q1 2.083e+00 (Chi2) 1.388e-17 NA NA NA NA NA

R> mat$k2k

[1] FALSE

and now pruning to a k-to-k solution, using the euclidean distance within CEM strata:

R> mat2 <- k2k(mat, Le, "euclidean", 1)

R> mat2

G0 G1
All 392 258
Matched 70 70
Unmatched 322 188
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Multivariate Imbalance Measure: L1=0.605
Percentage of local common support: LCS=30.5%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max
age 9.405e-02 (diff) 0.000e+00 0 0 1 0.0 0.0
education -2.222e-02 (diff) 2.222e-02 0 0 0 0.0 0.0
black 1.110e-16 (diff) 0.000e+00 0 0 0 0.0 0.0
married 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
nodegree 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
re74 1.496e+02 (diff) 0.000e+00 0 0 0 463.3 889.5
re75 1.588e+02 (diff) 0.000e+00 0 0 0 843.7 -640.9
hispanic 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
u74 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
u75 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0
q1 2.083e+00 (Chi2) 1.388e-17 NA NA NA NA NA

R> mat2$k2k

[1] TRUE

Alternatively, we can produce the same result in one step by adding the k2k=TRUE option to
the original cem call.

3.5. Estimating the causal effect from cem output

Using the output from cem, we can estimate SATT via the att function. The simplest
approach requires a weighted difference in means (unless k2k was used, in which case no
weights are required). For convenience, we compute this as a regression of the outcome
variable on a constant and the treatment variable,

R> data("LL")

R> mat <- cem(treatment = "treated", data = LL, drop = "re78")

R> est <- att(mat, re78 ~ treated, data = LL)

R> est

G0 G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 550.962564 (p.value=0.368242)
95% conf. interval: [-647.777701, 1749.702830]
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where the SATT estimate is the coefficient on the treated variable, in our case 550.96. The
function att allows for R’s standard formula interface and, by default, uses a linear model
to estimate the att using the weights produced by cem.

If exact matching (i.e., without coarsening) was chosen this procedure is appropriate as is.
In other situations, with some coarsening, some imbalance remains in the matched data.
The remaining imbalance is strictly bounded by the level of coarsening, which can be seen
by any remaining variation within the coarsened bins. Thus, a reasonable approach in this
common situation is to attempt to adjust for the remaining imbalance via a statistical model.
(Modeling assumptions for models applied to the matched data are much less consequential
than they would otherwise be because CEM is known to strictly bound the level of model
dependence.) To apply a statistical model to control for the remaining imbalance, we use the
formula interface in att. For example:

R> est2 <- att(mat, re78 ~ treated + re74, data = LL)

R> est2

G0 G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 553.113736 (p.value=0.362760)
95% conf. interval: [-636.606542, 1742.834014]

The user can also specify the option model which accepts one of the following string arguments

� linear or lm (the default) for linear model, when the treatment effect is supposed to
be homogeneous

R> att(mat, re78 ~ treated + re74, data = LL, model = "linear")

G0 G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 553.113736 (p.value=0.362760)
95% conf. interval: [-636.606542, 1742.834014]

� linear-RE or lme for linear model with random effects in cem strata, for non-homogeneous
treatment effect

R> att(mat, re78 ~ treated + re74, data = LL, model = "linear-RE")
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G0 G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear random effect model on CEM matched data:

SATT point estimate: 552.448961 (p.value=0.000000)
95% conf. interval: [364.067068, 740.830853]

� logistic or logit for dichotomous response variable3, for homogeneous treatment
effect.

� forest or rf for random forest model, also for non-homogeneous treatment effect. It
accepts continuous, dichotomous or counting outcomes.

R> att(mat, re78 ~ treated + re74, data = LL, model = "forest")

G0 G1
All 425 297
Matched 222 163
Unmatched 203 134

Random forest model on CEM matched data:

SATT point estimate: 530.627976 (p.value=0.554909)
95% conf. interval: [-1230.849295, 2292.105246]

All the above models run on the CEM matched subsamples, so the quantity of interest may
change in case of non-homogeneous treatment effect. The option extrapolate, if set TRUE,
extrapolates each of the above models also to the set of treated units not matched. In this
case the quantity of interest is kept fixed but the estimation is more model dependent.

R> att(mat, re78 ~ treated + re74, data = LL, model = "linear",

+ extra = TRUE)

G0 G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear regression model with extrapolation:

SATT point estimate: 674.337762 (p.value=0.347286)
95% conf. interval: [-236.091964, 1584.767489]

3We do not provide an example here, but the model syntax is the same for the other models.
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R> att(mat, re78 ~ treated + re74, data = LL, model = "linear-RE",

+ extra = TRUE)

G0 G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear random effect model with extrapolation:

SATT point estimate: 902.087484 (p.value=0.000000)
95% conf. interval: [816.567245, 987.607724]

R> att(mat, re78 ~ treated + re74, data = LL, model = "rf", extra = TRUE)

G0 G1
All 425 297
Matched 222 163
Unmatched 203 134

Random forest model with extrapolation:

SATT point estimate: 89.169954 (p.value=0.892076)
95% conf. interval: [-1198.957129, 1377.297038]

As Figure 3 shows, it is also possible to plot the results of the SATT estimation as follows

R> est3 <- att(mat, re78 ~ treated + re74, data = LL)

R> est3

G0 G1
All 425 297
Matched 222 163
Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 553.113736 (p.value=0.362760)
95% conf. interval: [-636.606542, 1742.834014]

R> plot(est3, mat, LL, vars = c("education", "age", "re74", "re75"))

For more information, see the reference manual entry for att.
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Linear regression model on CEM matched data
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Figure 3: Example of a plot of the output of att. The top panel gives observation-level
causal effect estimates sorted in numerical order and colored in ranges – negative (in blue),
not significantly different from zero (black), or positive (red). For each range of effects,
the bottom panel gives parallel plots; each line in a parallel plot represents the (covariate)
characteristics of a single observation.

3.6. Matching and missing data

Almost all previous methods of matching assume the absence of any missing values. In
contrast, cem offers two valid approaches to dealing with missing values (item nonresponse).
In the first, where we treat missing values as one of the values of the variables, is appropriate
when “NA” is a valid value that is not really missing (such as when “no opinion” really means
no opinion); see Section 3.6.1. The other is a special procedure to allow for multiply imputed
data in CEM, as described in Section 3.6.2.

Matching on missingness

In the next example, we use our original LeLonde data with missing values and we compare
the result with Le from which we dropped the NA values. For comparability, we use the same
cutpoints we used in Section 3.2 on the Le data. The cutpoints are contained in mat$breaks
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R> mat3 <- cem("treated", LeLonde, drop = "re78", cutpoints = mat$breaks,

+ grouping = list(q1 = q1.grp))

Missing values exist in the data!

R> mat3

G0 G1
All 425 297
Matched 134 101
Unmatched 291 196

Multivariate Imbalance Measure: L1=0.723
Percentage of local common support: LCS=27.5%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max
age 1.893e-01 (diff) 0.000e+00 0 0 0 0 0.0
education 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0
black 0.000e+00 (diff) 5.551e-17 0 0 0 0 0.0
married 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0
nodegree 1.110e-16 (diff) 0.000e+00 0 0 0 0 0.0
re74 4.563e+01 (diff) 0.000e+00 0 0 0 543 889.5
re75 8.120e+01 (diff) 0.000e+00 0 0 0 816 -640.9
hispanic 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0
u74 0.000e+00 (diff) 2.776e-17 0 0 0 0 0.0
u75 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0
q1 3.822e+00 (Chi2) 7.084e-02 NA NA NA NA NA

and we compare the above with the solution obtained by dropping the observations with
missing data

R> mat4 <- cem("treated", Le, drop = "re78", cutpoints = mat$breaks,

+ grouping = list(q1 = q1.grp))

R> mat4

G0 G1
All 392 258
Matched 132 100
Unmatched 260 158

Multivariate Imbalance Measure: L1=0.734
Percentage of local common support: LCS=27.5%
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Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max
age 1.919e-01 (diff) 0.000e+00 0 0 0 0 0.0
education 1.776e-15 (diff) 0.000e+00 0 0 0 0 0.0
black 0.000e+00 (diff) 3.469e-18 0 0 0 0 0.0
married 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0
nodegree 1.110e-16 (diff) 0.000e+00 0 0 0 0 0.0
re74 4.583e+01 (diff) 0.000e+00 0 0 0 543 889.5
re75 8.287e+01 (diff) 0.000e+00 0 0 0 816 -640.9
hispanic 0.000e+00 (diff) 1.735e-18 0 0 0 0 0.0
u74 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0
u75 0.000e+00 (diff) 2.776e-17 0 0 0 0 0.0
q1 3.698e+00 (Chi2) 7.279e-02 NA NA NA NA NA

and, as expected, the two solutions differ somewhat. The gain (in terms of number of matched
units) decreases as the number of covariates increases.

Matching multiply imputed data

Consider a data set to be matched, some of which is missing. One approach to analyzing data
with missing values is multiple imputation, which involves creating m (usually about m = 5)
data sets, each of which is the same as the original except that the missing values have been
imputed in each. Uncertainty in the values of the missing cells is represented by variation in
the imputations across the different imputed data sets (King, Honaker, Joseph, and Scheve
2001).

As an example we take the original LeLonde data with missing values

R> summary(LeLonde)

treated age education black married
Min. :0.000 Min. :17.0 Min. : 3.0 Min. :0.0 Min. :0.000
1st Qu.:0.000 1st Qu.:19.0 1st Qu.: 9.0 1st Qu.:1.0 1st Qu.:0.000
Median :0.000 Median :23.0 Median :10.0 Median :1.0 Median :0.000
Mean :0.411 Mean :24.5 Mean :10.3 Mean :0.8 Mean :0.163
3rd Qu.:1.000 3rd Qu.:27.0 3rd Qu.:11.0 3rd Qu.:1.0 3rd Qu.:0.000
Max. :1.000 Max. :55.0 Max. :16.0 Max. :1.0 Max. :1.000

NA's : 8.0 NA's : 8.0 NA's :1.0 NA's :9.000
nodegree re74 re75 re78

Min. :0.000 Min. : 0 Min. : 0 Min. : 0
1st Qu.:1.000 1st Qu.: 0 1st Qu.: 0 1st Qu.: 0
Median :1.000 Median : 824 Median : 941 Median : 4033
Mean :0.778 Mean : 3662 Mean : 3051 Mean : 5486
3rd Qu.:1.000 3rd Qu.: 5237 3rd Qu.: 3993 3rd Qu.: 8813
Max. :1.000 Max. :39571 Max. :37432 Max. :60308
NA's :5.000 NA's : 8 NA's : 4 NA's : 7
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hispanic u74 u75 q1
Min. : 0.000 Min. :0.000 Min. :0.000 agree :111
1st Qu.: 0.000 1st Qu.:0.000 1st Qu.:0.000 disagree :121
Median : 0.000 Median :0.000 Median :0.000 neutral :129
Mean : 0.104 Mean :0.453 Mean :0.402 no opinion :117
3rd Qu.: 0.000 3rd Qu.:1.000 3rd Qu.:1.000 strongly agree :121
Max. : 1.000 Max. :1.000 Max. :1.000 strongly disagree:118
NA's :11.000 NA's :3.000 NA's :3.000 NA's : 5

Now we use the Amelia package (Honaker, King, and Blackwell 2009) to create multiply
imputed data sets:

R> library("Amelia")

R> set.seed(123)

R> imputed <- amelia(LeLonde, noms = c("black", "hispanic", "treated",

+ "married", "nodegree", "u74", "u75", "q1"))

-- Imputation 1 --

1 2 3

-- Imputation 2 --

1 2 3 4

-- Imputation 3 --

1 2 3

-- Imputation 4 --

1 2 3 4

-- Imputation 5 --

1 2 3

R> imputed <- imputed$imputations[1:5]

Now imputed contains a list of 5 multiply imputed versions of LeLonde. We pass this list
to the cem function in the argument datalist and cem produces a set of multiply imputed
solutions, as usual with the original uncoarsened values of the variables, but now assigning
each multiply imputed observation to the strata where it falls most frequently. The output
of cem is a list of cem.match solutions (named match1, match2,. . . , match5). (Be sure to
also name the original data frame in option data or cem will merely run the basic algorithm
five separate times on each of the input data sets, a procedure that can be useful for batch
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processing of data to be matched, but is not recommended for multiply imputed data sets
since the strata will not be the same across the data sets.) For example:

R> mat2 <- cem("treated", datalist = imputed, drop = "re78", data = LeLonde,

+ grouping = list(q1 = q1.grp))

R> mat2

G0 G1
All 425 297
Matched 132 98
Unmatched 293 199

Multivariate Imbalance Measure: L1=0.703
Percentage of local common support: LCS=28.3%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max
age -0.141910 (diff) 0.000000 0.0 -1 0 0.0 0.0
education -0.003269 (diff) 0.017007 0.0 0 0 0.0 0.0
black 0.000000 (diff) 0.000000 0.0 0 0 0.0 0.0
married -0.003061 (diff) 0.005102 0.0 0 0 0.0 0.0
nodegree -0.002041 (diff) 0.000000 0.0 0 0 0.0 0.0
re74 99.066521 (diff) 0.000000 -250.6 0 0 252.3 -197.1
re75 44.619415 (diff) 0.000000 0.0 0 0 -128.5 640.9
hispanic 0.001531 (diff) 0.007653 0.0 0 0 0.0 0.0
u74 0.004082 (diff) 0.000000 0.0 0 0 0.0 0.0
u75 0.000000 (diff) 0.000000 0.0 0 0 0.0 0.0
q1 2.141127 (Chi2) 0.061905 NA NA NA NA NA

Now we estimate SATT via the usual multiple imputation combining formulas.4 The function
att implements these procedures:

R> out <- att(mat2, re78 ~ treated, data = imputed)

R> out

Linear regression model on CEM matched data:

SATT point estimate: 1177.182780 (p.value=0.123993)
95% conf. interval: [-322.747427, 2677.112987]

3.7. Creating paired samples

In same cases, it is useful to apply CEM so some data to create paired matched samples.
Given an output of cem, the function pair produces two sets of indexes corresponding to pair
matched units.

4As usual, we average the point estimates and within and between variances (see King et al. 2001).
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R> data("LL")

R> mat <- cem(data = LL, drop = "re78")

R> psample <- pair(mat, data = LL)

Total number of units paired in CEM strata: 352
Total number of units matched: 722

each pair of observations has a different strata number

R> table(psample$paired)[1:50]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

not all observations can be matched in cem strata

R> psample$paired[1:50]

15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005
NA NA NA NA NA NA NA NA NA NA NA NA NA

16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018
NA NA NA NA NA NA NA NA NA NA NA NA NA

16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031
NA NA NA NA NA 1 NA NA NA 1 NA NA NA

16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042
NA NA NA NA NA NA NA NA NA NA NA

the remaining observations are then matched and the final list of all paired units is contained
in the filed full.paired

R> table(psample$full.paired)[1:50]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

R> psample$full.paired[1:10]

15993 15994 15995 15996 15997 15998 15999 16000 16001 16002
265 268 240 189 196 195 267 177 227 232

When the data contain an even number of units, all units can be paired; if they cannot be
paired, the function indicates which units are left without a mate.
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R> mat1 <- cem(data = LL[-1, ], drop = "re78")

R> psample <- pair(mat1, data = LL[-1, ])

Total number of units paired in CEM strata: 352
Total number of units matched: 720
Unit corresponding to row `15994', not paired

R> table(psample$full.paired)[1:50]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
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