Matching to Reduce Model Dependence

Gary King

Institute for Quantitative Social Science Harvard University, http://GKing.Harvard.edu

Talk at Washington University, St. Louis, 1/22/2010

• Daniel Ho, Kosuke Imai, Gary King, and Elizabeth Stuart." Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," *Political Analysis*, 15 (2007): 199-236.

- Daniel Ho, Kosuke Imai, Gary King, and Elizabeth Stuart." Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," *Political Analysis*, 15 (2007): 199-236.
- Stefano M. Iacus, Gary King, and Giuseppe Porro, "Causal Inference Without Balance Checking: Coarsened Exact Matching," 2010.

- Daniel Ho, Kosuke Imai, Gary King, and Elizabeth Stuart." Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," *Political Analysis*, 15 (2007): 199-236.
- Stefano M. Iacus, Gary King, and Giuseppe Porro, "Causal Inference Without Balance Checking: Coarsened Exact Matching," 2010.
- Stefano M. Iacus, Gary King, and Giuseppe Porro, "Multivariate Matching Methods That are Monotonic Imbalance Bounding," 2010.

- Daniel Ho, Kosuke Imai, Gary King, and Elizabeth Stuart." Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," *Political Analysis*, 15 (2007): 199-236.
- Stefano M. Iacus, Gary King, and Giuseppe Porro, "Causal Inference Without Balance Checking: Coarsened Exact Matching," 2010.
- Stefano M. Iacus, Gary King, and Giuseppe Porro, "Multivariate Matching Methods That are Monotonic Imbalance Bounding," 2010.
- Related Software: WhatIf, MatchIt, Zelig, CEM

- Daniel Ho, Kosuke Imai, Gary King, and Elizabeth Stuart." Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," *Political Analysis*, 15 (2007): 199-236.
- Stefano M. Iacus, Gary King, and Giuseppe Porro, "Causal Inference Without Balance Checking: Coarsened Exact Matching," 2010.
- Stefano M. Iacus, Gary King, and Giuseppe Porro, "Multivariate Matching Methods That are Monotonic Imbalance Bounding," 2010.
- Related Software: Whatlf, Matchlt, Zelig, CEM

http://GKing.Harvard.edu/projects/cause.shtml

Gary King (Harvard IQSS)

更

・ロト ・団ト ・恵ト ・恵ト

• Uses nonparametric, non-model based methods.

-728 ►

- Uses nonparametric, non-model based methods.
- Goal: reduce model dependence

- Uses nonparametric, non-model based methods.
- Goal: reduce model dependence
- Not a substitute for parametric models

- Uses nonparametric, non-model based methods.
- Goal: reduce model dependence
- Not a substitute for parametric models
- makes parametric models work better (less hard)

- Uses nonparametric, non-model based methods.
- Goal: reduce model dependence
- Not a substitute for parametric models
- makes parametric models work better (less hard)
- Matching is not an estimator; its a preprocessing method

- Uses nonparametric, non-model based methods.
- Goal: reduce model dependence
- Not a substitute for parametric models
- makes parametric models work better (less hard)
- Matching is not an estimator; its a preprocessing method
- Apply model to preprocessed rather than raw data

- Uses nonparametric, non-model based methods.
- Goal: reduce model dependence
- Not a substitute for parametric models
- makes parametric models work better (less hard)
- Matching is not an estimator; its a preprocessing method
- Apply model to preprocessed rather than raw data
- Valid standard errors use the same parametric procedures

Data Collection Mechanisms

Gary King (Harvard IQSS)

更

・ロト ・団ト ・恵ト ・恵ト

Data Collection Mechanisms

• Key features of classical randomized experiments:

- 注 ▶ - 注

- Key features of classical randomized experiments:
 - random selection of units from a given population.

- Key features of classical randomized experiments:
 - random selection of units from a given population.
 - random assignment of values of the treatment.

- Key features of classical randomized experiments:
 - random selection of units from a given population.
 - random assignment of values of the treatment.
 - large n.

- Key features of classical randomized experiments:
 - random selection of units from a given population.
 - random assignment of values of the treatment.
 - large n.
 - (Implied: no missing data, measurement error, noncompliance, etc.)

- Key features of classical randomized experiments:
 - random selection of units from a given population.
 - random assignment of values of the treatment.
 - large n.
 - (Implied: no missing data, measurement error, noncompliance, etc.)
- Any study that meets all 3 can estimate causal inferences without modeling assumptions.

- Key features of classical randomized experiments:
 - random selection of units from a given population.
 - random assignment of values of the treatment.
 - large n.
 - (Implied: no missing data, measurement error, noncompliance, etc.)
- Any study that meets all 3 can estimate causal inferences without modeling assumptions.
- Observational data:

Gary King (Harvard IQSS)

- Key features of classical randomized experiments:
 - random selection of units from a given population.
 - random assignment of values of the treatment.
 - large n.
 - (Implied: no missing data, measurement error, noncompliance, etc.)
- Any study that meets all 3 can estimate causal inferences without modeling assumptions.
- Observational data:
 - Any data that fails to meet all requirements of classical randomized experiments

- Key features of classical randomized experiments:
 - random selection of units from a given population.
 - random assignment of values of the treatment.
 - large n.
 - (Implied: no missing data, measurement error, noncompliance, etc.)
- Any study that meets all 3 can estimate causal inferences without modeling assumptions.
- Observational data:
 - Any data that fails to meet all requirements of classical randomized experiments
 - Encompasses most research in every field

- Key features of classical randomized experiments:
 - random selection of units from a given population.
 - random assignment of values of the treatment.
 - large n.
 - (Implied: no missing data, measurement error, noncompliance, etc.)
- Any study that meets all 3 can estimate causal inferences without modeling assumptions.
- Observational data:
 - Any data that fails to meet all requirements of classical randomized experiments
 - Encompasses most research in every field
- Most knowledge learned is from observational data even in experimental work (where most treatments fail)

Characteristics of Observational Data

恵ト ★ 恵ト

< <p>I > < </p>

• Lots of data

Gary King (Harvard IQSS)

▶ ★ 覆 ▶

< - □

- Lots of data
- Data is of uncertain origin. Treatment assignment:

- Lots of data
- Data is of uncertain origin. Treatment assignment: not random,

- Lots of data
- Data is of uncertain origin. Treatment assignment: not random, not controlled by investigator,

- Lots of data
- Data is of uncertain origin. Treatment assignment: not random, not controlled by investigator, not known

- Lots of data
- Data is of uncertain origin. Treatment assignment: not random, not controlled by investigator, not known
- Bias-Variance Tradeoff

- Lots of data
- Data is of uncertain origin. Treatment assignment: not random, not controlled by investigator, not known
 Bias-Variance Tradeoff

- Lots of data
- Data is of uncertain origin. Treatment assignment: not random, not controlled by investigator, not known
 Bias-Variance Tradeoff
- The idea of matching: sacrifice some data to avoid bias

- Lots of data
- Data is of uncertain origin. Treatment assignment: not random, not controlled by investigator, not known
 Bias-Variance Tradeoff
- The idea of matching: sacrifice some data to avoid bias
- Removing heterogeneous data will often reduce variance too

- Lots of data
- Data is of uncertain origin. Treatment assignment: not random, not controlled by investigator, not known
 Bias-Variance Tradeoff
- The idea of matching: sacrifice some data to avoid bias
- Removing heterogeneous data will often reduce variance too
- (Medical experiments are the reverse: small-*n* with random treatment assignment; don't match unless something goes wrong)
Model Dependence

Gary King (Harvard IQSS)

夏

Model Dependence

(King and Zeng, 2006: fig.4 Political Analysis)

更

__ ▶

78 ⇒

What to do?

⊒r⊳ ⊒:

What to do?

• Preprocess I: Eliminate extrapolation region (a separate step)

What to do?

- Preprocess I: Eliminate extrapolation region (a separate step)
- Preprocess II: Match (prune bad matches) within interpolation region

What to do?

- Preprocess I: Eliminate extrapolation region (a separate step)
- Preprocess II: Match (prune bad matches) within interpolation region
- Model remaining imbalance

Matching within the Interpolation Region

Matching within the Interpolation Region (Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)

3

Matching within the Interpolation Region (Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)

イロト イポト イラト イ

78 ⇒

Matching within the Interpolation Region (Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)

Matching reduces model dependence, bias, and variance

Gary King (Harvard IQSS)

< 🖬 🕨 < 🗐

/ 18

78 ⊳

Gary King (Harvard IQSS)

更

Gary King (Harvard IQSS)

原▶ ★ 医≯

< 🗇 🕨

• assume a parametric model (up to unknown parameters):

e.g.,
$$Y_i \sim p(\mu_i, \theta)$$
 with $\mu_i \equiv E(Y_i \mid t_i, X_i) = g(\alpha + t_i\beta + X_i\gamma)$

▶ ★ 覆 ▶

- assume a parametric model (up to unknown parameters):
 e.g., Y_i ~ p(μ_i, θ) with μ_i ≡ E(Y_i | t_i, X_i) = g(α + t_iβ + X_iγ)
- Estimate the causal effect: ATT=mean $[g(\hat{\alpha} + \hat{\beta} + X_i \hat{\gamma}) g(\hat{\alpha} + X_i \hat{\gamma})]$

- assume a parametric model (up to unknown parameters):
 - e.g., $Y_i \sim p(\mu_i, \theta)$ with $\mu_i \equiv E(Y_i \mid t_i, X_i) = g(\alpha + t_i\beta + X_i\gamma)$
- Estimate the causal effect: ATT=mean[$g(\hat{\alpha} + \hat{\beta} + X_i \hat{\gamma}) g(\hat{\alpha} + X_i \hat{\gamma})$]
- But, the true model is unknown.

- assume a parametric model (up to unknown parameters):
 - e.g., $Y_i \sim p(\mu_i, \theta)$ with $\mu_i \equiv E(Y_i \mid t_i, X_i) = g(\alpha + t_i\beta + X_i\gamma)$
- Estimate the causal effect: ATT=mean[$g(\hat{\alpha} + \hat{\beta} + X_i \hat{\gamma}) g(\hat{\alpha} + X_i \hat{\gamma})$]
- But, the true model is unknown.
- In experiments, T and X are independent; we can drop X

- assume a parametric model (up to unknown parameters):
 - e.g., $Y_i \sim p(\mu_i, \theta)$ with $\mu_i \equiv E(Y_i \mid t_i, X_i) = g(\alpha + t_i\beta + X_i\gamma)$
- Estimate the causal effect: ATT=mean[$g(\hat{\alpha} + \hat{\beta} + X_i \hat{\gamma}) g(\hat{\alpha} + X_i \hat{\gamma})$]
- But, the true model is unknown.
- In experiments, *T* and *X* are independent; we can drop *X*

• $ATT = g(\hat{\alpha} + \hat{\beta}) - g(\hat{\alpha})$

- assume a parametric model (up to unknown parameters):
 - e.g., $Y_i \sim p(\mu_i, \theta)$ with $\mu_i \equiv E(Y_i \mid t_i, X_i) = g(\alpha + t_i\beta + X_i\gamma)$
- Estimate the causal effect: ATT=mean[$g(\hat{\alpha} + \hat{\beta} + X_i \hat{\gamma}) g(\hat{\alpha} + X_i \hat{\gamma})$]
- But, the true model is unknown.
- In experiments, T and X are independent; we can drop X
 - $ATT = g(\hat{\alpha} + \hat{\beta}) g(\hat{\alpha})$
 - The ATT requires no calculation over *i*.

- Researchers typically
 - assume a parametric model (up to unknown parameters):
 - e.g., $Y_i \sim p(\mu_i, \theta)$ with $\mu_i \equiv E(Y_i \mid t_i, X_i) = g(\alpha + t_i\beta + X_i\gamma)$
 - Estimate the causal effect: ATT=mean[$g(\hat{\alpha} + \hat{\beta} + X_i \hat{\gamma}) g(\hat{\alpha} + X_i \hat{\gamma})$]
- But, the true model is unknown.
- In experiments, T and X are independent; we can drop X
 - $ATT = g(\hat{\alpha} + \hat{\beta}) g(\hat{\alpha})$
 - The ATT requires no calculation over *i*.
 - MLE is invariant to reparamerization, so $g(\cdot)$ is irrelevant!

- Researchers typically
 - assume a parametric model (up to unknown parameters):
 - e.g., $Y_i \sim p(\mu_i, \theta)$ with $\mu_i \equiv E(Y_i \mid t_i, X_i) = g(\alpha + t_i\beta + X_i\gamma)$
 - Estimate the causal effect: ATT=mean[$g(\hat{\alpha} + \hat{\beta} + X_i \hat{\gamma}) g(\hat{\alpha} + X_i \hat{\gamma})$]
- But, the true model is unknown.
- In experiments, T and X are independent; we can drop X
 - $ATT = g(\hat{\alpha} + \hat{\beta}) g(\hat{\alpha})$
 - The ATT requires no calculation over *i*.
 - MLE is invariant to reparamerization, so $g(\cdot)$ is irrelevant!
- In observational studies,

- assume a parametric model (up to unknown parameters):
 - e.g., $Y_i \sim p(\mu_i, \theta)$ with $\mu_i \equiv E(Y_i \mid t_i, X_i) = g(\alpha + t_i\beta + X_i\gamma)$
- Estimate the causal effect: ATT=mean[$g(\hat{\alpha} + \hat{\beta} + X_i \hat{\gamma}) g(\hat{\alpha} + X_i \hat{\gamma})$]
- But, the true model is unknown.
- In experiments, T and X are independent; we can drop X
 - $ATT = g(\hat{\alpha} + \hat{\beta}) g(\hat{\alpha})$
 - The ATT requires no calculation over *i*.
 - MLE is invariant to reparamerization, so $g(\cdot)$ is irrelevant!
- In observational studies,
 - results are dependent on choice of $g(\cdot)$.

▲圖▶ ▲周▶ ▲周▶ -

- assume a parametric model (up to unknown parameters):
 - e.g., $Y_i \sim p(\mu_i, \theta)$ with $\mu_i \equiv E(Y_i \mid t_i, X_i) = g(\alpha + t_i\beta + X_i\gamma)$
- Estimate the causal effect: ATT=mean[$g(\hat{\alpha} + \hat{\beta} + X_i \hat{\gamma}) g(\hat{\alpha} + X_i \hat{\gamma})$]
- But, the true model is unknown.
- In experiments, T and X are independent; we can drop X
 - $ATT = g(\hat{\alpha} + \hat{\beta}) g(\hat{\alpha})$
 - The ATT requires no calculation over *i*.
 - MLE is invariant to reparamerization, so $g(\cdot)$ is irrelevant!
- In observational studies,
 - results are dependent on choice of $g(\cdot)$.
 - curse of dimensionality looms large

▲圖▶ ▲周▶ ▲周▶ -

Gary King (Harvard IQSS)

更

• Notation:

Gary King (Harvard IQSS)

更

• Notation:

Gary King (Harvard IQSS)

Y_i Dependent variable

• Notation:

Gary King (Harvard IQSS)

- Y_i Dependent variable
- T_i Treatment variable (0/1)

▶ 《 浯 ▶

- 4 🗇 🕨

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1)
 - X_i pre-treatment covariates

▶ ★ 覆 ▶

< 🗇 🕨

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1)
 - X_i pre-treatment covariates

• Treatment Effect for treated $(T_i = 1)$ observation *i*:

.78 ⇒

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1)
 - X_i pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$\mathsf{TE}_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

.78 ⇒

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1)
 - X_i pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

.78 ⇒

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1)
 - X_i pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

• Estimate $Y_i(0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(0) = Y_j(0)$ or a model $\hat{Y}_i(0) = \hat{g}_0(X_j)$

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1)
 - X_i pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(0) = Y_j(0)$ or a model $\hat{Y}_i(0) = \hat{g}_0(X_j)$
- Prune unmatched units to improve balance (so X is unimportant)

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1)
 - X_i pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(0) = Y_j(0)$ or a model $\hat{Y}_i(0) = \hat{g}_0(X_j)$
- Prune unmatched units to improve balance (so X is unimportant)
- Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \frac{1}{n_{\mathcal{T}}} \sum_{i \in \{T_i = 1\}} \mathsf{TE}_i$$

Remove Extrapolation Region, then Match

- * 聞 ▶ - * 周 ▶ - * 周 ▶

Remove Extrapolation Region, then Match

Gary King (Harvard IQSS)

原ト く 原ト

< 🖬 🕨 🖉 🕨

• Must remove data (selecting on X) to avoid extrapolation.

- Must remove data (selecting on X) to avoid extrapolation.
- Options to find "common support" of p(X|t=1) and P(X|t=0)

- Must remove data (selecting on X) to avoid extrapolation.
- Options to find "common support" of p(X|t=1) and P(X|t=0)
 - exact match, so support is defined only at data points

- Must remove data (selecting on X) to avoid extrapolation.
- Options to find "common support" of p(X|t=1) and P(X|t=0)
 - exact match, so support is defined only at data points
 - Iess, but still conservative: convex hull approach

• Must remove data (selecting on X) to avoid extrapolation.

- exact match, so support is defined only at data points
- Iess, but still conservative: convex hull approach
 - let t^{*} and X^{*} denote subsets of t and X s.t. {1 − t^{*}, X^{*}} falls within the convex hull of {t, X}

• Must remove data (selecting on X) to avoid extrapolation.

- exact match, so support is defined only at data points
- Iess, but still conservative: convex hull approach
 - let t^* and X^* denote subsets of t and X s.t. $\{1 t^*, X^*\}$ falls within the convex hull of $\{t, X\}$
 - use X* as estimate of common support (deleting remaining observations)

• Must remove data (selecting on X) to avoid extrapolation.

- exact match, so support is defined only at data points
- Iess, but still conservative: convex hull approach
 - let t^* and X^* denote subsets of t and X s.t. $\{1 t^*, X^*\}$ falls within the convex hull of $\{t, X\}$
 - use X* as estimate of common support (deleting remaining observations)
- Other approaches, based on distance metrics, pscores, etc.

• Must remove data (selecting on X) to avoid extrapolation.

- exact match, so support is defined only at data points
- Iess, but still conservative: convex hull approach
 - let t^* and X^* denote subsets of t and X s.t. $\{1 t^*, X^*\}$ falls within the convex hull of $\{t, X\}$
 - use X* as estimate of common support (deleting remaining observations)
- Other approaches, based on distance metrics, pscores, etc.
- Then match within interpolation (common support) region

Gary King (Harvard IQSS)

更

・ロト ・団ト ・恵ト ・恵ト

Choosing a Matching Procedure

• The goal: improve balance (bias) without losing too many observations (efficiency)

▶ ★ 覆 ▶

Choosing a Matching Procedure

- The goal: improve balance (bias) without losing too many observations (efficiency)
- Try many matching procedures until better balance is achieved. (to avoid selection bias, do not examine Y during preprocessing)

- The goal: improve balance (bias) without losing too many observations (efficiency)
- Try many matching procedures until better balance is achieved. (to avoid selection bias, do not examine Y during preprocessing)
- Select Covariates: include all variables that would have been included in the parametric model, but avoid posttreatment bias.

- The goal: improve balance (bias) without losing too many observations (efficiency)
- Try many matching procedures until better balance is achieved. (to avoid selection bias, do not examine Y during preprocessing)
- Select Covariates: include all variables that would have been included in the parametric model, but avoid posttreatment bias.
- Try Exact Matching: if a large number of units are matched, begin parametric analysis.

- The goal: improve balance (bias) without losing too many observations (efficiency)
- Try many matching procedures until better balance is achieved. (to avoid selection bias, do not examine Y during preprocessing)
- Select Covariates: include all variables that would have been included in the parametric model, but avoid posttreatment bias.
- Try Exact Matching: if a large number of units are matched, begin parametric analysis.
- Use approximate matching (many options!)

- The goal: improve balance (bias) without losing too many observations (efficiency)
- Try many matching procedures until better balance is achieved. (to avoid selection bias, do not examine Y during preprocessing)
- Select Covariates: include all variables that would have been included in the parametric model, but avoid posttreatment bias.
- Try Exact Matching: if a large number of units are matched, begin parametric analysis.
- Use approximate matching (many options!)
- Evaluate the Matching Procedure: look at low-dimensional summaries of X (no hypothesis tests!)

- The goal: improve balance (bias) without losing too many observations (efficiency)
- Try many matching procedures until better balance is achieved. (to avoid selection bias, do not examine Y during preprocessing)
- Select Covariates: include all variables that would have been included in the parametric model, but avoid posttreatment bias.
- Try Exact Matching: if a large number of units are matched, begin parametric analysis.
- Use approximate matching (many options!)
- Evaluate the Matching Procedure: look at low-dimensional summaries of X (no hypothesis tests!)
- Parametric Outcome Analysis: same method, same algorithm, same software, same model checking procedures, ...

Nearest Neighbor Approximate Matching

- * 聞 ▶ - * 周 ▶ - * 周 ▶

• Choose metric for measuring distances between observation vectors (Euclidean, Mahalanobis, etc.)

- Choose metric for measuring distances between observation vectors (Euclidean, Mahalanobis, etc.)
- For each treated unit, choose the "closest" control unit

- Choose metric for measuring distances between observation vectors (Euclidean, Mahalanobis, etc.)
- For each treated unit, choose the "closest" control unit
- Alternatively: use "optimal matching" by choosing the set of controls as close as possible to the set of treated units

・ロト ・団ト ・恵ト ・恵ト

• Define the (true) propensity score: $\pi_i = P(T_i = 1|X_i)$

Gary King (Harvard IQSS)

- * 個 ト - * 恵 ト - * 恵 ト

- Define the (true) propensity score: $\pi_i = P(T_i = 1|X_i)$
- Apparently solve the curse of dimensionality problem: match on (one-dimensional) π_i instead of (multidimensional) X_i

- Define the (true) propensity score: $\pi_i = P(T_i = 1|X_i)$
- Apparently solve the curse of dimensionality problem: match on (one-dimensional) π_i instead of (multidimensional) X_i
- Since: $p(X|t=1) = p(X|t=0) \iff p(\pi|t=1) = p(\pi|t=0)$

|▲圖 ト ▲ 恵 ト ▲ 恵 ト …

- Define the (true) propensity score: $\pi_i = P(T_i = 1|X_i)$
- Apparently solve the curse of dimensionality problem: match on (one-dimensional) π_i instead of (multidimensional) X_i
- Since: $p(X|t=1) = p(X|t=0) \quad \Leftrightarrow \quad p(\pi|t=1) = p(\pi|t=0)$
- Problem: π is unobserved

- Define the (true) propensity score: $\pi_i = P(T_i = 1|X_i)$
- Apparently solve the curse of dimensionality problem: match on (one-dimensional) π_i instead of (multidimensional) X_i
- Since: $p(X|t=1) = p(X|t=0) \quad \Leftrightarrow \quad p(\pi|t=1) = p(\pi|t=0)$
- Problem: π is unobserved
- Usual practice: estimate with a logit of t_i on X_i

- Define the (true) propensity score: $\pi_i = P(T_i = 1|X_i)$
- Apparently solve the curse of dimensionality problem: match on (one-dimensional) π_i instead of (multidimensional) X_i
- Since: $p(X|t=1) = p(X|t=0) \iff p(\pi|t=1) = p(\pi|t=0)$
- Problem: π is unobserved
- Usual practice: estimate with a logit of t_i on X_i
- Problem with the real (estimated) version of the pscore

- Define the (true) propensity score: $\pi_i = P(T_i = 1|X_i)$
- Apparently solve the curse of dimensionality problem: match on (one-dimensional) π_i instead of (multidimensional) X_i
- Since: $p(X|t=1) = p(X|t=0) \iff p(\pi|t=1) = p(\pi|t=0)$
- Problem: π is unobserved
- Usual practice: estimate with a logit of t_i on X_i
- Problem with the real (estimated) version of the pscore
 - the Propensity Score Tautology: check for correct pscore specification
 ⇔ check for balance

|▲圖▶| ▲周▶| ▲居▶|||

- Define the (true) propensity score: $\pi_i = P(T_i = 1|X_i)$
- Apparently solve the curse of dimensionality problem: match on (one-dimensional) π_i instead of (multidimensional) X_i
- Since: $p(X|t=1) = p(X|t=0) \iff p(\pi|t=1) = p(\pi|t=0)$
- Problem: π is unobserved
- Usual practice: estimate with a logit of t_i on X_i
- Problem with the real (estimated) version of the pscore
 - the Propensity Score Tautology: check for correct pscore specification
 ⇔ check for balance
 - (If it works, it works; if it doesn't work, it doesn't work)

白トメ留トメほトメほと。

- Define the (true) propensity score: $\pi_i = P(T_i = 1|X_i)$
- Apparently solve the curse of dimensionality problem: match on (one-dimensional) π_i instead of (multidimensional) X_i
- Since: $p(X|t=1) = p(X|t=0) \iff p(\pi|t=1) = p(\pi|t=0)$
- Problem: π is unobserved
- Usual practice: estimate with a logit of t_i on X_i
- Problem with the real (estimated) version of the pscore
 - the Propensity Score Tautology: check for correct pscore specification
 ⇔ check for balance
 - (If it works, it works; if it doesn't work, it doesn't work)
 - Infinite regress: can't use it to identify regions of extrapolation unless pscore specification is correct; can't check pscore validity (via checking balance) until removing regions of extrapolation!

・ロト ・聞 ト ・思ト ・ 思ト … 思

- Define the (true) propensity score: $\pi_i = P(T_i = 1|X_i)$
- Apparently solve the curse of dimensionality problem: match on (one-dimensional) π_i instead of (multidimensional) X_i
- Since: $p(X|t=1) = p(X|t=0) \iff p(\pi|t=1) = p(\pi|t=0)$
- Problem: π is unobserved
- Usual practice: estimate with a logit of t_i on X_i
- Problem with the real (estimated) version of the pscore
 - the Propensity Score Tautology: check for correct pscore specification
 ⇔ check for balance
 - (If it works, it works; if it doesn't work, it doesn't work)
 - Infinite regress: can't use it to identify regions of extrapolation unless pscore specification is correct; can't check pscore validity (via checking balance) until removing regions of extrapolation!
- Pscore is one practical way to start, but better alternatives exist

白トス団とス団とス団と

- * 聞 ▶ - * 周 ▶ - * 周 ▶

• Hypothesis: Democratic senate majorities slow FDA drug approval time

토 N - 제 프 N

- Hypothesis: Democratic senate majorities slow FDA drug approval time
- n = 408 new drugs (262 approved, 146 pending).

- Hypothesis: Democratic senate majorities slow FDA drug approval time
- n = 408 new drugs (262 approved, 146 pending).
- lognormal survival model.

- Hypothesis: Democratic senate majorities slow FDA drug approval time
- n = 408 new drugs (262 approved, 146 pending).
- lognormal survival model.
- seven oversight variables (median adjusted ADA scores for House and Senate Committees as well as for House and Senate floors, Democratic Majority in House and Senate, and Democratic Presidency).
- Hypothesis: Democratic senate majorities slow FDA drug approval time
- n = 408 new drugs (262 approved, 146 pending).
- lognormal survival model.
- seven oversight variables (median adjusted ADA scores for House and Senate Committees as well as for House and Senate floors, Democratic Majority in House and Senate, and Democratic Presidency).
- 18 control variables (clinical factors, firm characteristics, media variables, etc.)

原▶ ★ 医≯

< 🗇 🕨

• Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).

- Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).
- omit post-treatment variables.

- Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).
- omit post-treatment variables.
- use one-to-one nearest neighbor propensity score matching.

- Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).
- omit post-treatment variables.
- use one-to-one nearest neighbor propensity score matching.
- discard 49 units (2 treated and 17 control units).

- Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).
- omit post-treatment variables.
- use one-to-one nearest neighbor propensity score matching.
- discard 49 units (2 treated and 17 control units).
- run 262,143 possible specifications and calculates ATE for each.

- Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).
- omit post-treatment variables.
- use one-to-one nearest neighbor propensity score matching.
- discard 49 units (2 treated and 17 control units).
- run 262,143 possible specifications and calculates ATE for each.
- Look at variability in ATE estimate across specifications.

- Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).
- omit post-treatment variables.
- use one-to-one nearest neighbor propensity score matching.
- discard 49 units (2 treated and 17 control units).
- run 262,143 possible specifications and calculates ATE for each.
- Look at variability in ATE estimate across specifications.
- (Normal applications would only do one or a small number of specifications.)

Example of Balance Assessments

Figure: QQ plot of propensity score

Gary King (Harvard IQSS)

/ 18

Reducing Model Dependence

Figure: Histogram of estimated in-sample average treatment effect for the treated (ATT) of the Democratic Senate majority on FDA drug approval time across 262, 143 specifications.

Another Example: Jeffrey Koch, AJPS, 2002

Figure: Estimated effects of being a highly visible female Republican candidate across 63 possible specifications with the Koch data.