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~> “A Theory of Statistical Inference for Matching

Methods in Applied Causal Research”
(Stefano lacus, Gary King, Giuseppe Porro)

e The most popular method (propensity score matching, used in
49,600 articles!) sounds magical:
~ “Why Propensity Scores Should Not Be Used for

Matching” (Gary King, Richard Nielsen)

e Matching methods optimize either imbalance (= bias) or #
units pruned (= variance); users need both simultaneously’:
~» “The Balance-Sample Size Frontier in Matching

Methods for Causal Inference” (Gary King, Christo-
pher Lucas and Richard Nielsen)
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Current Practice: Matching as Preprocessing

Y; dep var, T; (1=treated, O=control), X; confounders
Treatment Effect for treated observation i:

TE; = Yi — Y(0)

= observed — unobserved

Quantities of Interest:
1. SATT: Sample Average Treatment effect on the Treated:

SATT = mean;eq7,—13 (TE))

2. FSATT: Feasible Average Treatment effect on the Treated
Estimate Y;(0) with Y; from matched (X; ~ X;) control
Prune nonmatches: reduces imbalance & model dependence

Big convenience: Follow preprocessing with whatever
statistical method you'd have used without matching
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student
Assumptions:

o Set-wide Unconfoundedness: T LY (0) | A
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Types of experiments:
1. Compete Randomization: Treatment assignment by coin flips

~ Balance on X: only on average
~~ Balance on unmeasured vars: only on average

2. Fully Blocked: Match pairs on X (exactly), then flip coins
~» Balance on X: perfect in sample
~~ Balance on unmeasured vars: only on average
Fully blocked dominates complete randomization for:
imbalance, model dependence, power, efficiency, bias,
research costs, and robustness.
Matching methods approximate which experiment?
e PSM: complete randomization
e Other methods: fully blocked
—> As we show, other methods usually dominate PSM
(but wait, it gets worse for PSM)
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What Does PSM Match?
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Imbalance

The Propensity Score Paradox

Finkle et al. (2012) Nielsen et al. (2011)
30
25
20
3
2
e 15 -
s
E Ra\f/ﬂ__,_,._—-»"’R"a'ndom
104 >
= 1/4 SD caliper
2 S CEM 5 CEM
MDM "™~ o
MDN -,
0 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500

Number of units pruned Number of units pruned

18 /26



The Matching Frontier

19/26



The Matching Frontier

e Bias-Variance trade off ~~ Imbalance-n Trade Off
Frontier = matched dataset with lowest imbalance for each n

19/26



The Matching Frontier

e Bias-Variance trade off ~» Imbalance-n Trade Off
Frontier = matched dataset with lowest imbalance for each n

e (Maybe we can beat MDM/CEM for a given #pruned?)

19/26



The Matching Frontier

e Bias-Variance trade off ~» Imbalance-n Trade Off
Frontier = matched dataset with lowest imbalance for each n

e (Maybe we can beat MDM/CEM for a given #pruned?)
e To use, make 2 choices:

19/26



The Matching Frontier

e Bias-Variance trade off ~ Imbalance-n Trade Off
Frontier = matched dataset with lowest imbalance for each n
e (Maybe we can beat MDM/CEM for a given #pruned?)
e To use, make 2 choices:
1. Quantity of interest: SATT (prune Cs only) or FSATT

19/26



The Matching Frontier

e Bias-Variance trade off ~» Imbalance-n Trade Off
Frontier = matched dataset with lowest imbalance for each n

e (Maybe we can beat MDM/CEM for a given #pruned?)

e To use, make 2 choices:

1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching

19/26



The Matching Frontier

Bias-Variance trade off ~ Imbalance-n Trade Off
Frontier = matched dataset with lowest imbalance for each n

(Maybe we can beat MDM/CEM for a given #pruned?)

To use, make 2 choices:
1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching

Result:

19/26



The Matching Frontier

Bias-Variance trade off ~ Imbalance-n Trade Off
Frontier = matched dataset with lowest imbalance for each n

(Maybe we can beat MDM/CEM for a given #pruned?)
To use, make 2 choices:
1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching
Result:
e Simple to use

19/26



The Matching Frontier

Bias-Variance trade off ~ Imbalance-n Trade Off
Frontier = matched dataset with lowest imbalance for each n

(Maybe we can beat MDM/CEM for a given #pruned?)
To use, make 2 choices:
1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching
Result:

e Simple to use
e No need to choose or use a matching method

19/26



The Matching Frontier

Bias-Variance trade off ~ Imbalance-n Trade Off
Frontier = matched dataset with lowest imbalance for each n

(Maybe we can beat MDM/CEM for a given #pruned?)
To use, make 2 choices:
1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching
Result:

e Simple to use
e No need to choose or use a matching method
o All solutions are optimal

19/26



The Matching Frontier

Bias-Variance trade off ~ Imbalance-n Trade Off
Frontier = matched dataset with lowest imbalance for each n

(Maybe we can beat MDM/CEM for a given #pruned?)
To use, make 2 choices:
1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching
Result:

e Simple to use

e No need to choose or use a matching method
e All solutions are optimal

e No iteration or diagnostics required

19/26



The Matching Frontier

Bias-Variance trade off ~ Imbalance-n Trade Off
Frontier = matched dataset with lowest imbalance for each n

(Maybe we can beat MDM/CEM for a given #pruned?)
To use, make 2 choices:
1. Quantity of interest: SATT (prune Cs only) or FSATT
2. Fixed- or variable-ratio matching
Result:
e Simple to use
No need to choose or use a matching method
All solutions are optimal
No iteration or diagnostics required

[ ]
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]
e No cherry picking possible; you see everything optimal
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Job Training Data: Frontier and Causal Estimates

Imbalance Frontier
10~

Imbalance
Effect Size and Cls

15000 0 15000

5000 10000
Number of Observations Pruned

5000 10000
Number of Observations Dropped

185 Ts; pruning most 16,252 Cs won't increase variance much

Huge bias-variance trade-off after pruning most Cs

Estimates converge to experiment after removing bias

No mysteries: basis of inference clearly revealed
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e Very fast; works with any continuous imbalance metric
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Theory of Inference for Matching

e Switch from simple to stratified random sampling
e Justifies current practices
e Clarifies how to improve inferences

~> Using more information is simpler and more powerful
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