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¢ Coarsened Exact Matching (CEM) software, articles:
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® Matching in Experiments, including Seguro Popular:
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® conscientious effort doesn't avoid biases (Banaji 2013)

® People do not have easy access to their own mental processes
or feedback to avoid the problem (Wilson and Brekke
1994)

® Experts overestimate their ability to control personal biases
more than nonexperts, and more prominent experts are the
most overconfident (Tetlock 2005)

e “Teaching psychology is mostly a waste of time” (Kahneman
2011)
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The Problems Matching Solves

Without Matching:

Jribalance ~ Modet-Dependence ~ Researcher-discretion ~ Bias

A central project of statistics: Automating away human discretion
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Y; dep var, T; (1=treated, O=control), X; confounders
Treatment Effect for treated observation i:

TE; = Yi - ¥(0)

= observed — unobserved

® Estimate Y;(0) with Y; with a matched (X; =~ X;) control

Quantities of Interest:
1. SATT: Sample Average Treatment effect on the Treated:

SATT = M7§ar11 (TE;)

2. FSATT: Feasible SATT (prune badly matched treateds too)
Big convenience: Follow preprocessing with whatever
statistical method you’d have used without matching
Pruning nonmatches makes control vars matter less: reduces
imbalance, model dependence, researcher discretion, & bias
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imbalance, model dependence, power, efficiency, bias, research
costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

® PSM: complete randomization
e QOther methods: fully blocked
® Other matching methods dominate PSM (wait, it gets worse)
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1. Preprocess (Matching)

® Distance(Xc, X¢) = /(Xc — X¢)'S~1(X: — X¢)

® (Mahalanobis is for methodologists; in applications, use
Euclidean!)
Match each treated unit to the nearest control unit
Control units: not reused; pruned if unused
Prune matches if Distance>caliper
(Many adjustments available to this basic method)
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® Apply exact matching to the coarsened X, C(X)

® Sort observations into strata, each with unique values of C(X)
® Prune any stratum with 0 treated or 0 control units

® Pass on original (uncoarsened) units except those pruned

2. Estimation Difference in means or a model
® Weight controls in each stratum to equal treateds
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m = Pr(Ti = 1X) = 5

Distance(Xc, X;) = |7 — m¢]

Match each treated unit to the nearest control unit

Control units: not reused; pruned if unused

Prune matches if Distance>caliper

(Many adjustments available to this basic method)

2. Estimation Difference in means or a model
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PSM Paradox: When you do “better,” you do worse

Background: Random matching increases imbalance

When PSM approximates complete randomization (to begin
with or, after some pruning) ~- all # = 0.5 (or constant
within strata) ~ pruning at random ~~ Imbalance ~~
Inefficency ~~ Model dependence ~~ Bias

If the data have no good matches, the paradox won't be a
problem but you're cooked anyway.

Doesn’t PSM solve the curse of dimensionality problem?
Nope. The PSM Paradox gets worse with more covariates
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What Does PSM Match?

MDM Matches
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The Propensity Score Paradox in Real Data

Finkel et al. (JOP, 2012)
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Seguro Popular Evaluation

Frenk and Fox asked: How can one democratically elected
government “tie the hands” of their successors?

® Commission an independent evaluation

® Like in science: make themselves vulnerable to being proven

wrong

® |f we show SP is a success: elimination would be difficult

® |f SP is a failure: who cares about extending it

® (They are true believers in SP)

The largest randomized health policy experiment in history
One of the largest policy experiments to date

148 geographic areas, 1,380 localities, ~ 118,569 households,
and = 534,457 people
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2. Persuaded 13 of 31 states to participate (7,078 clusters)
3. Match clusters in pairs on background characteristics

4. Select 74 pairs (based on necessary political criteria, closeness

of the match, likelihood of compliance)

. Randomly assign one in each pair to receive encouragement to
affiliate, better health facilities, drugs, and doctors

6. Conduct baseline survey of each cluster's health facility
7. Survey ~32,000 random households in 50 of the 74 treated

and control unit pairs (chosen based on likelihood of
compliance with encouragement and similarity of the clusters
within pair)

. Repeat surveys in 10 months to measure outcome
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Design has three parts

1. Matching pairs (of health clusters) on observed covariates
2. Randomization of treatment within pairs

3. If necessary statistically adjust for differences

Triple Robustness

If matching or randomization or statistical analysis is right, but the
other two are wrong, results are still unbiased

Two Additional Checks if Triple Robustness Fails

1. If one of the three works, then “effect of SP” on time 0
outcomes (measured in baseline survey) must be zero

2. If we lose pairs, we check for selection bias by rerunning this
check
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Concluding Remarks

® Don't use propensity score matching

® Approximates complete, not fully blocked, experiments
® |gnores information; exacerbates model dependence

® Use this Simple and Powerful Method: CEM

® Randomized Experiments: Better with matched pairs
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For more information, articles, & software

GaryKing.org
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