Simplifying Matching Methods for Causal Inference

Gary King ${ }^{1}$
Institute for Quantitative Social Science
Harvard University

(Talk at MIT, Political Methodology Series, 3/16/2015)

3 Problems, 3 Solutions

3 Problems, 3 Solutions

- Current practice, matching as preprocessing:

3 Problems, 3 Solutions

- Current practice, matching as preprocessing: violates current statistical theory.

3 Problems, 3 Solutions

- Current practice, matching as preprocessing: violates current statistical theory. So let's change the theory:

3 Problems, 3 Solutions

- Current practice, matching as preprocessing: violates current statistical theory. So let's change the theory:
\rightsquigarrow "A Theory of Statistical Inference for Matching
Methods in Applied Causal Research" (Stefano lacus, Gary King, Giuseppe Porro)

3 Problems, 3 Solutions

- Current practice, matching as preprocessing: violates current statistical theory. So let's change the theory:
\rightsquigarrow "A Theory of Statistical Inference for Matching
Methods in Applied Causal Research"
(Stefano lacus, Gary King, Giuseppe Porro)
- The most popular method (propensity score matching, used in 49,600 articles!) sounds magical:

3 Problems, 3 Solutions

- Current practice, matching as preprocessing: violates current statistical theory. So let's change the theory:
\rightsquigarrow "A Theory of Statistical Inference for Matching
Methods in Applied Causal Research"
(Stefano lacus, Gary King, Giuseppe Porro)
- The most popular method (propensity score matching, used in 49,600 articles!) sounds magical:
\rightsquigarrow "Why Propensity Scores Should Not Be Used for Matching" (Gary King, Richard Nielsen)

3 Problems, 3 Solutions

- Current practice, matching as preprocessing: violates current statistical theory. So let's change the theory:
\rightsquigarrow "A Theory of Statistical Inference for Matching
Methods in Applied Causal Research"
(Stefano lacus, Gary King, Giuseppe Porro)
- The most popular method (propensity score matching, used in 49,600 articles!) sounds magical:
\rightsquigarrow "Why Propensity Scores Should Not Be Used for Matching" (Gary King, Richard Nielsen)
- Matching methods optimize either imbalance (\approx bias) or \# units pruned (\approx variance); users need both simultaneously':

3 Problems, 3 Solutions

- Current practice, matching as preprocessing: violates current statistical theory. So let's change the theory:
\rightsquigarrow "A Theory of Statistical Inference for Matching
Methods in Applied Causal Research"
(Stefano lacus, Gary King, Giuseppe Porro)
- The most popular method (propensity score matching, used in 49,600 articles!) sounds magical:
\rightsquigarrow "Why Propensity Scores Should Not Be Used for Matching" (Gary King, Richard Nielsen)
- Matching methods optimize either imbalance (\approx bias) or \# units pruned (\approx variance); users need both simultaneously':
\rightsquigarrow "The Balance-Sample Size Frontier in Matching Methods for Causal Inference" (Gary King, Christopher Lucas and Richard Nielsen)

Matching to Reduce Model Dependence

Matching to Reduce Model Dependence

 (Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

The Advantage of Matching

Without Matching:

The Advantage of Matching

Without Matching:

Imbalance

The Advantage of Matching

Without Matching:

Imbalance \rightsquigarrow Model Dependence

The Advantage of Matching

Without Matching:

Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion

The Advantage of Matching

Without Matching:
Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

The Advantage of Matching

Withouf Matching:
Mrbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

The Advantage of Matching

Withouf Matching:
Drbalance \rightsquigarrow Modet Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

The Advantage of Matching

Withouf Matching:
Wrbalance $\rightsquigarrow \overline{\text { Modet Dependence }} \rightsquigarrow$ Researcherdiscretion \rightsquigarrow Bias

The Advantage of Matching

Withoú Matching:
Mrbalance $\rightsquigarrow \overline{\text { Modet Dendence }} \rightsquigarrow \overline{\text { Researcherdiscretion }} \rightsquigarrow$ Bias

Current Practice: Matching as Preprocessing

Current Practice: Matching as Preprocessing

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders

Current Practice: Matching as Preprocessing

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

Current Practice: Matching as Preprocessing

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\mathrm{TE}_{i}=Y_{i}(1)-Y_{i}(0)
$$

Current Practice: Matching as Preprocessing

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}(1)-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

Current Practice: Matching as Preprocessing

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

Current Practice: Matching as Preprocessing

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Quantities of Interest:

Current Practice: Matching as Preprocessing

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$
\mathrm{SATT}=\operatorname{mean}_{i \in\left\{T_{i}=1\right\}}\left(\mathrm{TE}_{i}\right)
$$

Current Practice: Matching as Preprocessing

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$
\mathrm{SATT}=\operatorname{mean}_{i \in\left\{T_{i}=1\right\}}\left(\mathrm{TE}_{i}\right)
$$

2. FSATT: Feasible Average Treatment effect on the Treated

Current Practice: Matching as Preprocessing

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$
\mathrm{SATT}=\operatorname{mean}_{i \in\left\{T_{i}=1\right\}}\left(\mathrm{TE}_{i}\right)
$$

2. FSATT: Feasible Average Treatment effect on the Treated

- Estimate $Y_{i}(0)$ with Y_{j} from matched $\left(X_{i} \approx X_{j}\right)$ control

Current Practice: Matching as Preprocessing

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$
\mathrm{SATT}=\operatorname{mean}_{i \in\left\{T_{i}=1\right\}}\left(\mathrm{TE}_{i}\right)
$$

2. FSATT: Feasible Average Treatment effect on the Treated

- Estimate $Y_{i}(0)$ with Y_{j} from matched $\left(X_{i} \approx X_{j}\right)$ control
- Prune nonmatches: reduces imbalance \& model dependence

Current Practice: Matching as Preprocessing

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$
\text { SATT }=\operatorname{mean}_{i \in\left\{T_{i}=1\right\}}\left(\mathrm{TE}_{i}\right)
$$

2. FSATT: Feasible Average Treatment effect on the Treated

- Estimate $Y_{i}(0)$ with Y_{j} from matched $\left(X_{i} \approx X_{j}\right)$ control
- Prune nonmatches: reduces imbalance \& model dependence
- Big convenience: Follow preprocessing with whatever statistical method you'd have used without matching

Assumptions to Justify Current Practice

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

Alternative Theory of Inference: It's Gonna be OK!

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population

Alternative Theory of Inference: It's Gonna be OK!

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy

Alternative Theory of Inference: It's Gonna be OK!

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:

Alternative Theory of Inference: It's Gonna be OK!

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
- Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy \& unhealthy get meds)

Alternative Theory of Inference: It's Gonna be OK!

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
- Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy \& unhealthy get meds)
- Common support: $\operatorname{Pr}(T=1 \mid X)<1$ ($T=0,1$ are both possible)

Alternative Theory of Inference: It's Gonna be OK!

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
- Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy \& unhealthy get meds)
- Common support: $\operatorname{Pr}(T=1 \mid X)<1$ ($T=0,1$ are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Alternative Theory of Inference: It's Gonna be OK!

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
- Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy \& unhealthy get meds)
- Common support: $\operatorname{Pr}(T=1 \mid X)<1$ ($T=0,1$ are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Alternative Theory of Inference: It's Gonna be OK!

- Framework: stratified random sampling from a population

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
- Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy \& unhealthy get meds)
- Common support: $\operatorname{Pr}(T=1 \mid X)<1$ ($T=0,1$ are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Alternative Theory of Inference: It's Gonna be OK!

- Framework: stratified random sampling from a population
- Define A : a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
- Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy \& unhealthy get meds)
- Common support: $\operatorname{Pr}(T=1 \mid X)<1$ ($T=0,1$ are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Alternative Theory of Inference: It's Gonna be OK!

- Framework: stratified random sampling from a population
- Define A : a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
- Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy \& unhealthy get meds)
- Common support: $\operatorname{Pr}(T=1 \mid X)<1$ ($T=0,1$ are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Alternative Theory of Inference: It's Gonna be OK!

- Framework: stratified random sampling from a population
- Define A : a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
- Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy \& unhealthy get meds)
- Common support: $\operatorname{Pr}(T=1 \mid X)<1$ ($T=0,1$ are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Alternative Theory of Inference: It's Gonna be OK!

- Framework: stratified random sampling from a population
- Define A : a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
- Set-wide Unconfoundedness: $T \perp Y(0) \mid A$

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
- Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy \& unhealthy get meds)
- Common support: $\operatorname{Pr}(T=1 \mid X)<1$ ($T=0,1$ are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Alternative Theory of Inference: It's Gonna be OK!

- Framework: stratified random sampling from a population
- Define A : a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
- Set-wide Unconfoundedness: $T \perp Y(0) \mid A$
- Set-wide Common support: $\operatorname{Pr}(T=1 \mid A)<1$

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
- Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy \& unhealthy get meds)
- Common support: $\operatorname{Pr}(T=1 \mid X)<1$ ($T=0,1$ are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Alternative Theory of Inference: It's Gonna be OK!

- Framework: stratified random sampling from a population
- Define A : a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
- Set-wide Unconfoundedness: $T \perp Y(0) \mid A$
- Set-wide Common support: $\operatorname{Pr}(T=1 \mid A)<1$
- Fits all common matching methods \& practices; no asymptotics

Assumptions to Justify Current Practice

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
- Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy \& unhealthy get meds)
- Common support: $\operatorname{Pr}(T=1 \mid X)<1$ ($T=0,1$ are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Alternative Theory of Inference: It's Gonna be OK!

- Framework: stratified random sampling from a population
- Define A : a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
- Set-wide Unconfoundedness: $T \perp Y(0) \mid A$
- Set-wide Common support: $\operatorname{Pr}(T=1 \mid A)<1$
- Fits all common matching methods \& practices; no asymptotics
- Easy extensions for: multi-level, continuous, \& mismeasured treatments; A too wide, n too small

Approximating Randomized Experiments

Approximating Randomized Experiments

- Types of experiments:

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for:

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance,

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance, model dependence,

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance, model dependence, power,

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency,

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias,

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs,

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, and robustness.

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, and robustness.
- Matching methods approximate which experiment?

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, and robustness.
- Matching methods approximate which experiment?
- PSM: complete randomization

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, and robustness.
- Matching methods approximate which experiment?
- PSM: complete randomization
- Other methods: fully blocked

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, and robustness.
- Matching methods approximate which experiment?
- PSM: complete randomization
- Other methods: fully blocked
- \Longrightarrow As we show, other methods usually dominate PSM

Approximating Randomized Experiments

- Types of experiments:

1. Compete Randomization: Treatment assignment by coin flips
\rightsquigarrow Balance on X : only on average
\rightsquigarrow Balance on unmeasured vars: only on average
2. Fully Blocked: Match pairs on X (exactly), then flip coins
\rightsquigarrow Balance on X : perfect in sample
\rightsquigarrow Balance on unmeasured vars: only on average

- Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, and robustness.
- Matching methods approximate which experiment?
- PSM: complete randomization
- Other methods: fully blocked
- \Longrightarrow As we show, other methods usually dominate PSM (but wait, it gets worse for PSM)

Method 1: Mahalanobis Distance Matching

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Mahalanobis Distance Matching

Education (years)

Method 2: Coarsened Exact Matching

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
2. Estimation Difference in means or a model
3. Checking Determine matched sample size, tweak, repeat, ...

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing

2. Estimation Difference in means or a model
3. Checking Determine matched sample size, tweak, repeat, ...

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing - e.g., Education (grade school, high school, college, graduate)

2. Estimation Difference in means or a model
3. Checking Determine matched sample size, tweak, repeat, ...

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing - e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$

2. Estimation Difference in means or a model
3. Checking Determine matched sample size, tweak, repeat, ...

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$

2. Estimation Difference in means or a model
3. Checking Determine matched sample size, tweak, repeat, ...

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units

2. Estimation Difference in means or a model
3. Checking Determine matched sample size, tweak, repeat, ...

Method 2: Coarsened Exact Matching
 (Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned

2. Estimation Difference in means or a model
3. Checking Determine matched sample size, tweak, repeat, ...

Method 2: Coarsened Exact Matching (Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned

2. Estimation Difference in means or a model

- Need to weight controls in each stratum to equal treateds

3. Checking Determine matched sample size, tweak, repeat, ...

Method 2: Coarsened Exact Matching (Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned

2. Estimation Difference in means or a model

- Need to weight controls in each stratum to equal treateds

3. Checking Determine matched sample size, tweak, repeat, ...

- Easier, but still iterative

Coarsened Exact Matching

Coarsened Exact Matching

Education

Method 3: Propensity Score Matching

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)
2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar

$$
\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}
$$

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar

$$
\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-x_{i} \beta}}
$$

- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar

$$
\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-x_{i} \beta}}
$$

- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar

$$
\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-x_{i} \beta}}
$$

- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar

$$
\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-x_{i} \beta}}
$$

- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar

$$
\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-x_{i} \beta}}
$$

- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, ...

Propensity Score Matching

Education (years)

Propensity Score Matching

Education (years)

Propensity Score Matching

Propensity
Education (years) Score

Propensity Score Matching

Propensity
Education (years) Score

Propensity Score Matching

Propensity
Education (years)

Propensity Score Matching

Propensity
Education (years)

Propensity Score Matching

Propensity
Education (years)

Propensity Score Matching

Education (years)

PSM's Statistical Properties

PSM's Statistical Properties

- PSM is Inefficient:

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but
- Inefficient relative to full blocking (Imai, King, and Nall: up to 600% difference in SEs in experiments)

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but
- Inefficient relative to full blocking (Imai, King, and Nall: up to 600% difference in SEs in experiments)
- The PSM Paradox:

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but
- Inefficient relative to full blocking (Imai, King, and Nall: up to 600% difference in SEs in experiments)
- The PSM Paradox:
- If data are balanced to begin with, or after some pruning, $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow matching is at random

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but
- Inefficient relative to full blocking (Imai, King, and Nall: up to 600% difference in SEs in experiments)
- The PSM Paradox:
- If data are balanced to begin with, or after some pruning, $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow matching is at random
- Random matching increases imbalance!

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but
- Inefficient relative to full blocking (Imai, King, and Nall: up to 600% difference in SEs in experiments)
- The PSM Paradox:
- If data are balanced to begin with, or after some pruning, $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow matching is at random
- Random matching increases imbalance!
- Approximating complete randomization (by pruning) \rightsquigarrow higher imbalance \rightsquigarrow more inefficiency

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but
- Inefficient relative to full blocking (Imai, King, and Nall: up to 600% difference in SEs in experiments)
- The PSM Paradox:
- If data are balanced to begin with, or after some pruning, $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow matching is at random
- Random matching increases imbalance!
- Approximating complete randomization (by pruning) \rightsquigarrow higher imbalance \rightsquigarrow more inefficiency
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but
- Inefficient relative to full blocking (Imai, King, and Nall: up to 600% difference in SEs in experiments)
- The PSM Paradox:
- If data are balanced to begin with, or after some pruning, $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow matching is at random
- Random matching increases imbalance!
- Approximating complete randomization (by pruning) \rightsquigarrow higher imbalance \rightsquigarrow more inefficiency
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway
- PSM is Biased:

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but
- Inefficient relative to full blocking (Imai, King, and Nall: up to 600% difference in SEs in experiments)
- The PSM Paradox:
- If data are balanced to begin with, or after some pruning, $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow matching is at random
- Random matching increases imbalance!
- Approximating complete randomization (by pruning) \rightsquigarrow higher imbalance \rightsquigarrow more inefficiency
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway
- PSM is Biased:
- Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence \rightsquigarrow Bias

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but
- Inefficient relative to full blocking (Imai, King, and Nall: up to 600% difference in SEs in experiments)
- The PSM Paradox:
- If data are balanced to begin with, or after some pruning, $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow matching is at random
- Random matching increases imbalance!
- Approximating complete randomization (by pruning) \rightsquigarrow higher imbalance \rightsquigarrow more inefficiency
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway
- PSM is Biased:
- Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence \rightsquigarrow Bias
- Curse of Dimensionality Problems:

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but
- Inefficient relative to full blocking (Imai, King, and Nall: up to 600% difference in SEs in experiments)
- The PSM Paradox:
- If data are balanced to begin with, or after some pruning, $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow matching is at random
- Random matching increases imbalance!
- Approximating complete randomization (by pruning) \rightsquigarrow higher imbalance \rightsquigarrow more inefficiency
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway
- PSM is Biased:
- Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence \rightsquigarrow Bias
- Curse of Dimensionality Problems:
- The Promise: avoid it by balancing on π rather than X

PSM's Statistical Properties

- PSM is Inefficient:
- Efficient relative to complete randomization, but
- Inefficient relative to full blocking (Imai, King, and Nall: up to 600% difference in SEs in experiments)
- The PSM Paradox:
- If data are balanced to begin with, or after some pruning, $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow matching is at random
- Random matching increases imbalance!
- Approximating complete randomization (by pruning) \rightsquigarrow higher imbalance \rightsquigarrow more inefficiency
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway
- PSM is Biased:
- Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence \rightsquigarrow Bias
- Curse of Dimensionality Problems:
- The Promise: avoid it by balancing on π rather than X
- The Reality: The PSM Paradox is bigger with more covariates

PSM is Blind Where Other Methods Can See

PSM is Blind Where Other Methods Can See

PSM is Blind Where Other Methods Can See

What Does PSM Match?

MDM Matches

PSM Matches

Controls: $X_{1}, X_{2} \sim \operatorname{Uniform}(0,5)$
Treateds: $X_{1}, X_{2} \sim \operatorname{Uniform}(1,6)$

PSM Increases Model Dependence \& Bias

Model Dependence

Bias

$$
\begin{aligned}
Y_{i}=2 T_{i} & +X_{1 i}+X_{2 i}+\epsilon_{i} \\
\epsilon_{i} & \sim N(0,1)
\end{aligned}
$$

The Propensity Score Paradox

Finkle et al. (2012)

Nielsen et al. (2011)

The Matching Frontier

The Matching Frontier

- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off Frontier $=$ matched dataset with lowest imbalance for each n

The Matching Frontier

- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off Frontier $=$ matched dataset with lowest imbalance for each n
- (Maybe we can beat MDM/CEM for a given \#pruned?)

The Matching Frontier

- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off Frontier $=$ matched dataset with lowest imbalance for each n
- (Maybe we can beat MDM/CEM for a given \#pruned?)
- To use, make 2 choices:

The Matching Frontier

- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off Frontier $=$ matched dataset with lowest imbalance for each n
- (Maybe we can beat MDM/CEM for a given \#pruned?)
- To use, make 2 choices:

1. Quantity of interest: SATT (prune Cs only) or FSATT

The Matching Frontier

- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off Frontier $=$ matched dataset with lowest imbalance for each n
- (Maybe we can beat MDM/CEM for a given \#pruned?)
- To use, make 2 choices:

1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching

The Matching Frontier

- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off

Frontier $=$ matched dataset with lowest imbalance for each n

- (Maybe we can beat MDM/CEM for a given \#pruned?)
- To use, make 2 choices:

1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching

- Result:

The Matching Frontier

- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off

Frontier $=$ matched dataset with lowest imbalance for each n

- (Maybe we can beat MDM/CEM for a given \#pruned?)
- To use, make 2 choices:

1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching

- Result:
- Simple to use

The Matching Frontier

- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off

Frontier $=$ matched dataset with lowest imbalance for each n

- (Maybe we can beat MDM/CEM for a given \#pruned?)
- To use, make 2 choices:

1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching

- Result:
- Simple to use
- No need to choose or use a matching method

The Matching Frontier

- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off

Frontier $=$ matched dataset with lowest imbalance for each n

- (Maybe we can beat MDM/CEM for a given \#pruned?)
- To use, make 2 choices:

1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching

- Result:
- Simple to use
- No need to choose or use a matching method
- All solutions are optimal

The Matching Frontier

- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off

Frontier $=$ matched dataset with lowest imbalance for each n

- (Maybe we can beat MDM/CEM for a given \#pruned?)
- To use, make 2 choices:

1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching

- Result:
- Simple to use
- No need to choose or use a matching method
- All solutions are optimal
- No iteration or diagnostics required

The Matching Frontier

- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off

Frontier $=$ matched dataset with lowest imbalance for each n

- (Maybe we can beat MDM/CEM for a given \#pruned?)
- To use, make 2 choices:

1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching

- Result:
- Simple to use
- No need to choose or use a matching method
- All solutions are optimal
- No iteration or diagnostics required
- No cherry picking possible; you see everything optimal

How hard is the frontier to calculate?

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
- $\binom{N}{n}$ evaluations for each sample size $n=N, N-1, \ldots, 1$

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
- ($\left.\begin{array}{c}N \\ n\end{array}\right)$ evaluations for each sample size $n=N, N-1, \ldots, 1$
- The combination is the (gargantuan) "power set"

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
- ($\left.\begin{array}{c}N \\ n\end{array}\right)$ evaluations for each sample size $n=N, N-1, \ldots, 1$
- The combination is the (gargantuan) "power set"
- e.g., $N>300$ requires more imbalance evaluations than elementary particles in the universe

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
- ($\left.\begin{array}{c}N \\ n\end{array}\right)$ evaluations for each sample size $n=N, N-1, \ldots, 1$
- The combination is the (gargantuan) "power set"
- e.g., $N>300$ requires more imbalance evaluations than elementary particles in the universe
- \rightsquigarrow It's hard to calculate!

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
- ($\left.\begin{array}{c}N \\ n\end{array}\right)$ evaluations for each sample size $n=N, N-1, \ldots, 1$
- The combination is the (gargantuan) "power set"
- e.g., $N>300$ requires more imbalance evaluations than elementary particles in the universe
- \rightsquigarrow It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
- ($\left.\begin{array}{c}N \\ n\end{array}\right)$ evaluations for each sample size $n=N, N-1, \ldots, 1$
- The combination is the (gargantuan) "power set"
- e.g., $N>300$ requires more imbalance evaluations than elementary particles in the universe
- \rightsquigarrow It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
- runs very fast

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
- $\binom{N}{n}$ evaluations for each sample size $n=N, N-1, \ldots, 1$
- The combination is the (gargantuan) "power set"
- e.g., $N>300$ requires more imbalance evaluations than elementary particles in the universe
- \rightsquigarrow It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
- runs very fast
- operate as "greedy" but we prove are optimal

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
- ($\left.\begin{array}{c}N \\ n\end{array}\right)$ evaluations for each sample size $n=N, N-1, \ldots, 1$
- The combination is the (gargantuan) "power set"
- e.g., $N>300$ requires more imbalance evaluations than elementary particles in the universe
- \rightsquigarrow It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
- runs very fast
- operate as "greedy" but we prove are optimal
- do not require evaluating every subset

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
- $\binom{N}{n}$ evaluations for each sample size $n=N, N-1, \ldots, 1$
- The combination is the (gargantuan) "power set"
- e.g., $N>300$ requires more imbalance evaluations than elementary particles in the universe
- \rightsquigarrow It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
- runs very fast
- operate as "greedy" but we prove are optimal
- do not require evaluating every subset
- work with very large data sets

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
- $\binom{N}{n}$ evaluations for each sample size $n=N, N-1, \ldots, 1$
- The combination is the (gargantuan) "power set"
- e.g., $N>300$ requires more imbalance evaluations than elementary particles in the universe
- \rightsquigarrow It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
- runs very fast
- operate as "greedy" but we prove are optimal
- do not require evaluating every subset
- work with very large data sets
- is the exact frontier (no approximation or estimation)

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
- Start with matrix of N control units X_{0}
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_{0}
- Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
- $\binom{N}{n}$ evaluations for each sample size $n=N, N-1, \ldots, 1$
- The combination is the (gargantuan) "power set"
- e.g., $N>300$ requires more imbalance evaluations than elementary particles in the universe
- \rightsquigarrow It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
- runs very fast
- operate as "greedy" but we prove are optimal
- do not require evaluating every subset
- work with very large data sets
- is the exact frontier (no approximation or estimation)
- \rightsquigarrow It's easy to calculate!

Job Training Data: Frontier and Causal Estimates

- 185 Ts; pruning most 16,252 Cs won't increase variance much
- Huge bias-variance trade-off after pruning most Cs
- Estimates converge to experiment after removing bias
- No mysteries: basis of inference clearly revealed

Constructing the FSATT Mahalanobis Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

Remaining Data

Frontier

Constructing the FSATT Mahalanobis Frontier

- Warning: figure omits details and the proof!

Constructing the FSATT Mahalanobis Frontier

Frontier

- Warning: figure omits details and the proof!
- Very fast; works with any continuous imbalance metric

Constructing the L1/L2 SATT Frontier

Constructing the L1/L2 SATT Frontier

Constructing the L1/L2 SATT Frontier

- Warning: This figure omits some technical details too!

Constructing the L1/L2 SATT Frontier

- Warning: This figure omits some technical details too!
- Works very fast, even with very large data sets

Conclusions

Conclusions

- The Matching Frontier

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM:

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM: Controlling for irrelevant covariates;

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data;

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support;

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score;

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.
- Theory of Inference for Matching

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.
- Theory of Inference for Matching
- Switch from simple to stratified random sampling

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.
- Theory of Inference for Matching
- Switch from simple to stratified random sampling
- Justifies current practices

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.
- Theory of Inference for Matching
- Switch from simple to stratified random sampling
- Justifies current practices
- Clarifies how to improve inferences

Conclusions

- The Matching Frontier
- Fast; easy; no iteratation; Software: MatchingFrontier
- No need to choose among matching methods
- Optimal results from your choice of imbalance metric
- Propensity score matching:
- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.
- Theory of Inference for Matching
- Switch from simple to stratified random sampling
- Justifies current practices
- Clarifies how to improve inferences
- \rightsquigarrow Using more information is simpler and more powerful

For more information, papers, \& software

GaryKing.org

