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~> “Causal Inference Without Balance Checking:
Coarsened Exact Matching” (PA, 2011. Stefano
M lacus, Gary King, and Giuseppe Porro)
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Methods for Causal Inference” (In press, AJPS,;
Gary King, Christopher Lucas and Richard Nielsen)



Matching to Reduce Model Dependence

/27



Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

/27



Outcome

Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

12 —

I I I I I I I I I
12 14 16 18 20 22 24 26 28

Education (years)



Outcome

Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

12 -

T TT
. T
10 T T Tt T

8 7 T3 TTTT
)

6 — T

I I I I I I I I I
12 14 16 18 20 22 24 26 28

Education (years)



Outcome

Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

12 C s
10 F g ¢
écc@@ & T 1c T
87 Ccfz T
6 CCC TCT
Tc
4 — CCC C
Qe cc
2_
od C

Education (years)



Outcome

Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

12 C s
£ S &1

10_%
&

C T
6—%(: = Cr
C
4 — CCC C
% cc
2_
0 4 C

Education (years)



Outcome

Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Education (years)

27



Outcome

Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

12 C s
10 F g ¢
écc@@ & T 1c T
87 Ccfz T
6 CCC TCT
Tc
4 — CCC C
Qe cc
2_
od C

Education (years)



Outcome

Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

12 — C

I I I I I I I I I
12 14 16 18 20 22 24 26 28

Education (years)



Outcome

Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

12 C s
Cé&T

o %

C T1c
87 Ccfr 57

T C

6 - Cr
4_
2_
0_

I I I I I I I I I
12 14 16 18 20 22 24 26 28

Education (years)



The Problems Matching Solves

/27



The Problems Matching Solves

Without Matching:

/27



The Problems Matching Solves

Without Matching:

Imbalance

/27



The Problems Matching Solves

Without Matching:

Imbalance ~~ Model Dependence

/27



The Problems Matching Solves

Without Matching:

Imbalance ~~ Model Dependence ~ Researcher discretion

27



The Problems Matching Solves

Without Matching:

Imbalance ~~ Model Dependence ~~ Researcher discretion ~~ Bias

27



The Problems Matching Solves

Without Matching:

Imbalance ~~ Model Dependence ~~ Researcher discretion ~~ Bias

e Qualitative choice from unbiased estimates = biased estimator

27



The Problems Matching Solves

Without Matching:

Imbalance ~~ Model Dependence ~~ Researcher discretion ~~ Bias

e Qualitative choice from unbiased estimates = biased estimator
e e.g., Choosing from results of 50 randomized experiments



The Problems Matching Solves

Without Matching:

Imbalance ~~ Model Dependence ~~ Researcher discretion ~~ Bias

e Qualitative choice from unbiased estimates = biased estimator

e e.g., Choosing from results of 50 randomized experiments
e Choosing based on “plausibility” is probably worse



The Problems Matching Solves

Without Matching:
Imbalance ~~ Model Dependence ~~ Researcher discretion ~~ Bias

e Qualitative choice from unbiased estimates = biased estimator

e e.g., Choosing from results of 50 randomized experiments
e Choosing based on “plausibility” is probably worse

e conscientious effort doesn’t avoid biases (Banaji 2013)



The Problems Matching Solves

Without Matching:
Imbalance ~~ Model Dependence ~~ Researcher discretion ~~ Bias

e Qualitative choice from unbiased estimates = biased estimator
e e.g., Choosing from results of 50 randomized experiments
e Choosing based on “plausibility” is probably worse

e conscientious effort doesn’t avoid biases (Banaji 2013)

e People do not have easy access to their own mental processes
or feedback to avoid the problem (Wilson and Brekke
1994)

27



The Problems Matching Solves

Without Matching:

Imbalance ~~ Model Dependence ~~ Researcher discretion ~~ Bias

e Qualitative choice from unbiased estimates = biased estimator
e e.g., Choosing from results of 50 randomized experiments
e Choosing based on “plausibility” is probably worse

e conscientious effort doesn’t avoid biases (Banaji 2013)

e People do not have easy access to their own mental processes
or feedback to avoid the problem (Wilson and Brekke
1994)

e Experts overestimate their ability to control personal biases
more than nonexperts, and more prominent experts are the
most overconfident (Tetlock 2005)

27



The Problems Matching Solves

Without Matching:

Imbalance ~~ Model Dependence ~~ Researcher discretion ~~ Bias

e Qualitative choice from unbiased estimates = biased estimator
e e.g., Choosing from results of 50 randomized experiments
e Choosing based on “plausibility” is probably worse

e conscientious effort doesn’t avoid biases (Banaji 2013)

e People do not have easy access to their own mental processes
or feedback to avoid the problem (Wilson and Brekke
1994)

e Experts overestimate their ability to control personal biases
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e “Teaching psychology is mostly a waste of time” (Kahneman
2011)
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Withowst Matching:

Jribalance ~» Modet-Dependence ~ Researcher-discretion ~ Bias

A central project of statistics: Automating away human discretion
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e Treatment Effect for treated observation i:

TE; = Y; - Yi(0)

= observed — unobserved

e Estimate Y;(0) with Y; with a matched (X; = Xj) control
e Quantities of Interest:
1. SATT: Sample Average Treatment effect on the Treated:

SATT = Mean (TE;)
ie{Ti=1}

2. FSATT: Feasible SATT (prune badly matched treateds too)
e Big convenience: Follow preprocessing with whatever
statistical method you’d have used without matching
e Pruning nonmatches makes control vars matter less: reduces
imbalance, model dependence, researcher discretion, & bias
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1. Preprocess (Matching)
e Distance(Xc, X¢) = /(Xc — X¢)'S~1(Xc — X¢)
e (Mahalanobis is for methodologists; in applications, use
Euclidean!)
e Match each treated unit to the nearest control unit
e Control units: not reused; pruned if unused
e Prune matches if Distance>caliper
e (Many adjustments available to this basic method)

2. Estimation Difference in means or a model
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e Sort observations into strata, each with unique values of C(X)
e Prune any stratum with O treated or 0 control units

e Pass on original (uncoarsened) units except those pruned

2. Estimation Difference in means or a model
e Weight controls in each stratum to equal treateds
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e Reduce k elements of X to scalar
m =Pr(T; =1X) = HE%X,;

Distance(Xc, X;) = |7mc — 7¢]

Match each treated unit to the nearest control unit

Control units: not reused; pruned if unused

Prune matches if Distance> caliper

e (Many adjustments available to this basic method)

2. Estimation Difference in means or a model
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e “Random pruning”: pruning process is independent of X
e Discrete example
e Sex-balanced dataset: treateds M, F;, controls M., F.
e Randomly prune 1 treated & 1 control ~~ 4 possible datasets:
2 balanced {M;, M.}, {F:, Fc}
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e Continuous example
e Dataset: T € {0,1} randomly assigned; X any fixed variable;
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e Measure of imbalance: squared difference in means d?, where
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Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

“Random pruning”: pruning process is independent of X
Discrete example
e Sex-balanced dataset: treateds M, F;, controls M., F.
e Randomly prune 1 treated & 1 control ~~ 4 possible datasets:
2 balanced {M;, M.}, {F:, Fc}
2 imbalanced {M,, F.}, {F:, M.}
e —> random pruning increases imbalance
Continuous example
e Dataset: T € {0,1} randomly assigned; X any fixed variable;
with n units
e Measure of imbalance: squared difference in means d?, where
d=X.— X
E(d?) = V(d) < 1/n (note: E(d) =0)
Random pruning ~~ n declines ~~ E(d?) increases
e —> random pruning increases imbalance

Result is completely general (see math in the paper)
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Other methods dominate:
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PSM Paradox: When you do “better,” you do worse

Background: Random matching increases imbalance

When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & =~ 0.5 (or constant
within strata) ~- pruning at random ~- Imbalance ~~
Inefficency ~» Model dependence ~~ Bias

If the data have no good matches, the paradox won't be a
problem but you're cooked anyway.

Doesn’'t PSM solve the curse of dimensionality problem?
Nope. The PSM Paradox gets worse with more covariates
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Similar pattern for > 20 other real data sets we checked
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The Matching Frontier

Frontier = matched dataset with lowest imbalance for each n
Bias-Variance trade off ~~ Imbalance-n Trade Off

Simple to use

No need to choose or use a matching method

All solutions are optimal

No iteration or diagnostics required

No cherry picking possible; you see everything optimal

Choose an imbalance metric, then run.
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Job Training Data: Frontier and Causal Estimates
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185 Ts; pruning most 16,252 Cs won't increase variance much

Huge bias-variance trade-off after pruning most Cs

Estimates converge to experiment after removing bias

No mysteries: basis of inference clearly revealed
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Conclusions

Propensity score matching:
e Approximates complete, not fully blocked, experiments
e Ignores information; exacerbates model dependence
e Some mistakes with PSM: Controlling for irrelevant covariates;
Adjusting experimental data; Reestimating propensity score
after eliminating noncommon support; 1/4 caliper on
propensity score; Not switching to other methods.

A Simple and Powerful Method: CEM
A New General Approach: The Matching Frontier

e Fast; easy; no iteration; Software: MatchingFrontier
e No need to choose among matching methods
e Optimal results from your choice of imbalance metric

~+ Using more information is simpler and more powerful
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