Matching Methods for Observational and Experimental Causal Inference

Gary King¹

Institute for Quantitative Social Science Harvard University

Facultad Latinoamericana de Ciencias Sociales, 5/19/2023

¹GaryKing.org

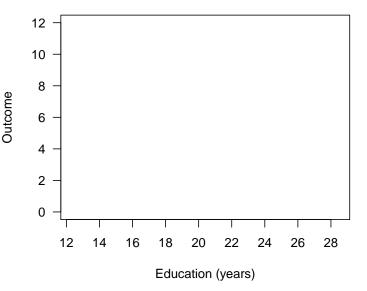
• Matching, Causal Inference: bit.ly/causel

- Matching, Causal Inference: bit.ly/causel
- Coarsened Exact Matching (CEM) software, articles: GaryKing.org/cem

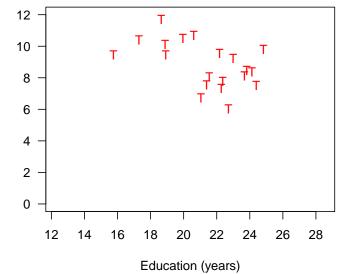
- Matching, Causal Inference: bit.ly/causel
- Coarsened Exact Matching (CEM) software, articles: GaryKing.org/cem
- Matching in Experiments, including Seguro Popular: bit.ly/ExpMex

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

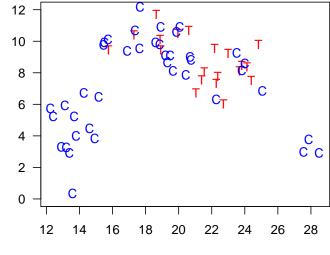


(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



Outcome

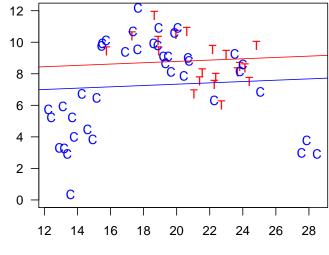
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



Outcome

Education (years)

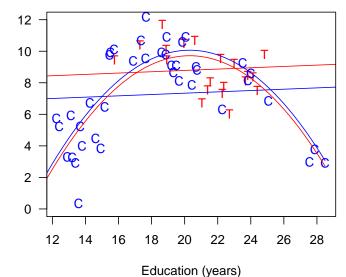
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



Outcome

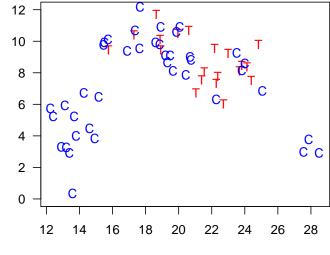
Education (years)

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



Outcome

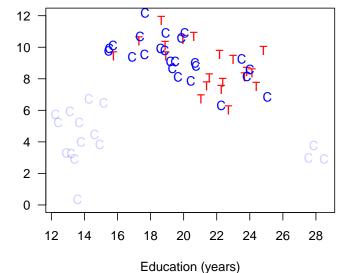
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



Outcome

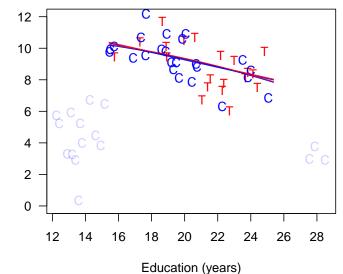
Education (years)

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



Outcome

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



Outcome

Without Matching:

Without Matching:

Imbalance

Without Matching:

Imbalance \rightsquigarrow Model Dependence

Without Matching:

Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion

Without Matching:

Without Matching:

 $\mathsf{Imbalance} \rightsquigarrow \mathsf{Model} \ \mathsf{Dependence} \rightsquigarrow \mathsf{Researcher} \ \mathsf{discretion} \rightsquigarrow \mathsf{Bias}$

• Qualitative choice from unbiased estimates = biased estimator

Without Matching:

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from *results* of 50 randomized experiments

Without Matching:

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from *results* of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse[effrt]

Without Matching:

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from *results* of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse[effrt]
- conscientious effort doesn't avoid biases (Banaji 2013)[acc]

Without Matching:

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from *results* of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse[effrt]
- conscientious effort doesn't avoid biases (Banaji 2013)[acc]
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)[exprt]

Without Matching:

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from *results* of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse[effrt]
- conscientious effort doesn't avoid biases (Banaji 2013)[acc]
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)[exprt]
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)[tch]

Without Matching:

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from *results* of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse[effrt]
- conscientious effort doesn't avoid biases (Banaji 2013)[acc]
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)[exprt]
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)[tch]
- "Teaching psychology is mostly a waste of time" (Kahneman 2011)

Without Matching:

Without Matching:

Without Matching:

Mbalance ---- Model Dependence ---- Researcher discretion ---- Bias

Without Matching:

Malance ---- Model Dependence ---- Researcher discretion ---- Bias

Without Matching:

Mbalance --- Model Dependence --- Researcher discretion ---- Bias

Without Matching: Malance ---- Model Dependence ---- Researcher discretion ---- Bias

A central project of statistics: Automating away human discretion

What's Matching?

What's Matching?

• Y_i dep var, T_i (1=treated, 0=control), X_i confounders

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for <u>treated</u> observation *i*:

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for <u>treated</u> observation *i*:

 $\mathsf{TE}_i = Y_i(1) - \frac{Y_i(0)}{2}$

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for <u>treated</u> observation *i*:

 $TE_i = Y_i(1) - Y_i(0)$ = observed - unobserved

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for <u>treated</u> observation *i*:

 $TE_i = Y_i - Y_i(0)$ = observed - *unobserved*

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for <u>treated</u> observation *i*:

 $TE_i = Y_i - Y_i(0)$ = observed - *unobserved*

• Estimate $Y_i(0)$ with Y_j with a matched $(X_i \approx X_j)$ control

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for <u>treated</u> observation *i*:

 $TE_i = Y_i - Y_i(0)$ = observed - *unobserved*

- Estimate $Y_i(0)$ with Y_j with a matched $(X_i \approx X_j)$ control
- Quantities of Interest:

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for <u>treated</u> observation *i*:

 $TE_i = Y_i - Y_i(0)$ = observed - *unobserved*

- Estimate $Y_i(0)$ with Y_j with a matched $(X_i \approx X_j)$ control
- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \underset{i:T_i=1}{\mathsf{Mean}} (\mathsf{TE}_i)$$

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for <u>treated</u> observation *i*:

 $TE_i = Y_i - Y_i(0)$ = observed - *unobserved*

- Estimate $Y_i(0)$ with Y_j with a matched $(X_i \approx X_j)$ control
- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \underset{i:T_i=1}{\mathsf{Mean}} (\mathsf{TE}_i)$$

2. FSATT: Feasible SATT (prune badly matched treateds too)

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for <u>treated</u> observation *i*:

 $TE_i = Y_i - Y_i(0)$ = observed - *unobserved*

- Estimate $Y_i(0)$ with Y_j with a matched $(X_i \approx X_j)$ control
- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \underset{i:T_i=1}{\mathsf{Mean}} (\mathsf{TE}_i)$$

2. FSATT: Feasible SATT (prune badly matched treateds too)

• Big convenience: Follow preprocessing with whatever statistical method you'd have used without matching

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for <u>treated</u> observation *i*:

 $TE_i = Y_i - Y_i(0)$ = observed - *unobserved*

- Estimate $Y_i(0)$ with Y_j with a matched $(X_i \approx X_j)$ control
- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \operatorname*{\mathsf{Mean}}_{i:T_i=1} (\mathsf{TE}_i)$$

2. FSATT: Feasible SATT (prune badly matched treateds too)

- Big convenience: Follow preprocessing with whatever statistical method you'd have used without matching
- Pruning nonmatches makes control vars matter less: reduces imbalance, model dependence, researcher discretion, & bias

Types of Experiments

Complete Randomization

Types of Experiments

Complete Fully Randomization Blocked

Types of Experiments

Balance Covariates: *Observed Unobserved*

Complete Fully Randomization Blocked

Types of Experiments

Balance Covariates: *Observed Unobserved* Complete Fully Randomization Blocked

On average

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	
Unobserved	On average	

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

 \rightsquigarrow Fully blocked dominates complete randomization

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

 \rightsquigarrow Fully blocked dominates complete randomization for:

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

 \rightsquigarrow Fully blocked dominates complete randomization for: imbalance,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

~> Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias, research costs,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias, research costs, robustness.

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

• PSM: complete randomization

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

- PSM: complete randomization
- Other methods: *fully blocked*

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

- PSM: complete randomization
- Other methods: *fully blocked*
- Other matching methods dominate PSM

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

- PSM: complete randomization
- Other methods: *fully blocked*
- Other matching methods dominate PSM (wait, it gets worse)

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

1. Preprocess (Matching)

• Distance
$$(X_c, X_t) = \sqrt{(X_c - X_t)' S^{-1} (X_c - X_t)}$$

- 1. Preprocess (Matching)
 - Distance $(X_c, X_t) = \sqrt{(X_c X_t)' S^{-1} (X_c X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)

1. Preprocess (Matching)

- Distance $(X_c, X_t) = \sqrt{(X_c X_t)' S^{-1} (X_c X_t)}$
- (Mahalanobis is for methodologists; in applications, use Euclidean!)
- Match each treated unit to the nearest control unit

(Approximates Fully Blocked Experiment)

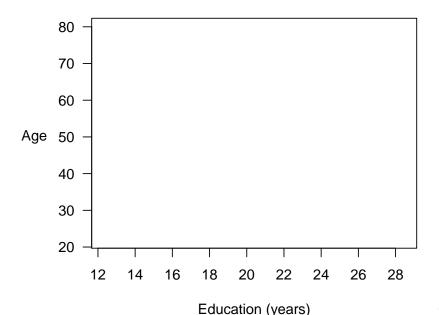
- 1. Preprocess (Matching)
 - Distance $(X_c, X_t) = \sqrt{(X_c X_t)' S^{-1} (X_c X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused

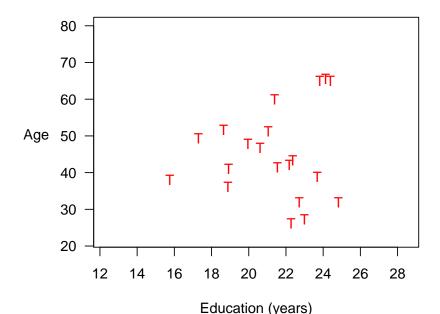
(Approximates Fully Blocked Experiment)

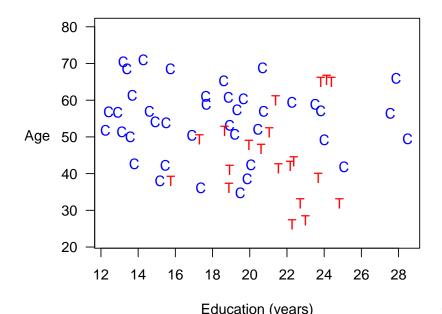
- 1. Preprocess (Matching)
 - Distance $(X_c, X_t) = \sqrt{(X_c X_t)' S^{-1} (X_c X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance>*caliper*
- 2. Estimation Difference in means or a model

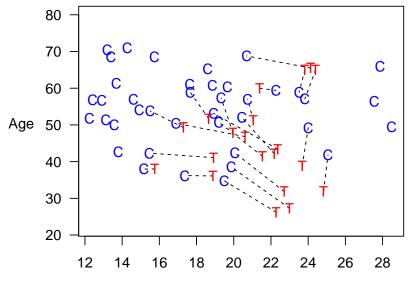
(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Distance $(X_c, X_t) = \sqrt{(X_c X_t)' S^{-1} (X_c X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
 - (Many adjustments available to this basic method)
- 2. Estimation Difference in means or a model

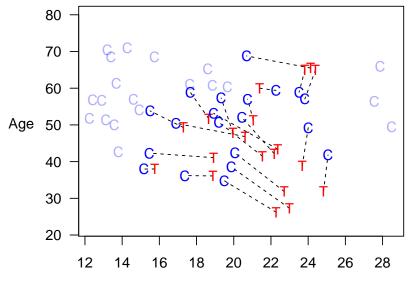




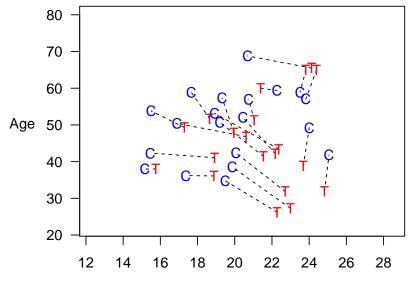




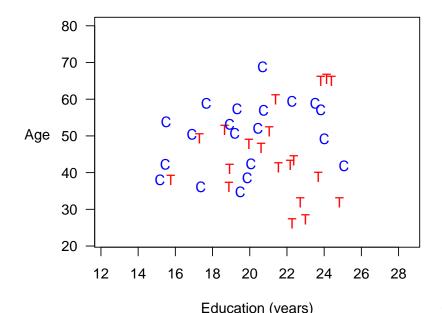
Education (years)



Education (years)



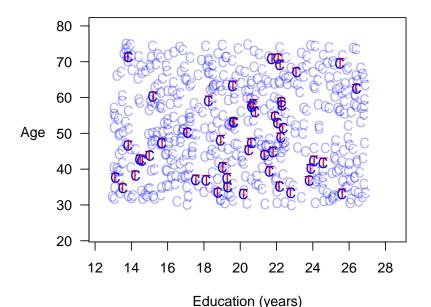
Education (years)



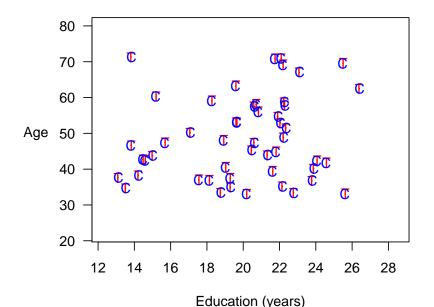
8 / 25

Best Case: Mahalanobis Distance Matching

Best Case: Mahalanobis Distance Matching



Best Case: Mahalanobis Distance Matching



Method 2: Coarsened Exact Matching (Most powerful easy-to-use approach)

1. Preprocess (Matching)

1. Preprocess (Matching)

• Temporarily coarsen X as much as you're willing

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)

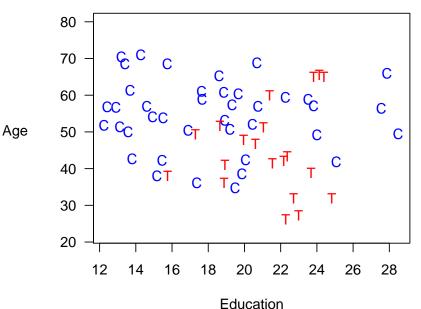
- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, C(X)

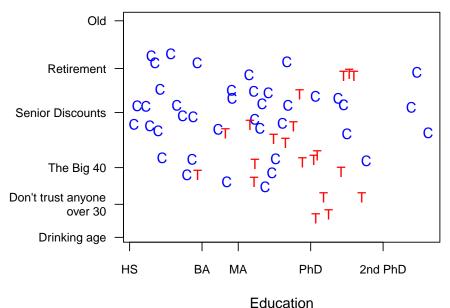
- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)

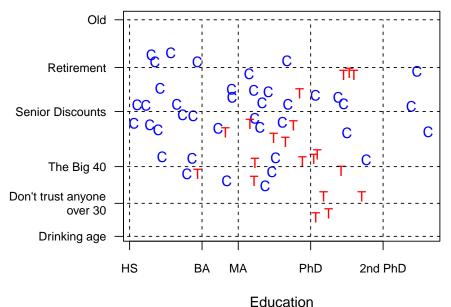
- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
- 2. Estimation Difference in means or a model

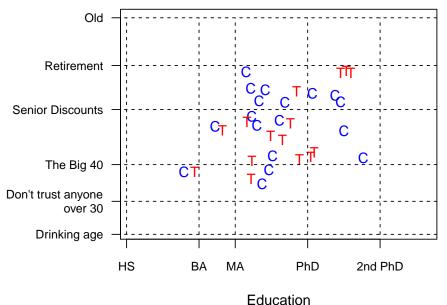
- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model

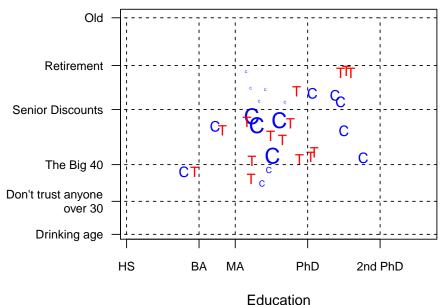
- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
 - Weight controls in each stratum to equal treateds

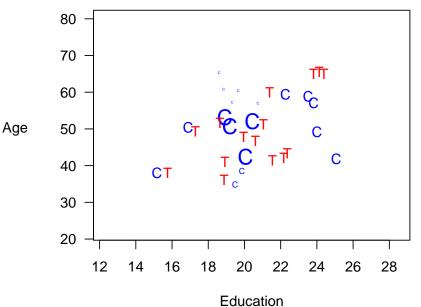






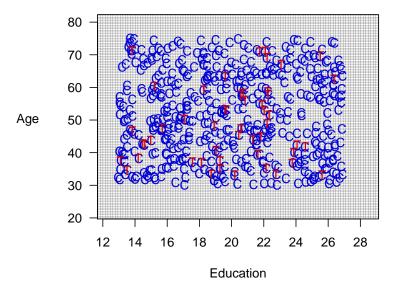




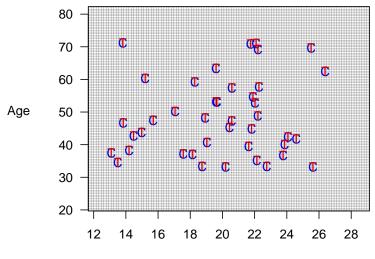


Best Case: Coarsened Exact Matching

Best Case: Coarsened Exact Matching

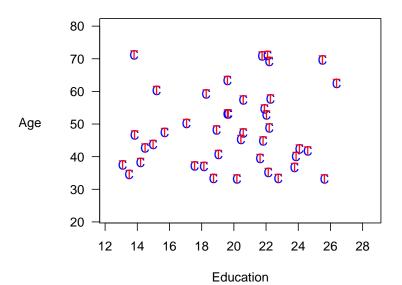


Best Case: Coarsened Exact Matching



Education

Best Case: Coarsened Exact Matching



12 / 25

1. Preprocess (Matching)

1. Preprocess (Matching)

• Reduce k elements of X to scalar
$$\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$$

1. Preprocess (Matching)

• Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i\beta}}$

• Distance
$$(X_c, X_t) = |\pi_c - \pi_t|$$

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

• Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$

• Distance
$$(X_c, X_t) = |\pi_c - \pi_t|$$

Match each treated unit to the nearest control unit

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$
- Distance $(X_c, X_t) = |\pi_c \pi_t|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused

(Approximates Completely Randomized Experiment)

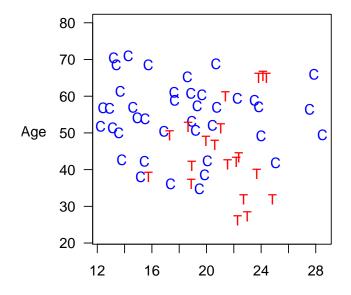
1. Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$
- Distance $(X_c, X_t) = |\pi_c \pi_t|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>*caliper*
- 2. Estimation Difference in means or a model

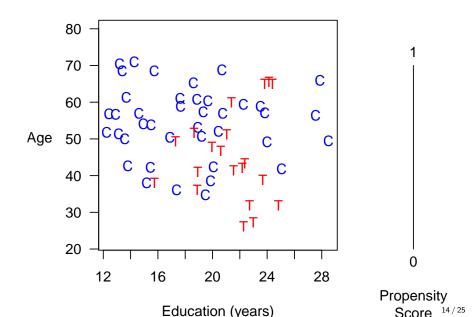
(Approximates Completely Randomized Experiment)

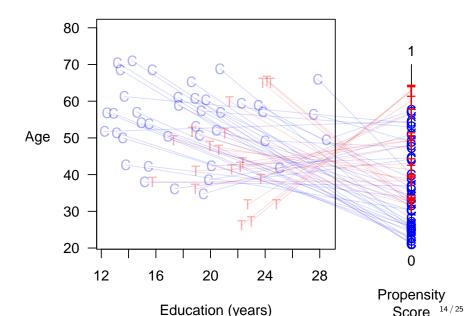
1. Preprocess (Matching)

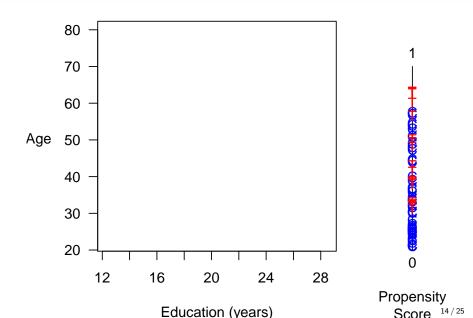
- Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$
- Distance $(X_c, X_t) = |\pi_c \pi_t|$
- Match each treated unit to the nearest control unit
- · Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
- (Many adjustments available to this basic method)
- 2. Estimation Difference in means or a model

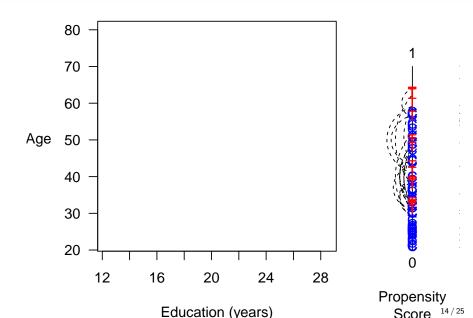


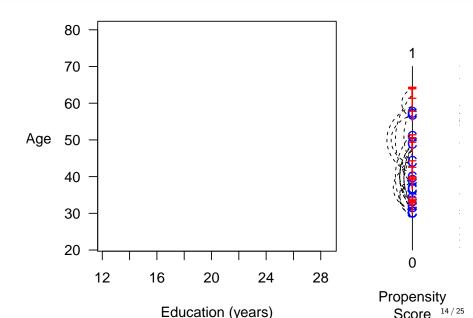
Education (years)

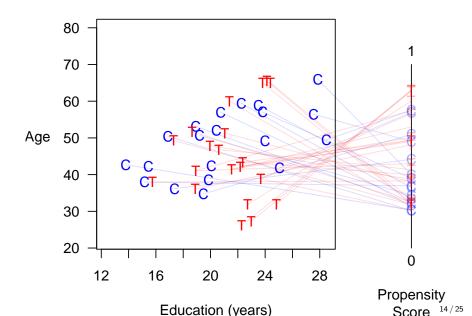


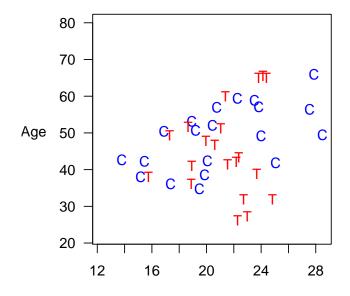




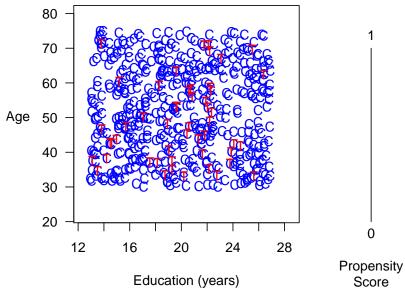


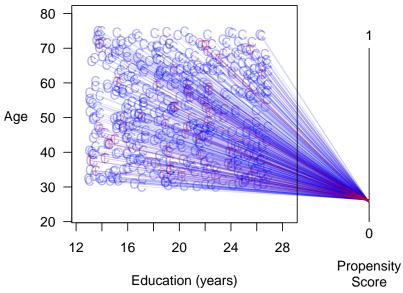


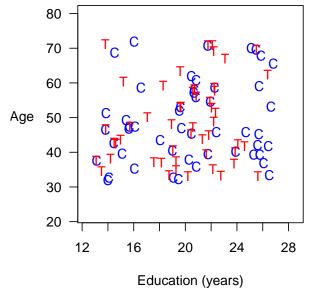




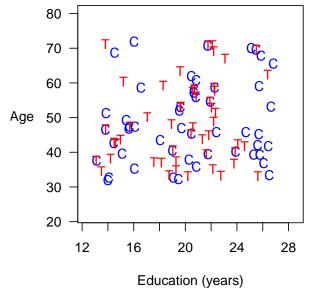
Education (years)







Best Case: Propensity Score Matching is Suboptimal



1. Low Standards: Sometimes helps, never optimizes

1. Low Standards: Sometimes helps, never optimizes

• Efficient relative to complete randomization, but

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $X_c = X_t \implies \pi_c = \pi_t$

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

$$\begin{array}{ccc} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$$

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

$$\begin{array}{ccc} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$$

2. The PSM Paradox: When you do "better," you do worse

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

$$\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$$

- 2. The PSM Paradox: When you do "better," you do worse
 - Background: Random matching increases imbalance

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$

- 2. The PSM Paradox: When you do "better," you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning)

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$

- 2. The PSM Paradox: When you do "better," you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \rightarrow all $\hat{\pi} \approx 0.5$ (or constant within strata)

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$

- 2. The PSM Paradox: When you do "better," you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \rightarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightarrow pruning at random

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$

- Background: Random matching increases imbalance
- When PSM approximates complete randomization (to begin with or, after some pruning) → all π̂ ≈ 0.5 (or constant within strata) → pruning at random → Imbalance

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$

- 2. The PSM Paradox: When you do "better," you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) → all ^ˆπ ≈ 0.5 (or constant within strata) → pruning at random → Imbalance → Inefficency

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$

- Background: Random matching increases imbalance
- When PSM approximates complete randomization (to begin with or, after some pruning) → all \$\u03c0 ≈ 0.5\$ (or constant within strata) → pruning at random → Imbalance → Inefficency → Model dependence

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$

- Background: Random matching increases imbalance
- When PSM approximates complete randomization (to begin with or, after some pruning) → all π̂ ≈ 0.5 (or constant within strata) → pruning at random → Imbalance → Inefficency → Model dependence → Bias

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$

- Background: Random matching increases imbalance
- When PSM approximates complete randomization (to begin with or, after some pruning) → all π̂ ≈ 0.5 (or constant within strata) → pruning at random → Imbalance → Inefficency → Model dependence → Bias
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway.

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$

- Background: Random matching increases imbalance
- When PSM approximates complete randomization (to begin with or, after some pruning) → all π̂ ≈ 0.5 (or constant within strata) → pruning at random → Imbalance → Inefficency → Model dependence → Bias
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway.
- Doesn't PSM solve the curse of dimensionality problem?

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$

- Background: Random matching increases imbalance
- When PSM approximates complete randomization (to begin with or, after some pruning) → all π̂ ≈ 0.5 (or constant within strata) → pruning at random → Imbalance → Inefficency → Model dependence → Bias
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway.
- Doesn't PSM solve the curse of dimensionality problem? Nope.

1. Low Standards: Sometimes helps, never optimizes

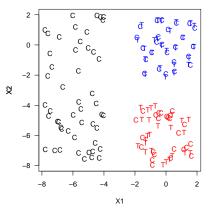
- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods usually dominate:

 $\begin{array}{l} X_c = X_t \implies \pi_c = \pi_t \text{ but} \\ \pi_c = \pi_t \implies X_c = X_t \end{array}$

- Background: Random matching increases imbalance
- When PSM approximates complete randomization (to begin with or, after some pruning) → all π̂ ≈ 0.5 (or constant within strata) → pruning at random → Imbalance → Inefficency → Model dependence → Bias
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway.
- Doesn't PSM solve the curse of dimensionality problem? Nope. The PSM Paradox gets worse with more covariates

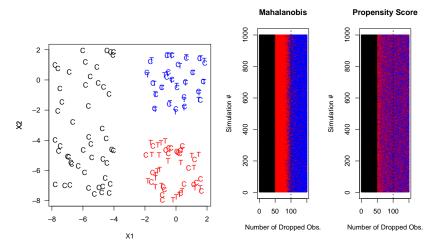
PSM is Blind Where Other Methods Can See

PSM is Blind Where Other Methods Can See



17 / 25

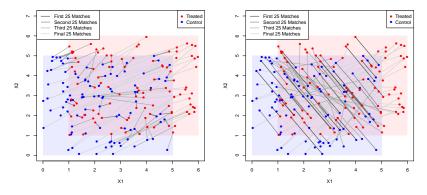
PSM is Blind Where Other Methods Can See



What Does PSM Match?

MDM Matches

PSM Matches

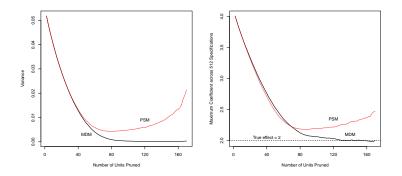


Controls: $X_1, X_2 \sim \text{Uniform}(0,5)$ Treateds: $X_1, X_2 \sim \text{Uniform}(1,6)$

PSM Increases Model Dependence & Bias

Model Dependence

Bias

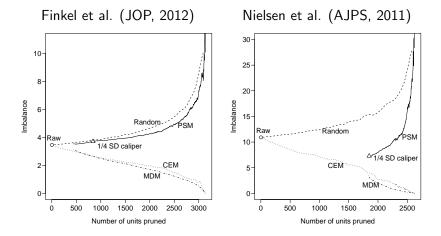


$$Y_i = 2T_i + X_{1i} + X_{2i} + \epsilon_i$$

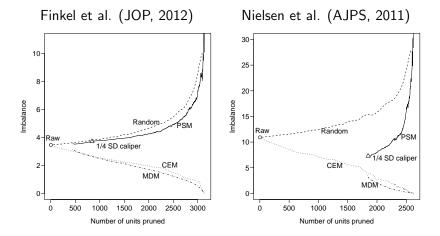
 $\epsilon_i \sim N(0, 1)$

The Propensity Score Paradox in Real Data

The Propensity Score Paradox in Real Data



The Propensity Score Paradox in Real Data



Similar pattern for > 20 other real data sets we checked

• Frenk and Fox asked: How can one democratically elected government "tie the hands" of their successors?

- Frenk and Fox asked: How can one democratically elected government "tie the hands" of their successors?
 - Commission an independent evaluation

- Frenk and Fox asked: How can one democratically elected government "tie the hands" of their successors?
 - Commission an independent evaluation
 - Like in science: make themselves vulnerable to being proven wrong

- Frenk and Fox asked: How can one democratically elected government "tie the hands" of their successors?
 - Commission an independent evaluation
 - Like in science: make themselves vulnerable to being proven wrong
 - If we show SP is a success: elimination would be difficult

- Frenk and Fox asked: How can one democratically elected government "tie the hands" of their successors?
 - Commission an independent evaluation
 - Like in science: make themselves vulnerable to being proven wrong
 - If we show SP is a success: elimination would be difficult
 - If SP is a failure: who cares about extending it

- Frenk and Fox asked: How can one democratically elected government "tie the hands" of their successors?
 - Commission an independent evaluation
 - Like in science: make themselves vulnerable to being proven wrong
 - If we show SP is a success: elimination would be difficult
 - If SP is a failure: who cares about extending it
 - (They are true believers in SP)

- Frenk and Fox asked: How can one democratically elected government "tie the hands" of their successors?
 - Commission an independent evaluation
 - Like in science: make themselves vulnerable to being proven wrong
 - If we show SP is a success: elimination would be difficult
 - If SP is a failure: who cares about extending it
 - (They are true believers in SP)
- The largest randomized health policy experiment in history

- Frenk and Fox asked: How can one democratically elected government "tie the hands" of their successors?
 - Commission an independent evaluation
 - Like in science: make themselves vulnerable to being proven wrong
 - If we show SP is a success: elimination would be difficult
 - If SP is a failure: who cares about extending it
 - (They are true believers in SP)
- The largest randomized health policy experiment in history
- One of the largest policy experiments to date

- Frenk and Fox asked: How can one democratically elected government "tie the hands" of their successors?
 - Commission an independent evaluation
 - Like in science: make themselves vulnerable to being proven wrong
 - If we show SP is a success: elimination would be difficult
 - If SP is a failure: who cares about extending it
 - (They are true believers in SP)
- The largest randomized health policy experiment in history
- One of the largest policy experiments to date
- 148 geographic areas, 1,380 localities, \approx 118,569 households, and \approx 534,457 people

1. Define 12,284 "health clusters" that tile Mexico's 31 states; each includes a health clinic and catchment area

- 1. Define 12,284 "health clusters" that tile Mexico's 31 states; each includes a health clinic and catchment area
- 2. Persuaded 13 of 31 states to participate (7,078 clusters)

- 1. Define 12,284 "health clusters" that tile Mexico's 31 states; each includes a health clinic and catchment area
- 2. Persuaded 13 of 31 states to participate (7,078 clusters)
- 3. Match clusters in pairs on background characteristics

- 1. Define 12,284 "health clusters" that tile Mexico's 31 states; each includes a health clinic and catchment area
- 2. Persuaded 13 of 31 states to participate (7,078 clusters)
- 3. Match clusters in pairs on background characteristics
- 4. Select 74 pairs (based on necessary political criteria, closeness of the match, likelihood of compliance)

- 1. Define 12,284 "health clusters" that tile Mexico's 31 states; each includes a health clinic and catchment area
- 2. Persuaded 13 of 31 states to participate (7,078 clusters)
- 3. Match clusters in pairs on background characteristics
- 4. Select 74 pairs (based on necessary political criteria, closeness of the match, likelihood of compliance)
- 5. Randomly assign one in each pair to receive encouragement to affiliate, better health facilities, drugs, and doctors

- 1. Define 12,284 "health clusters" that tile Mexico's 31 states; each includes a health clinic and catchment area
- 2. Persuaded 13 of 31 states to participate (7,078 clusters)
- 3. Match clusters in pairs on background characteristics
- 4. Select 74 pairs (based on necessary political criteria, closeness of the match, likelihood of compliance)
- 5. Randomly assign one in each pair to receive encouragement to affiliate, better health facilities, drugs, and doctors
- 6. Conduct baseline survey of each cluster's health facility

- 1. Define 12,284 "health clusters" that tile Mexico's 31 states; each includes a health clinic and catchment area
- 2. Persuaded 13 of 31 states to participate (7,078 clusters)
- 3. Match clusters in pairs on background characteristics
- 4. Select 74 pairs (based on necessary political criteria, closeness of the match, likelihood of compliance)
- 5. Randomly assign one in each pair to receive encouragement to affiliate, better health facilities, drugs, and doctors
- 6. Conduct baseline survey of each cluster's health facility
- 7. Survey \approx 32,000 random households in 50 of the 74 treated and control unit pairs (chosen based on likelihood of compliance with encouragement and similarity of the clusters within pair)

- 1. Define 12,284 "health clusters" that tile Mexico's 31 states; each includes a health clinic and catchment area
- 2. Persuaded 13 of 31 states to participate (7,078 clusters)
- 3. Match clusters in pairs on background characteristics
- 4. Select 74 pairs (based on necessary political criteria, closeness of the match, likelihood of compliance)
- 5. Randomly assign one in each pair to receive encouragement to affiliate, better health facilities, drugs, and doctors
- 6. Conduct baseline survey of each cluster's health facility
- 7. Survey \approx 32,000 random households in 50 of the 74 treated and control unit pairs (chosen based on likelihood of compliance with encouragement and similarity of the clusters within pair)
- 8. Repeat surveys in 10 months to measure outcome

Design has three parts

Design has three parts

1. Matching pairs (of health clusters) on observed covariates

Design has three parts

- 1. Matching pairs (of health clusters) on observed covariates
- 2. Randomization of treatment within pairs

Design has three parts

- 1. Matching pairs (of health clusters) on observed covariates
- 2. Randomization of treatment within pairs
- 3. If necessary statistically adjust for differences

Design has three parts

- 1. Matching pairs (of health clusters) on observed covariates
- 2. Randomization of treatment within pairs
- 3. If necessary statistically adjust for differences

Triple Robustness

If matching or randomization or statistical analysis is right, but the other two are wrong, results are still unbiased

Design has three parts

- 1. Matching pairs (of health clusters) on observed covariates
- 2. Randomization of treatment within pairs
- 3. If necessary statistically adjust for differences

Triple Robustness

If matching or randomization or statistical analysis is right, but the other two are wrong, results are still unbiased

Two Additional Checks if Triple Robustness Fails

Design has three parts

- 1. Matching pairs (of health clusters) on observed covariates
- 2. Randomization of treatment within pairs
- 3. If necessary statistically adjust for differences

Triple Robustness

If matching or randomization or statistical analysis is right, but the other two are wrong, results are still unbiased

Two Additional Checks if Triple Robustness Fails

1. If one of the three works, then "effect of SP" on time 0 outcomes (measured in baseline survey) must be zero

Design has three parts

- 1. Matching pairs (of health clusters) on observed covariates
- 2. Randomization of treatment within pairs
- 3. If necessary statistically adjust for differences

Triple Robustness

If matching or randomization or statistical analysis is right, but the other two are wrong, results are still unbiased

Two Additional Checks if Triple Robustness Fails

- 1. If one of the three works, then "effect of SP" on time 0 outcomes (measured in baseline survey) must be zero
- 2. If we lose pairs, we check for selection bias by rerunning this check

• Don't use propensity score matching

- Don't use propensity score matching
 - Approximates complete, not fully blocked, experiments

- Don't use propensity score matching
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence

- Don't use propensity score matching
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence
- Use this Simple and Powerful Method: CEM

- Don't use propensity score matching
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence
- Use this Simple and Powerful Method: CEM
- Randomized Experiments: Better with matched pairs

For more information, articles, & software

GaryKing.org