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Abstract

Although social scientists devote considerable effort to mitigating mea-
surement error during data collection, they often ignore the issue during
data analysis. And although many statistical methods have been proposed for
reducing measurement error-induced biases, few have been widely used
because of implausible assumptions, high levels of model dependence, difficult
computation, or inapplicability with multiple mismeasured variables. We
develop an easy-to-use alternative without these problems; it generalizes the
popular multiple imputation (MI) framework by treating missing data problems
as a limiting special case of extreme measurement error and corrects for both.
Like MI, the proposed framework is a simple two-step procedure, so that in
the second step researchers can use whatever statistical method they would
have if there had been no problem in the first place. We also offer empirical
illustrations, open source software that implements all the methods described
herein, and a companion article with technical details and extensions.
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Introduction

Social scientists routinely recognize the problem of measurement error in the

context of data collection, but often choose to ignore it during their subse-

quent statistical analyses. In the most optimistic scenario, the bias induced

by measurement error may be ignored if it is judged to be smaller than the

effects being estimated. Some researchers act as if the analyses of variables

with measurement error will still be correct on average, but this is untrue;

others act as if the attenuation that occurs in simple types of random measure-

ment error with a single explanatory variable holds more generally, but this

too is incorrect. Sophisticated application-specific methods for handling

measurement error exist, but they can be complicated to implement, require

difficult-to-satisfy assumptions, or lead to high levels of model dependence;

few such methods apply when error is present in more than one variable and

none are widely used in applications, despite an active methodological liter-

ature. The corrections used most often are the easiest to implement but typi-

cally also require the strongest assumptions, about which more will be said

subsequently (see Guolo 2008 and Stefanski 2000 for literature reviews).

We address here the challenge of creating an easy-to-use but more generally

applicable method of dealing with measurement error. Our goal is to contribute

to the applied statistics literature, to offer a statistically robust methodology

that can be used for a wide range of applications. We do this through a unified

approach to correcting for problems of measurement error and missing data in

a single easy-to-use procedure. We extend multiple imputation (MI) for miss-

ing data to also accomodate measurement error (Cole, Chu, and Greenland

2006; Rubin 1987) and so that it handles an array of common social science

analyses. We treat measurement error as partially missing information and

completely missing values as an extreme form of measurement error. The pro-

posed approach, which we call multiple overimputation (MO), enables

researchers to treat data values as either observed without error, observed with

(conditionally random) error, or missing. We accomplish this by constructing

distributions for individual observations (or entire variables) with means equal

to the observed values, if any, and variance for the three data types set to zero,

a (chosen or estimated) positive real number, or infinity, respectively.

Like MI, MO requires two easy steps. First, analysts create multiple

(�5) data sets by drawing missing and mismeasured values from their
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posterior predictive distribution conditional on all available observation-

level information. This procedure leaves the observed data constant across

the data sets, imputes the missing values from their predictive posterior,

and ‘‘overimputes,’’ that is, overwrites the values or variables measured

with error with draws from their predictive posterior, but informed by the

observed measurement, other variables, and available assumptions. An

especially attractive advantage of MO (like MI) is the second step, which

enables analysts to run whatever statistical procedure they would have run

on the completed data sets, as if all the data had been correctly observed. A

simple procedure is then used to average the results from the separate anal-

yses. The combination of the two steps enables scholars to overimpute their

data set once and to then set aside the problems of missing data and mea-

surement error for subsequent analyses.

As a companion to this article, we have modified a widely used MI software

package known as ‘‘Amelia II: A Program for Missing Data,’’ to also perform

MO, and many related extensions (Honaker, King, and Blackwell 2010). Our

basic approach to measurement error allows for random measurement error in

any number of variables, or some values within some variables, in a data set.

By building on the insights and procedures in MI, MO also inherits the attrac-

tive properties already proven in the extensive missing data literature. We also

offer a companion article (Blackwell, Honaker, and King 2017, hereinafter

BHK2), which gives mathematical details of the methodology, evidence of

how many data sets need to be created, and when the technique is robust to

error that is correlated with the dependent variable and the latent variable itself.

We also show there that MO can be extended to handle heteroskedastic mea-

surement error, and works well with categorical variables.

The second section describes our proposed framework in the context of

multiple variables measured with random error. There, we generalize the

MI framework, prove that a fast existing algorithm can be used to create

imputations for MO, and offer Monte Carlo evidence that it works as

designed. The third section goes further by deriving methods of estimating

the measurement error variance so it need not be assumed. The fourth sec-

tion provides a checklist of practical guidance for applying this technique

in practice. The fifth section then offers three empirical illustrations and

the sixth section concludes.

The MO Framework

To build intuition, we conceptualize the linkage between measurement error

and missing data in two equivalent ways. In one, measurement error is a type
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of missing data problem where observed proxy variables provide probabilis-

tic prior information about the true unobserved values. In the other, missing

values have an extreme form of measurement error where no such informa-

tion exists. More simply, measurement error can be seen as a mitigated form

of missing data, or conversely missing data can be seen as limiting special

case of measurement error. Either way, they are linked methodological prob-

lems whose treatments go well together because variables measured with

some degree of error fall logically between the extremes of observed without

error and completely unobserved. This dual conceptualization also means

that our MO approach to measurement error retains the advantages of MI

in ease of use, and treatment for measurement error can be taken at the same

time as treatment for missingness, which is often already seen as a necessary

step in the analysis. Indeed, the same single run of software for one will now

solve both problems.

The validity of the approach is also easy to understand within this frame-

work. Consider the following thought experiment. Some small number of

observations of a variable are known to be measured with error, so a researcher

decides to discard those values and treat them as missing, but keep the gold

standard or perfectly measured observations in the analysis. Under the same

assumptions as MI for missing data (that the process is missing at random

[MAR]), deleting data values with measurement error and using MI introduces

no biases. However, this is obviously inefficient, as we know the mismeasured

observations provide considerable information about the value’s true location.

When measurement error is relatively small, the true latent value will be close

to the mismeasured value, where the relative meaning of ‘‘close’’ is deter-

mined by the degree of measurement error. Our goal is to correctly incorporate

that information into the model, which we accomplish by running MI while

also using observed values to help inform cell-level priors.1

Assume the value wi is a combination of the true latent value we would

like to record, x�i , and some degree of measurement error ui drawn indepen-

dently from some distribution. For example, if that distribution is normal

with variance s2
u we have:

x∗
i=wi + ui

latentobserved error
measurement

ui x∗
i (0,σ2

u) variance
error

measurement

ð1Þ
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Equation (1) represents the amount of measurement error, under this

simple model, as s2
u. We can visualize the set of all s2

u values as a line

in Figure 1, with s2
u ¼ 0 at the left endpoint of this line, denoted in blue.

At this extreme, we observe the latent variable perfectly. Above the s2
u con-

tinuum, we sketch the distribution of the unobserved true value, conditional

on the observed value. When s2
u ¼ 0, there is no uncertainty about the loca-

tion of the true value, so our belief about the true value, x�i , is simply a spike

at the observed location, wi.

As measurement error begins to increase, s2
u moves to the right in this

continuum. Now we no longer know with certainty the location of the latent

value from the observed value, but with small error distributions this distri-

bution is still very tight and as s2
u becomes larger the distribution has

increased variance. At the extreme, as s2
u !1 the distribution of the latent

variable becomes flat and we have no information about where the latent

value is located from the mismeasured value. At this point, the observed

value itself is entirely uninformative for the latent value, and thus it is a miss-

ing value in the data set. Missing data is thus merely the extreme limiting

form of measurement error. Without a validation sample, classical missing

data methods can only deal with values at s2
u ¼ 0 or s2

u !1, the red and

the blue distributions, because they are unable to incorporate the additional

information contained in the observed data when 0 < s2
u <1 into the miss-

ing data algorithm, even if we can estimate this variance from the data. Thus,

missing
fully

observed
fully

missing
partially

σ2
u = 0 σ2

u
0 < σ2

u <

Figure 1. The continuum of measurement error, with observation-level priors illu-
strated in the top row.
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the MI framework forces us to think in terms of a false dichotomy between

values that are fully observed and values that are fully missing, when a whole

continuum of measurement error is possible.2

To move past the restrictions of MI, we add cell-level priors that incorpo-

rate the fact that the latent locations of some data values are neither spikes

nor flat slabs, but (proper) distributions. This procedure combines two differ-

ent sources of information about the unobserved true value of a given data

point. First, if we rely only on the mismeasured observation, we have our

prior that describes the latent value of that cell as a distribution, as shown

in the top row of Figure 1. Second, if we treat that cell as if it were missing

data, MI would construct a distribution conditional on all the rest of the

observed data in the data set, from which we would classically draw random

imputations. We combine these two approaches and jointly use the informa-

tion from the mismeasured observation itself and the patterns in the rest of

the observed data. Without measurement error in an observation, it degener-

ates to a spike and the observation remains unchanged. When measurement

error is so extreme that we encounter a missing value, the prior is flat and

the missing value is imputed solely from the observed data. However, now

we can treat all the values with intermediate measurement error—neither

s2
u ¼ 0 nor s2

u !1—by replacing the mismeasured value with a series of

draws from the posterior for the true latent value. We call this framework

MO. In the rest of this section, we provide a more technical explanation of

MO as well as the MI foundation we generalize from; readers may skip this

material, while those looking for even more specifics on the modeling

assumptions and implementation details should also see BHK2, Section-

Model and Estimation.

The Foundation: An MI Model

MO builds on MI, which we now review. MI involves two steps. First, we use a

model to generate multiple, B � 5, imputations for each of the missing values

in the data set. The imputations are predictions from a model that uses all the

observed data available (we describe this model subsequently). Then we make

B copies of our data set with all the observed cell values identical in every

copy, and the imputations for the missing cells varying. When our imputation

model indicates that we can predict a missing cell value well, that cell value’s

imputation doesn’t vary much over the B data sets; model predictions that are

more uncertain reflect this uncertainty by varying more. In this way, both our

predictive ability (of our data and the model) and a fair characterization of its

uncertainty are reflected in the completed data sets.
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Then for each of the B completed data sets, the analyst runs whatever sta-

tistical method they would have if the data were fully observed, and one of

two simple procedures is used to combine the results from the separate anal-

yses. We first describe how to combine the separate analyses and then return

to the model that generates the imputations and some more detail about

estimation.

Combining Rules. For the first method, consider some quantity of interest,

Q such as a first difference, risk ratio, probability, and so on. Let

q1; . . . ; qB denote the separate estimates of Q, which come from applying the

same analysis model to each of the overimputed data sets. The overall point

estimate �q of Q is simply the average �q ¼ 1
B

PB
b¼1 qb. As shown by Rubin

(1978), an estimate of the variance of the MO point estimate is the average

of the estimated variances from within each completed data set, plus the sam-

ple variance in the point estimates across the data sets (multiplied by a factor

that corrects for bias because B <1): �s2 ¼ 1
B

PB
b¼1 s2

b þ S2
bð1þ 1=BÞ, where

sb is the standard error of the estimate of qb from the analysis of data set b and

S2
b ¼

PB
b¼1 qb � �qð Þ=ðB� 1Þ.

A second procedure for combining estimates is useful when simulating

quantities of interest, as in King, Tomz, and Wittenberg (2000) and Imai,

King, and Lau (2008). To draw B simulations of the quantity of interest,

we merely draw 1/B of the needed simulations from each of the overim-

puted data sets. Then we would treat the set of all these simulations as

we would if they were all coming from the same model, such as taking

the mean and standard deviation as a point estimate and standard error,

respectively, or plotting a histogram as an estimate of the posterior

distribution.

Imputation Model. For expository simplicity, consider a simple special case

with only two variables, yi and xi (i ¼ 1; . . . ; n), where only xi contains some

missing values (BHK2 provides further details). These variables are not

necessarily dependent and independent variables, as they each play any role

in the subsequent analysis model. The analysis of this section applies to any

number of variables and with missingness in any or all of the variables (Hon-

aker and King 2010).

We now write down a common model that could be used to apply to the

data if they were complete and then afterward explain how to use it to

impute any missing data scattered through the input variables. This model

assumes that the joint distribution of yi and xi, p yi; xijm;Sð Þ, is multivariate

normal:
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yi; xið Þ � N ðm;SÞ; m ¼ my; mx

� �
; S ¼ s2

y sxy

sxy s2
x

� �
; ð2Þ

where the elements of the mean vector m and variance matrix S are constant

over the observations. This model is deceptively simple: As there is no i sub-

script on the scalar means mx and my, it may appear as though only the mar-

ginal means are used to generate imputations. In fact, its joint distribution

implies that a prediction is always based on a regression (the conditional

expectation) of that one variable on all the others, with the population values

of the coefficients in the regression being a deterministic function of m and S.

This is extremely useful in missing data problems for predicting a missing

value conditional on observed values. For instance, given model (2), the con-

ditional expectation of xi given yi is a regression E xijyi½ � ¼ g0 þ g1 yi � my

� �
,

where g0 ¼ mx and g1 ¼ sxy

�
sx. The conditional expectation of yi given xi is

also a regression, and both regressions are implied by, with parameters

directly calculable from, m and S in equation (2).

Researchers have repeatedly demonstrated that this imputation model gives

similar point estimates and provides adequate confidence interval coverage

compared to complicated nonlinear and non-normal alternatives even for ordi-

nal or categorical variables, and even when more sophisticated models are pre-

ferred at the analysis stage (Bernaards, Belin, and Schafer 2007; King et al.

2001; K. J. Lee and Carlin 2010; Rubin and Schenker 1986; Schafer 1997;

Schafer et al. 1996). And so even though the model appears very simple, it

is indeed very powerful and generalizes to large numbers of variables.

To estimate the regression of each variable in turn on all the others, we only

need to estimate the elements of m and S. If no data were missing, the results

would be equivalent to running each of the separate regressions (yi on xi and xi

on yi). But how can we run either of these regressions with variables containing

arbitrary patterns of missing data? The trick is to find a single set of estimates

of m and S from data with scattered missingness and then to use these to deter-

ministically compute the coefficients of all the separate regressions.

Estimation. The ‘‘complete-data’’ likelihood (i.e., still assuming no missing

data) is simply the product of model (2) over the n observations:

Lðyjy; xÞ /
Y

i

p yi; xijyð Þ ð3Þ

¼
Y

i

p xijyi; yð Þp yijyð Þ; ð4Þ
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where y ¼ ðm;SÞ. (We use variables without an i subscript to denote the vec-

tor of observations, so y ¼ y1; . . . ; ynð Þ.) This likelihood is not usable as is,

because it is a function of the missing data, which we do not observe. Thus,

we integrate out whatever missing values happen to exist for each observa-

tion to produce the actual (observed-data) likelihood:

L yjy; xobs
� �

/
Y

i

Z
p xijyi; yð Þp yijyð Þdxmis ð5Þ

¼
Y

i2xmis

p yijyð Þ
Y

j2xobs

p xjjyj; y
� �

p yjjy
� �

; ð6Þ

where xobs denotes the set of values in x that are observed and xmis, the set that

are missing. That we partition the complete data in this way is justified by the

standard ‘‘MAR’’ assumption that the missing values may depend on observed

values in the data matrix but not on unobservables (Rubin 1976; Schafer 1997).

The key advantage of this expression is that it appropriately assumes that we

only see what is actually observed, xobs and y, but still estimate m and S.3

This result enables one to take a large data matrix with scattered missing-

ness across any or all variables and impute missing values based on the regres-

sion of each variable on all of the others. The actual imputations are based on

the regression predicted values, their estimation uncertainty (due to the fact

that m and S, and thus the calculated coefficients of the regression, are

unknown), and the fundamental uncertainty (as represented in the multivariate

normal in equation (2) or, equivalently, the regression error term from each

conditional expectation). MI works by imputing as few as five values for each

missing data point (or more for data sets with unusually high missingness), cre-

ating ‘‘completed’’ data sets for each, running whatever analysis model we

would have run on each completed data set as if there were no missing values,

and averaging the results using a simple set of rules (see previous Subsection-

Combining Rules). The assumption necessary for most implementations of MI

to work properly is that the missing values are MAR. This is considerably less

restrictive than, for example, the ‘‘missing completely at random’’ assumption

required to avoid bias in listwise deletion, which is equivalent to assuming that

missingness is determined by only random coin flips.

Incorporating Measurement Error

We begin with some simple notation. First, define the data matrix as d, with

representative element dij, as including all the (dependent and independent)

variables from the analysis stage. It may also include other variables not to be
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explicitly used in the analysis stage but which help improve the imputations.

For our simple running example, d ¼ fx; yg. All the cell values of d exist, but

the extent to which we observe them is ‘‘assigned’’ (by the data generating

process) to one of three types denoted by the variable mij. In type mij ¼ 0, dij

is fully observed. In type mij ¼ 1, the true value dij exists but in our data it is

missing and measured with error using an available unbiased proxy wij. And

in type mij ¼ 2, the true value dij is missing entirely and no proxy exists.

Thus, m can be thought of as the assignment of a ‘‘measurement mechanism’’

to each cell of the data matrix.

To this notation, we add two assumptions. First is the Ignorable Measure-

ment Mechanism Assignment (IMMA). IMMA says simply that the value of m

can be created or influenced by a random draw from a probability distribution,

by observed values in d, or by the (observed) values of the proxy values w, but

not by unobserved cell values in d. This is an optimistic assumption since the

unknown assignment mechanism is assumed to be a function of only objects

we know, the rest being ‘‘ignorable.’’ (For a formal version of this assumption,

see BHK2, Subsection- Assumptions). In the fourth section, we offer practical

advice to help ensure that IMMA holds in applications.

IMMA can be understood as a direct generalization of MI’s MAR

assumption, applying to the three categories of m rather than only the two

categories of missing or observed used in MI. In fact, since MAR does not

use the proxy variables, an approach that may meet the MAR assumption

in the presence of measurement error is to simply ignore the proxy variable

values and to treat any cell measured with error as fully missing; that is, we

reduce the three-category measurement mechanism variable to two cate-

gories: mij ¼ 0 and mij > 0. Of course, this will usually represent a complete

waste of all the information in the proxy variable w. (Even when the stronger

MAR assumption holds, BHK2, Subsection- Robustness to Violating

Assumptions, shows that MO outperforms MI due to the information it adds.)

Our second assumption is a choice of a specification for the measurement

model that generates the proxy values wij. For example, one possible choice

of a data generation process for w is random normal measurement error

around the true value, wi � N x�i ;s
2
u

� �
, with s2

u set to a chosen or estimated

value (we discuss interpretation and estimation of s2
u in the third section).

The value of s2
u places the observation on the continuum in Figure 1.

Other possible choices for this assumption allow for heteroskedastic mea-

surement error, such as might occur with gross domestic product from a

country where a government’s statistical office is professionalizing over

time; mortality statistics from countries with and without death registration

systems; or survey responses from a self-report versus elicited about that
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person from someone else in the same household. In the Social Ties and

Opinion Formation subsection, we investigate a situation with known hetero-

skedastic measurement error: Variables that are aggregations of different

amounts of randomly selected individual-level data where the sample size

completely determines the degree of measurement error. (We also discuss

possibilities for heteroskedastic measurement error more generally in BHK2,

Subsection- Heteroskedastic Measurement Error).

The choice for this assumption can include biased measurement error,

where E wijx�i
� �

¼ ai þ x�i , so long as the bias, ai, is known or estimable. For

instance, if validation data are available, a researcher could estimate the bias of

the measure or use a model to estimate how the offset changes with observed

variables. From our perspective, an observation that does not possess at least

this minimally known set of relationships to its true value could more easily be

considered a new observation of a different variable rather than a proxy for an

unobserved one. Another way of stating this is to say that any statistical

method which uses a proxy value wij to measure something different (i.e., wij)

requires an assumption of some kind. This type of external information is a

requirement of every proper statistical approach to measurement error (Ste-

fanski 2000). (In the extreme situation when the bias is not known and cannot

be estimated, we can sometimes narrow inferences to a bounded range rather

than a point estimate and use sensitivity analysis, or ‘‘robust Bayes,’’ to make

further progress; see Berger 1994; King and Zeng 2002.)

Implementation

Honaker and King (2010) propose a fast and computationally robust MI algo-

rithm that allows for informative Bayesian priors on individual missing val-

ues. The algorithm is known as EMB, or EM with bootstrapping. They use

this algorithm to incorporate qualitative case-specific information about

missing cells to improve imputations. To make it easy to implement our

approach, we prove in BHK2, Section- Model and Estimation, that the same

algorithm can be used to estimate our model. The statistical duality property

assumed there enables us to turn the data generation process for wi into a

prior on the unobserved value x�i , without changing the mathematical form

of the density.4 For example, in the simple random normal error case, the

data generation process for wi is N wijx�i ;s2
u

� �
but, using the property of sta-

tistical duality of the normal, this is equivalent to a prior density for the unob-

served x�i , N x�i jwi;s2
u

� �
.5

This strategy also offers important intuitions: We can interpret our

approach as treating the proxy variables as informative, observation-level
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prior means for the unobserved missing values. Our imputations of the miss-

ing values, then, will be precision-weighted combinations of the proxy vari-

able and the predicted value from the conditional expectation (the regression

of each variable on all others) using the missing data model. In addition, the

parameters of this conditional expectation (computed from m and S) are

informed and updated by the priors on the individual values.

Under our approach, then, all values in the data matrix with measurement

error are replaced—overwritten in the data set, or overimputed in our termi-

nology—with MOs that reflect our best guess and uncertainty in the location

of the latent values of interest, x�i . These overimputations include the infor-

mation from our measurement error model, or equivalently the prior with

mean set to the observed proxy variable measured with error, as well as all

predictive information available in the observed variables in the data matrix.

As part of the process, all missing values are imputed as usual with MI. The

same procedure is used to fill in multiple completed data sets; usually about

10 to 25 data sets are sufficient, but more may be necessary with large frac-

tions of missing values or high degrees of measurement error. Imputations

and overimputations vary across the multiple completed data sets—with

more variation when the predictive ability of the model is smaller and mea-

surement error is greater—while correctly observed values remain constant.

Researchers create a collection of completed data sets once and then run

as many analyses of these as desired. The same analysis model is applied to

each of the completed (imputed and overimputed) data sets as if it were fully

observed. A key point is that the analysis model need not be linear-normal

even though the model for missing values and measurement error overimpu-

tation is (Meng 1994). The researcher then applies the usual MI rules for

combining these results (see previous Subsection Combining Rules).

Monte Carlo Evidence

We now offer Monte Carlo evidence for MO, using a data generation process

that would be difficult for most prior approaches to measurement error. We

use two mismeasured variables, a non-normal dependent variable, scattered

missing data, and a nonlinear analysis model. The measurement error

accounts for 25 percent of the total variance for each proxy, meaning these

are reasonably noisy measures. In doing so, we attempt to recreate a difficult

but realistic social science data analysis, with the addition of the true values

so we can use them to validate the procedure.

We generated proxies x and z for the true variables x� and z�, respectively,

using a normal data generation process with the true variables as the mean
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and a variance equal to s2
u ¼ s2

v ¼ 0:5.6 To mimic real applications, we run

MO with 20 imputed data sets under various (sometimes incorrect) assump-

tions about the error variances. At each combination of s2
u and s2

v , we calcu-

late the mean square error (MSE) for the logit coefficients of the overimputed

latent variables, using the standard rules for combining MI results and

repeated this whole process for 10,000 simulations. We took the average

MSE across these coefficients and present the results in Figure 2. On the left

is the MSE surface with the error variances on the axes along the floor and

MSE on the vertical axis; the right graph shows the same information viewed

from the top as a contour plot.

The figure shows that when we assume the absence of measurement error

(i.e., s2
u ¼ s2

v ¼ 0), as most researchers do, we are left with high MSE val-

ues. As the assumed amount of measurement error grows, we see that the MO

lowers the MSE smoothly. The MSE reaches a minimum at the true value of

the measurement error variance (the gray dotted lines in the contour plot).7

Assuming values that are much too high also leads to larger MSEs, but the

figure reveals that MO can improve MSE even when the measurement error

variance is not precisely known. We discuss this issue further subsequently.

In results shown in table 6 of BHK2, we also find that there are benefits to

increasing the number of imputations, in terms of both MSE and confidence
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Figure 2. On the left is a perspective plot of the mean square error of a logit analysis
model estimates after multiple overimputation (MO) with various assumptions about
the measurement error variance. The right shows the same information as a contour
plot. Note that the axes here are the share of the observed variance due to mea-
surement error which has a true value of 0.25, which is where the mean square error
(MSE) reaches a minimum.
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interval coverage, but that these benefits are relatively minor after 10

imputed data sets. Indeed, at the correct value of the measurement error var-

iance, the MO estimator achieved close to nominal coverage for 95 percent con-

fidence intervals on the logit coefficients. Of course, these results are

one simulation and different choices of parameters can lead to different

performance, but we attempt to augment this with other simulations subse-

quently and in BHK2. Indeed, BHK2, Section- Robustness to Categorical Vari-

ables Measured with Error, shows that naively applying MO to ordered

categorical data leads to similar results as here.

Comparison to Other Techniques

As measurement error is a core threat to many statistical analyses, many

approaches have been proposed. In fact, MI has previously been extended to

measurement error in the specific instance where validation subsamples are

available. This is when researchers observe both the mismeasurement and the

true latent variable for a subset of observations (Brownstone and Valletta

1996; Cole et al. 2006; Guo and Little 2011; Guo, Little, and McConnell

2012; He and Zaslavsky 2009; Wang and Robins 1998). This type of data is

relatively rare in the social sciences, but the results hint at what might be possible

in our more general approach: In this special data type, the approach outper-

forms maximum likelihood (Messer and Natarajan 2008) and is robust to mea-

surement error correlated with the dependent variable (Freedman et al. 2008).

We build on the insights in this approach and extend it to a wider range of

more commonly observed types of data, analyses, and available information.8

Other measurement error solutions broadly fall into two camps: general-

purpose methods and application-specific methods. General-purpose methods

are easily implemented across a wide variety of models, while application-

specific methods are closely tailored to a particular context. These approaches

use a variety of assumptions that are, in different ways, more and also less

restrictive than our approach. See Fuller (1987), Carroll, Ruppert, and

Stefanski (1995), and Imai and Yamamoto (2010) for formal definitions and

citations.

The first general-purpose method, regression calibration (Carroll and

Stefanski 1990), is similar in spirit to MO in that it replaces the mismeasured

variable with an estimate of the underlying unobserved variable and then

performs the desired analysis on this ‘‘calibrated data.’’ This estimate is typi-

cally in the form of a regression of true, validated data on the mismeasure-

ments, making it similar to a single imputation technique. Cole et al. (2006)

compared the performance of regression calibration to that of MI with the
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same type of validation subsample and found that MI sometimes outperformed

regression calibration and subsequent research has shown that either can out-

perform the other, depending on the data generating process (Freedman et al.

2008; Messer and Natarajan 2008). As White (2006) points out, both methods

rely on validation data, but regression calibration uses conditional means in the

analysis step, even when the true data are available. MO combines the best

parts of each of these approaches by utilizing all information when it is avail-

able and extends their applicability beyond situations with validation samples.

The easiest technique to implement is a simple method-of-moments esti-

mator, which simply corrects a biased estimate of a linear regression coeffi-

cient by dividing it by the reliability ratio, s2
x�
�
s2

w. This technique depends

heavily on the estimate of the measurement error variance and, as shown in

our simulations in the third section, has poor properties when this estimate is

incorrect. Further, the method-of-moments technique requires the analysis

model to be linear.

Other general approaches to measurement error include simulation-

extrapolation, or SIMEX (Cook and Stefanski 1994; Hopkins and King

2010), and minimal-assumption bounds (Black, Berger, and Scott 2000;

Klepper and Leamer 1984; Leamer 1978). These are both excellent approaches

to measurement error, but they both have features that limit their general

applicability. SIMEX simulates the effect of adding additional measurement

error to a single mismeasured variable and then uses these simulations to

extrapolate back to the case with no measurement error. With multiple mis-

measured variables, SIMEX becomes harder to compute and more dependent

on the extrapolation model. The minimal-assumption bounds specify a range

of parameter values consistent with a certain set of assumptions on the error

model. Bounds typically require fewer assumptions than our MO model, but

cannot reveal how estimates change within those bounds. Even if we lack any

information on the measurement error variance, we can use MO to perform a

sensitivity analysis to quantify the effects of various assumptions about mea-

surement error.

Structural equation modeling (SEM) attempts to alleviate the measure-

ment error by finding latent dimensions that could have generated a host

of observed measures.9 Our goal, however, is to rid a particular variable

(or variables) of its measurement error. While discovering and measuring

latent concepts is a useful and common task in the social sciences, we often

want to measure the effect of a specific variable, and measurement error

stands in the way. Without strong structural assumptions, SEM would sweep

that variable up into a larger construct and perhaps muddle the question at

hand. Thus, MO and SEM tackle different sets of substantive questions.
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Furthermore, MO can easily handle gold standard and validation data when it

is unclear how to incorporate these into an SEM framework.

Specifying or Estimating the Measurement Error
Variance

Under MI, researchers must indicate which observations are missing. Under

the approach here, researchers must instead indicate or estimate how much

measurement error exists in each cell in the data set. In this sense, MI is a

limiting special case of MO where the only acceptable answers to the ‘‘how

much’’ question is all or none. Under both, we can parameterize the informa-

tion we need in terms of a measurement error variance.

In Section- Directly Estimating Measurement Error Variances of BHK2,

we show how to directly estimate this measurement error variance either

from the correlation of multiple proxies for the same variable or from the

relationship between a variable with measurement error and a small subset

of validated or gold standard observations. These are the settings that almost

all of the other models for measurement error reviewed in the Comparison to

Other Techniques subsection also rely on.

When these extra sources of information are not available, the variance

and thus the quantity of interest is not point identified under our approach and

others (Stefanski 2000). However, we are able to offer a simple way around

the problem. To do this, we reparametrize s2
u to a scale that is easy to under-

stand and then enable researchers to provide uncertainty bounds on the quan-

tity of interest.

The Monte Carlo Evidence subsection shows that using the true measure-

ment error variance s2
u with MO will greatly reduce the bias and MSE rela-

tive to the usual procedure of make-believing measurement error does not

exist (which we refer to as the ‘‘denial’’ estimator). Moreover, in the simula-

tion presented there (and in others like it), the researcher needs to only have a

general sense of the value of these variances to greatly decrease the bias of

the estimates. Of course, knowing the value of s2
u (or su) is not always

immediately obvious, especially on its given scale. In this section, we deal

with this problem by reparameterizing it into a more understandable quantity

and then putting bounds on the ultimate quantity of interest.

The alternative parametrization we have found useful is the proportion of

the proxy variable’s observed variance due to measurement error, which we

denote by r ¼ s2
u

s2
x�þs2

u

¼ s2
u

s2
w
; where s2

w is the variance of our proxy. This is

easy to calculate directly if the proxy is observed for an entire variable (or

at least more than one observation). Thus, if we know the extent of the
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measurement error, we can create an estimated version of ŝ2
u ¼ rŝ2

w and sub-

stitute it for s2
u in the complete-data likelihood (3).

In Figure 3, we present Monte Carlo simulations of how our method

works when we alter our assumptions on the scale of r rather than s2
u.10 More

importantly, it shows how providing little or no information about the mea-

surement error can bound the quantities of interest. Leamer (1978:238-43)

showed that we can use a series of reverse regressions in order to bound the

true coefficient without making any assumptions about the amount of mea-

surement error. We compare these ‘‘minimal-assumption’’ bounds to the

more model-based MO bounds. The vertical axis in the left panel is the value

of the coefficient of a regression of the overimputed w on y. The orange

points and vertical lines are the estimates and 95 percent confidence intervals

from overimputation as we change our assumption about r on the horizontal

axis.

We can see that the denial estimator, which treats w as if it were perfectly

measured (in red), severely underestimates the effect calculated from the

complete data (solid blue horizontal line), as we might expect from the stan-

dard attenuation result. As we assume higher levels of r with MO, our esti-

mates move smoothly toward the correct inference, hitting it right when
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Figure 3. Simulation results using the denial estimator (that assumes no measure-
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overimputation (MO) estimator (in orange), with varying assumptions about the
degree of mismeasurement. The MO estimator at the correct value of r is in dark red.
The left panel shows estimates of the coefficients of interest along with confidence
bands. In the background, the light tan area shows the minimal-assumption bounds
and the dark tan region gives bounds assuming r 2 ½0:05; 0:6�. The right panel shows
mean square error (MSE) for the same range of estimates.
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r reaches its true value (denoted by the vertical dashed line). Increasing r
after this point leads to overcorrections, but one needs to have a very bad esti-

mate of r to make things worse than the denial estimator. The root MSE leads

to a similar conclusion and is thus also minimized at the correct value of r.

A crucial feature of MO is that it can be informative even if one has highly

limited knowledge of the degree of measurement error. To illustrate this, the

left panel of Figure 3 offers two sets of bounds on the quantity of interest,

each based on different assumptions about r. We use the reverse regression

technique of Leamer (1978) to generate minimal-assumption bounds, which

make no assumptions about r (the mean of these bounds are in light tan). In

practice, it would be hard to justify using a variable with more than half of the

variance due to measurement error, but even in the extreme situation of

80 percent error, the bounds on the quantity of interest still convey a great

deal of information. They indicate, for example, that the denial estimator

is an underestimate of the quantity of interest and almost surely within

approximately the range [0.5, 1.75]. Note that all of our MO estimates are

within these bounds. In simulations in which we lowered the true r, we found

that even dramatic overestimates of r still lead to MO estimates that obey

these bounds.11

Alternatively, we might consider making a more informative (and reason-

able) assumption about r. Suppose that we know that there is some positive

measurement error, but that less than 70 percent of the observed variance is

due to measurement error. These are informative assumptions about r and

allow MO to estimate bounds on the estimated coefficient. The result is that

the bounds shrink (in dark tan, marked ‘‘MO-based’’) closer around the truth.

MO thus tells us about how various assumptions about measurement error

affect our estimates.12 The MO-based bounding approach to measurement

error shifts the burden from choosing the correct share of measurement error

to choosing a range of plausible shares. Researchers may feel comfortable

assuming away higher values of r since we may legitimately consider a vari-

able with, say, 80 percent measurement error as a different variable entirely.

The lower bound on r can often be close to 0 in order to allow for small

amounts of measurement error.13

This figure also highlights the dangers of incorrectly specifying r. As we

assume that more of the proxy is measurement error, we eventually overshoot

the true coefficient and begin to see increased MSE. Note, though, that there

is again considerable robustness to incorrectly specifying the prior in this

case. Any positive value r does better than the naive estimator until we

assume that almost 70 percent of the proxy variance is due to error. This

result will vary, of course, with the true degree of measurement error and the
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model under study. In fact, we show in BHK2, Section- The Number of Data-

sets to Overimpute that the confidence intervals from MO can be conserva-

tive when the measurement error dominates the variance of the latent

variable. We do find, though, that the MO estimator is far less sensitive to

misspecifications of r than the method-of-moments approach, as shown by

their respective MSEs. One reason for this is that MO combines information

from both the error variance and the observed covariates and so is less depen-

dent on either for performance. Additionally, in BHK2, Section- Robustness

to Categorical Variables Measured with Error, we show that these results

hold for categorical variables with measurement error.

A Practical Checklist

We offer here a practical, ‘‘best practices’’ checklist that researchers can fol-

low in applying MO to social science analyses. Since the application of MO

parallels that of MI, a great deal of intuition follows from the now well-

known MI technique. We discuss these but emphasize the unique aspects

of MO as well. In the following empirical example, we reference these steps

to show how to implement them.

1. Collect data. Three types of data are especially useful in using MO to

correct measurement error. First, ‘‘gold standard data’’ are measure-

ments of the proxy known to have no error for at least some (known)

observations. Researchers can approximate this situation when an

expensive high-quality measurement device was used for some subjects

or sometimes for measures that improve over time. Second, ‘‘validation

data’’ involve both a proxy variable, measured with some error for all

units, and measures of the true, latent variable for a subset of data. The

units for which we observe both the proxy and the true value constitute

what is known as the validation subset. These sources are important

because they allow us to identify the relationship between the latent vari-

able and the other covariates and to estimate the variance of the measure-

ment error. Finally, ‘‘multiple measures’’ of the same latent variable can

help us estimate the measurement error variance. For example, in survey

research, analysts searching for a way to reduce the complexity of the

numerous variables available often focus on only the ‘‘best’’ of the avail-

able proxies. Instead, a better practice is to use MO, along with all avail-

able measures of the true but unobserved construct.

2. Choose variables for the overimputation model. Including appropri-

ate variables helps us satisfy MO’s IMMA assumption. To do this,
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three rules are useful to remember. First, as in MI, include all variables to

be used in the analysis model (e.g., Meng 1994). Since the overimputa-

tion model is linear, any important nonlinearities in the analysis model

should also be included in the MO model, such as via squared terms or

interactions. Second, include any variables that help predict the true

value of the latent variable. For instance, when overimputing income,

include available variables that typically correlate highly with income,

such as wealth, real estate values, occupation, investments, geographic

location, and so on. Similar to MAR in the missing data case, IMMA

might hold approximately, but small deviations from the assumption are

unlikely to greatly affect estimates. For example, we show in BHK2,

Subsection- Robustness to Violating Assumptions, that MO is robust

to high levels of correlated measurement error, a clear violation of

IMMA. Better predictors can help to ensure this robustness. Third,

include variables that will help predict missingness and measurement

error even if not used in the analysis model. For example, include vari-

ables in the overimputation model even if they would induce post-treat-

ment bias if included in the causal analysis model; these extra variables

can create ‘‘super-efficient estimates’’ (i.e., efficiency higher than the

highest efficiency in an optimal application-specific analysis model).

3. Transform non-normal variables. With normal-based overimputation

models, use standard approaches as we would in linear regression.

For example, transform skewed variables to approximately sym-

metric (such as taking the log for income); recode ordered variables

to approximately interval; use variance stabilizing transformations

(such as a square root for counts).

4. Select or estimate measurement error variance. With gold standard

data, validation data, or multiple proxies, it is straightforward to esti-

mate the variance of the measurement error (as described in the third

section). When none of these data sources are available, we must

select the measurement error variance or a range of variances to

investigate how quantities of interest depend on this choice.

5. Choose the number of imputations. The number of imputations

needed to estimate parameters depends on the severity of the mea-

surement error or missing data. Larger measurement error variances

require more imputations in order for analysis model estimates to

have good properties. When there is gold standard data, one could

always ignore the mismeasurements, treat them as missing, and

impute them using MI. Thus, in these circumstances, MO will require

generally require fewer imputed data sets than MI. Graham, Olchowski,
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and Gilreath (2007) recommend a minimum of 10 imputed data sets to

avoid a drop in the relative power of imputation estimators. In our own

simulations in BHK2, Section- The Number of Datasets to Overimpute,

we find for MO that the increases in MSE and confidence interval cov-

erage tend to dissipate after 10 to 25 imputations, with as few as 5 impu-

tations usually being sufficient. Of course, the general principle remains:

More missingness or error requires more imputations and so more mea-

surement error also requires more imputations. Since the cost of addi-

tional imputations has dropped dramatically with hardware and

sofware advances, it is easy to add more imputations if you are unsure.

6. Run analysis model. Choose whatever analysis model you would have

run if all the data had been observed without error. Apply it to each

imputed data set and estimate your quantity of interest. Then combine

the estimated quantities of interest using either the so-called Rubin’s

rules, which average the estimates, or by combining 1/B simulations

from each of the B models. In situations where Rubin’s rules may be

suspected of having poor properties (Nielsen 2007; Robins and Wang

2000), our approach makes bootstrap-based inference easy: Simply

create a large number of imputations (say, 100) and use the empirical

distribution of estimates over these imputations for confidence inter-

vals and statistical tests. Standard analysis software (such as Clarify

in Stata or Zelig in R) makes it as easy to run an analysis on B data sets

and to combine them as it is to run them on one.

7. What can go wrong? With gold standard data, MO’s two-step estima-

tion procedure makes it, like MI, highly robust to misspecification,

especially compared to structural equation-like approaches. The rea-

son is that imputations only affect the missing or mismeasured values

in the data set and leave the observed data untouched. Nevertheless,

potential pitfalls include the following. First, using MO, or any mea-

surement error procedure, to deal with very small degrees of measure-

ment error may reduce bias at the expense of a larger increase in

variance, although in this situation, the procedure will usually make

little difference. Second, when entire variables are measured with

large amounts of error, the results will be more model dependent: Just

as in MI applied to data with high degrees of missingness, less infor-

mation in the data has consequences that can only be made up by

more data or more assumptions. Of course, making believe there is

no measurement error in these situations will normally be consider-

ably worse than using MO. MO inferences will still normally remain

within the minimal-assumption bounds we offer, and so users should
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be sure to consult the bounds as a check. One can also revert back to

MI, and coding all cell values with error as missing, if you believe the

information in the proxy is so misleading that it is better to ignore.

Third, violations of the key assumptions about measurement error,

especially strong correlations between the measurement error and the

observed or latent data, can create problems for MO. In fact, if there is

gold standard data, MAR holds, and if the measurement error strongly

violates our assumptions, it might be better to impute the missing data

ignoring the mismeasurements (see BHK2, Subsection- Robustness

to Violating Assumptions, for evidence on this point). Fourth, over-

imputation is the wrong approach for a certain class of measurement

error called Berkson error, where the error is added to the proxy to

create the truth rather than to the truth to create the proxy. Finally,

theoretical conditions exist under which simple techniques like list-

wise deletion or ignoring the problem altogether will be preferred

over MO, but these conditions normally make it highly unlikely that

one would continue to trust the data for any analyses at that point

(King et al. 2001).

Empirical Applications

We now offer three different types of illustrations of the use of MO, applying the

checklist in the fourth section to different data sets. First, we study measurement

error in surveys. Second, we offer a natural setting where the true value is known

but recovered using variables with increasing naturally observed measurement

error. And finally, we provide a replication where the level of error, caused by

aggregating small samples, can be analytically determined.

The Effect of Political Preferences on Vote Choice

In this section, we apply MO to an extremely common source of measure-

ment error, the responses to public opinion surveys. We follow Ansolabe-

here, Rodden, and Snyder (2008) and study the causal effect of opinions

about economic policy on vote choice. These authors argue that measure-

ment error underestimates the effect of policy preferences on vote choice and

use a simple alternative method of removing measurement error, averaging

many multiple measures of the same concept.

Although the data requirements mean this approach is not always applica-

ble, it is powerful and requires few assumptions, when feasible. They con-

sider K ¼ 34 survey items w1;w2; . . . ;wKf g, all taken to be imperfect
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indicators of an unobserved variable, x, and assume common measurement

error variance s2
k . That is, wik ¼ xi þ uik for each i, where E uik½ � ¼ 0 and

E u2
ik

� �
¼ s2

k . While any individual measure has variance s2
x þ s2

k ; the aver-

age of the measures, �wi ¼ 1
K

PK
k¼1 wik has variance s2

x þ �s2
�

K; where

�s2 ¼ 1
K

PK
k¼1 s

2
k is the average measurement error variance among the items.

If all measures have similar amounts of measurement error, then the average

of the items will have far lower levels of measurement error than any single

item.

We now show that in the more usual situation where researchers have

access to one or only a few measures of their key concepts, MO can still

recover reliable estimates because it makes more efficient use of the data and

available assumptions. It also avoids the assumption that all available mea-

sures are indicators of the same underlying concept. To illustrate these fea-

tures, we reanalyze Ansolabehere et al. (2008) with their data from the

American National Election Survey in 1996. Using their general approach,

we find that a one standard deviation increase in economic conservatism

leads to a 0.24 increase in the probability of voting for Bob Dole.

To use MO, we start by collecting data in Ansolabehere et al. (2008) from

the American National Election Survey in 1996 (Checklist item #1). The key

component of the data is the large number of measurements of the same

underlying concept—economic policy preferences. This is useful informa-

tion because it will allow us to calculate the measurement error variance nec-

essary for MO. We then perform MO using only 2 of the 34 variables. To

avoid cherry-picking results, we reran the analysis using all possible subsets

of two variables chosen from the available 34. For each of these pairs, we

overimputed the first variable, using the second as a proxy, along with party

identification, ideology, and vote choice to minimize the potential for violat-

ing IMMA (Checklist item #2). The second proxy allows us to estimate the

amount of measurement error in the first mismeasured variable using the

techniques in BHK2, Subsection Multiple Proxies (Checklist item #4). Given

the distribution of the data, there was no need to transform the variables

(Checklist item #3) and we used 20 imputations (Checklist item #5).

With the overimputations in hand, we then estimate the effect of that over-

imputed variable on voting for Bob Dole using a probit model (Checklist

item #7). We compare this method with simply taking the pairwise averages

and using them as the measure of economic policy preferences. These

approaches mimic a common situation when social scientists have access

to relatively few variables.

Figure 4 shows the relationship between the two estimates. Each column

represents the average of the estimated effects for one measure, averaged
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across all its pairs. Note that for every variable, MO estimates a larger effect

than does averaging, as can be seen by the positive slope of every line. The

‘‘gold standard’’ estimate suggested by Ansolabehere et al. (2008) is well

above any of the pairwise averaging estimates, but it lies firmly in the middle

of the pairwise MO estimates. This striking result shows that MO makes

more efficient use of the available data to correct for measurement error.

While the average results of the pairwise MO align with the 34 measure

gold standard, there is considerable variance among the individual measures.
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326 Sociological Methods & Research 46(3)



This is in part due to a fundamental difference between MO and averaging

(or more general scale construction techniques like factor analysis). MO cor-

rects measurement error on a given variable instead of constructing a new

measure of an underlying concept. This often valuable result allows us to

investigate how the estimated effect of economic preferences varies across

the choice of measure. With pairwise MO, we find that classic economic

ideology items regarding the size of government and its role in the economy

have a much larger estimated effect on vote choice than questions on welfare

policy, equal opportunity, and poor people—all of which were treated the same

under averaging. Furthermore, the lowest estimated effects come from vari-

ables that relate to views of the poor and their benefits from the government,

which in part may be stronger proxies for other issues such as racial politics.

As Ansolabehere et al. (2008) point out, averaging is a ‘‘tried and true’’

method for alleviating measurement error and it works well when many

questions exist for a given concept. When, as usual, less information is avail-

able, MO may be able to extract more information from the available data.

Unemployment and Presidential Approval

To show a practical example of our MO solution with increasing levels of

measurement error, we next construct a measurement error process from a

natural source of existing data.

It is often the case, particularly in yearly aggregated cross-national data,

that key independent variables are not measured or available at the correct

point in time the model requires. Some economic and demographic statistics

are only collected at intervals, sometimes as rarely as once every 5 or 10

years. The available data, measured at the wrong period in time, are often

used as a reasonable proxy for the variable’s value in the desired point in

time, with the understanding that there is measurement error which increases

the more distant the available data are from the analyst’s desired time period.

We mimic this process in actual data by intentionally selecting a covariate at

increasing distance in time from the correct location, as a natural demonstration

of our method in real data. In our example, we are interested in the relationship

between the level of unemployment and the level of Presidential approval in the

United States, for which there are rich data of both series over time.14

We assume that the correct relationship is approximately contempora-

neous. That is, the current level of unemployment is directly related to the

President’s approval rating. Unemployment moves over time, so the further

in time our measure of unemployment is from the present moment, the

weaker the proxy for the present level of unemployment, and the more the
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measurement error in the available data. We iteratively consider repeated

models where the measurement of unemployment we use grows one addi-

tional month further from the present time.

We compare this to the most common measurement error model employed

in the social sciences, the errors-in-variables model (EIV). The EIV approach,

reviewed in BHK2, Section- Robustness to Correlated Measurement Errors,

relies on the existence of multiple proxies. To naturally create two proxies with

increasing levels of measurement error, we use a measure of unemployment k

months before the dependent variable and k months after.15

We estimate the relationship between unemployment and presidential

approval using our MO framework, and the common EIV approach, while

using pairs of proxies that are from 1 to 12 months away from the present.

We also estimate the relationship between approval and all individual lags

and leads of unemployment; these give us all the possible denial estimators,

with all the available proxies. In Figure 5, these coefficients from the denial

estimators, are shown in red, where the red bar represents the 95 percent con-

fidence interval for the coefficient and the center point the estimated value.

The x-axis measures how many months in time the covariate used in the model

is from the month of the dependent variable. Positive values of x use proxies

that are measured later than desired, negative values are measured too far in the

past. The correct, contemporaneous relationship between unemployment and

approval is in the center of this series (when x is 0) marked in black.

The EIV estimates are shown in blue. We see that with increased measure-

ment error in the available proxies, the EIV estimates rapidly deteriorate.

When the proxies for current unemployment are four months from the value

of the dependent variable, the EIV estimates of the relationship are 1.40 times

the true value, that is, they are biased by 40 percent. At six months, the con-

fidence interval no longer contains the true value and the bias is 98 percent.

With unemployment measured at a one-year gap, EIV returns an estimate

6.5 times the correct value. The MO estimates, however, are comparatively

robust across these proxies. The confidence intervals expand gradually as the

proxies contain less information and more measurement error. The bias is

always moderate, between þ16 percent and �12 percent and always clearly

superior to the denial estimator, until the proxies are fully 12 months distant

from the dependent variable. Finally, at one year’s distance, the MO estimates

are biased by 46 percent, while the denial estimator is biased at�48 percent.16

We could do better than shown; we do not propose that this is the best pos-

sible model for covariates that are mismeasured in time.17 Rather, what we

have shown in this example is that in naturally occurring data, in a simple

research question, where we can witness and control a measurement error
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process, the most commonly used model for measurement error fails cata-

strophically, and our framework is highly robust to even a difficult situation

with proxies with negatively correlated errors.

Social Ties and Opinion Formation

Having looked at examples where other measurement error methodologies

are available, we turn to a conceptually simple example that poses a number

of difficult methodological hazards. We examine here the small area estima-

tion challenges faced in the work of Huckfeldt, Plutzer, and Sprague (1993).
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Figure 5. An experiment in measurement error, in the estimation of the relationship
between unemployment and Presidential approval, whose true, contemporaneous
value is shown in black. The blue confidence intervals represent errors-in-variables
(EIV) estimates of this relationship using proxies of unemployment measured
increasingly distant in time. The EIV estimates fail quickly, as the proxies move away
from month zero. The green estimates show the robust multiple overimputation
(MO) estimates of the relationship. These are consistently superior to the red esti-
mates which show the denial estimators using the unemployment rates mismeasured
in time, ignoring the measurement error.

Blackwell et al. 329



The authors are interested in the social ties that shape attitudes on abortion. In

particular, they are interested in contrasting how differing networks and con-

texts, such as the neighborhood one lives in, and the church you participate

in, shape political attitudes.

Seventeen neighborhoods were chosen in South Bend, Indiana, and 1,500

individuals randomly sampled across these neighborhoods. This particular

analysis is restricted to the set of people who stated they belonged to a church

and could name it. The question of interest is what shapes abortion opinions,

the individual-level variables common in random survey designs (income,

education, party identification), or the social experiences and opinions of the

groups and contexts the respondent participates in. Abortion attitudes are

measured by a six-point scale summing how many times you respond that

abortion should be legal in a set of six scenarios.

The key variable explaining abortion opinion is how liberal or conserva-

tive are the attitudes toward abortion at the church or parish to which you

belong. This is measured by averaging over the abortion attitudes of all the

other people in the survey who state they go to the same named church or

parish as you mention. Obviously, in a random sample, even geographically

localized, this is going to be an average over a small number of respondents.

The median number is 6.18 The number tends to be smaller among Protes-

tants who have typically smaller congregations than Catholics who partici-

pate in generally larger parishes. In either case, the church positions are

measured with a high degree of measurement error because the sample size

within any church is small. This is a classic ‘‘small area estimation’’ problem.

Here we know the sample size, mean, and standard deviation of the sampled

opinions from within any parish that lead to the construction of each obser-

vation of this variable.

This is an example of a variable with measurement error, where there are

no other proxies available, but we can analytically calculate the observation-

level priors. For any individual, i, if ci is the set of ni respondents who belong

to i’s church (not including i), the priors are given by:

p wijx�i
� �

¼ N �ci; sd cið Þ=
ffiffiffiffi
ni

pð Þ; ð7Þ

where the sd cið Þ can be calculated directly as the standard deviation within a

group if ni is generally large, or we can estimate this with the within-group

variance, across all groups, as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

P
i wij � �wj

� �2
q

.

This is clearly a case where the measurement error is heteroskedastic; dif-

ferent respondents will have different numbers of fellow parishioners

included in the survey. Moreover, this degree of measurement error is not
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itself random, as Catholics—who tend to have more conservative attitudes

toward abortion—are from generally larger parishes, thus their church atti-

tude will be measured with less error than Protestants who will have greater

measurement error in their church attitude while being more liberal. The

direction of the measurement error is still random, but the variance in the

measurement error is correlated with the dependent variable. Furthermore,

while we have focused on the measurement error in the church attitude vari-

able, the authors are interested in distinguishing the socializing forces of

church and community, and the same small area estimation problem applies

to measuring the average abortion position of the community a respondent

lives in. Obviously though, the sample size within any of the 17 neighbor-

hoods is much larger than for the parishes and thus the degree of measure-

ment error is smaller in this variable.19 Finally, as it is survey data, there

is a variety of missing data across the variables due to nonresponse. Despite

all these complicating factors, this is a set up well suited to our method. The

priors are analytically tractable, the heterogeneous nature of the measure-

ment error poses no problems because we set priors individually for every

observation, and measurement error across different variables poses no prob-

lems because the strength of the MI framework is handling different patterns

of missingness.20

We replicate the final model in table 2 of Huckfeldt et al. (1993). Our Table 1

shows the results of the naive regression subject to measurement error in

the first column. Parish attitudes have no effect on the abortion opinions

of churchgoers, but individual-level variables, such as education and party

identification and the frequency with which the respondent attends church,

predict abortion attitudes. The act of going to church seems to decrease

the degree of support for legalized abortion, but the beliefs of the fellow

congregants in that church have no social effect or pressure. Interestingly,

Catholics appear to be different from non-Catholics, with around a half

point less support for abortion on a six-point scale.

The second column applies our model for measurement error, determin-

ing the observation-level priors for neighborhood and parish attitudes ana-

lytically as a function of the sample of respondents in that neighborhood

and parish. Only the complete observations are used in column 2, so differ-

ences with the original model are due to corrections of the measurement

error in the small area estimates. We see now the effect of social ties.

Respondents who go to churches where the support for legal abortion is

higher, themselves have greater support for legal abortion. This may be

because abortion is a moral issue that can be shaped in the church context

and influenced by coreligionists, or this maybe a form of self-selection of
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church attendance to churches that agree on the abortion issue. With either

interpretation, this tie between the attitudes in the network of the respondent’s

church and the respondent’s own personal attitude disappears due to measure-

ment error caused by the inevitable small samples of parishioners in any indi-

vidual church.

Of course, our MO approach can simultaneously correct for missing data

also, and MI of nonresponse increases by one half the number of observations

available in this regression.21 Most of the same results remain, while the stan-

dard errors shrink due to the increase in sample size. Similar to the parish

variable, local neighborhood attitudes are now statistically significant at the

95 percent level. The one variable that changes noticeably is the dummy

variable for Catholics which is halved in effect and no longer statistically sig-

nificant once we correct for measurement error, and the rest of the effect dis-

appears when we impute missing data.22 In all, MO strengthens the author’s

findings, finds support for their theories in this particular model where pre-

viously there was no result, and aligns this regression with the other models

presented in their work.

Table 1. Determinants of Abortion Attitudes.

Naive
Regression

Model

MO
Measurement

Only

MO
Measurement

and Missingness

Constant 3.38** (1.12) 0.34 (1.79) �0.97 (1.56)
Education 0.17** (0.04) 0.15** (0.04) 0.14** (0.03)
Income �0.05 (0.05) �0.05 (0.05) �0.01 (0.05)
Party ID �0.10* (0.04) �0.11* (0.04) �0.08* (0.04)
Church attendance �0.57** (0.07) �0.55** (0.07) �0.51** (0.06)
Mean neighborhood Attitude 0.11 (0.21) 0.68 (0.44) 0.85* (0.39)
Mean parish Attitude 0.13� (0.07) 0.38* (0.17) 0.42** (0.14)
Catholic �0.48* (0.27) �0.26 (0.23) �0.05 (0.18)
n 521 521 772

Note: Mean parish attitudes are estimated by the average across those other respondents in the
survey who attend the same church. These ‘‘small area estimates’’ with small sample size and
large standard errors have an analytically calculable measurement error. Without accounting for
measurement error there is no discernable effect (column 1) but after applying MO (column 2)
to correct for measurement error, we see that the average opinion in a respondent’s congrega-
tion predicts their own attitude toward abortion. MO ¼ multiple overimputation.
**p < .01.
*p < .05.
�p < .10.
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Conclusion

Measurement error is a prevalent, but commonly ignored, problem in the

social sciences. The difficulties of use and assumptions have allowed few

methods proposed for it to be widely used in practice. We generalize the

MI framework to handle observed data measured with error. Our generaliza-

tion overwrites observed but mismeasured observations with a distribution of

values reflecting the best guess and uncertainty in the latent variable. We

view missing values as an extreme form of measurement error. However,

correctly implementing the MI framework to also handle ‘‘partially missing’’

data, via informative observation-level priors derived from the mismeasured

data, allows us to unify the treatment of all levels of measurement error

including the case of completely missing values.

This approach enables the rigorous treatment of measurement error across

multiple covariates, with heteroskedastic errors, and in the presence of viola-

tions of assumptions necessary for common measurement treatments. The

model works in survey data and time-series, cross-sectional data, and with

priors on individual missing values or those measured with error. With

MO, scholars can preprocess their data to account for measurement error and

missing data and then use the overimputed data sets our software produces

with whatever model they would have used without it, ignoring the measure-

ment issues. Along with the more application-specific techniques of, for

example, Imai and Yamamoto (2010) and Katz and Katz (2010), this repre-

sents a way to take measurement error more seriously.

The advances described here can be implemented when the degree of

measurement error can be analytically determined from known sample

properties, estimated with additional proxies, or even when it can only be

bounded by the analyst. However, often the original creators of new mea-

sures are in the best position to know the degree of measurement error

present and we would encourage those who create data to include their esti-

mates of variable or cell-level measurement error as important auxiliary

information, much as sampling frame weights are considered essential in

the survey literatures. Now that easy-to-use procedures exist for analyzing

these data, we hope this information will be made more widely available

and used.
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Notes

1. A cell here is one observation of one variable, which would be one element in a

data matrix. We call these priors because they represent prior information with

respect to the imputation model. They are posterior distributions with respect

to the measurement error model since they give us information on the location

of the true value, conditional on the mismeasured value.

2. One difference between missing data and data measured with error is that with

missing data, there are no additional parameters governing ‘‘how missing’’ the

observation is. With mismeasured data, we have to estimate its error variance.

But this is possible with a variety of data types, including a validation sample,

gold standard data, or multiple proxies, all of which we discuss subsequently.

3. This observed-data likelihood is difficult to maximize directly in real data sets

with arbitrary patterns of missingness. Fast algorithms to maximize it have been

developed that use the relationship between equations (2), (5), and the implied

regressions, using iterative techniques, including variants of Markov chain

Monte Carlo, EM, or EM with bootstrapping.

4. In this setting, the prior means are empirical priors, set by the (mismeasured) data

rather than auxiliary information or prior knowledge (Carlin and Louis 2000;

Efron 2013; Maritz and Lwin 1989; Robbins 1956).

5. This measurement error model implicitly assumes that the error is non-

differential or uncorrelated with the outcome variable. However, in BHK2,

Subsection- Robustness to Violating Assumptions, we show that multiple

overimputation (MO) is relatively robust to at least small violations of this

assumption, at least when compared to a more traditional errors-in-

variables approach.

6. We let yi, the dependent variable of the analysis model, follow a Bernoulli dis-

tribution with probability pi ¼ 1= 1þ exp �Xibð Þð Þ, where Xi ¼ x�i ; z
�
i ; si

� �0
and

b ¼ ð�7; 1; 1;�1Þ. The observed variables, x and z, are generated from a normal
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distribution with means x� and z� and measurement error variances 0.5. We allow

scattered missingness of a random 10 percent of all the cell values of x, and z

when s (a perfectly measured covariate) is greater than its mean. We created the

true, latent data x�; z�; sð Þ by drawing from a multivariate normal with mean vec-

tor ð5; 3; 1Þ and covariance matrix (1.5 0.5 �0.2, 0.5 1.5 �0.2, �0.2 �0.2 0.5).

Sample sizes are 1,000.

7. In this simulation, the variance of the estimates is swamped by the squared bias of

the estimates, so that any difference in the mean square error (MSE) is almost

entirely due to bias, rather than efficiency. More succinctly, these plots are sub-

stantively similar if we replace MSE with bias.

8. For a related problem of ‘‘editing’’ data with suspicious measurements, Ghosh-

Dastidar and Schafer (2003) develop an innovative multiple imputation frame-

work similar in spirit to ours, albeit with an implementation specific to their

application.

9. S. Y. Lee (2007) covers a number of Bayesian approaches to structural equation

modeling, including some that take into consideration missing data.

10. For these simulations, we have yi ¼ bxi þ Ei with b ¼ 1, Ei � N 0; 1:52ð Þ,
x�i � Nð5; 1Þ, and s2

u ¼ 1. Thus, we have r ¼ 0:5. We used sample sizes of

1,000 and 10,000 simulations.

11. More generally, simulations run at various values of the true r lead to the same

qualitative results as presented here. Underestimates of r lead to underestimates

of the true slope and overestimate of r lead to overestimates of the true slope.

12. If we use MO at all levels of r to generate the most assumption-free MO-based

bounds possible, the bounds largely agree with the minimal-assumptions

bounds.

13. These simulations also point to the use of MO as a tool for sensitivity analysis.

MO not only provides bounds on the quantities of interest but can provide what

the estimated quantity of interest would be under various assumptions about the

amount of measurement error.

14. Monthly national unemployment is taken from the Bureau of Labor Statistics,

labor force series. Presidential approval is from the Gallup historical series,

aggregated to the monthly level. We use data from 1971 to 2011. We use the last

three years of each four-year Presidential term of office, to avoid approval levels

within the ‘‘honeymoon’’ period, without adding controls into the model. We

added a monthly indicator for cumulative time in office, but this only slightly

strengthened these results, and so we leave the presentation as the simplest,

bivariate relationship.

15. That is, if we are attempting to explain current approval, we assume that the

unemployment k months in the past (the k lag) and k months in the future (the

k lead) are proxies for the current level of unemployment, which we assume is
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unavailable to our analyst. As k increases, the measures of unemployment may

have drifted increasingly far from the present unemployment level, so both

proxies employed have increased measurement error. We use these same two

proxies in each of our MO models (as previously described in the Monte Carlo

Evidence subsection and BHK2 Subsection- Multiple Proxies).

16. A partial explanation can be understood from robustness results we show in

BHK2, Section Robustness to Correlated Measurement Errors. In periods where

unemployment trends upward (or downward), the k-month lag and the k-month

lead of unemployment will generally have opposite signed measurement error.

So the measurement errors in the proxies will be negatively correlated. In figure

8 of BHK2, we demonstrate that this is a problem for both models, but that MO is

much more robust to this violation than the errors-in-variables model.

17. Adding other covariates into the imputation model could increase the efficiency

of the overimputations. Averaging the two proxies would give an interpolation

that might be a superior proxy to those used, and we demonstrate an application

of averaging across proxies in MO in the The Effect of Political Preferences on

Vote Choice subsection. Moreover, in many applications, if there is periodic

missingness over time in a variable, the best approach might be to impute all the

missing values in the series with an imputation model built for time-series cross-

sectional data, such as developed in Honaker and King (2010); this reinforces the

main thesis of our argument, that measurement error and missing data are funda-

mentally the same problem.

18. The mean is 10.2 with an interquartile range of 3 to 20.

19. Within parishes, the median sample size is 6, and only 6 percent of observations

have at least 30 observed responses to the abortion scale among fellow congregants

in their parish. We use the small sample, within-group estimate for the standard

deviations, pooling variance across parishes, when the resulting standard error is

0.2 greater than the standard error estimate using only observations within a partic-

ular parish. This changes a few small parishes. Within neighborhoods, however, the

median sample size is 47, fully 95 percent of observations have 30 or more respon-

dents in their neighborhood, and so we always estimate the standard deviation in

each neighborhood directly from only the observations in that neighborhood.

20. For additional work on small area estimation from an MO framework, see Hon-

aker and Plutzer (2011). In particular, there are additional possible efficiency

gains from treating the errors within individuals in the same church or commu-

nity as correlated, as well as bringing in auxiliary Census data, and this work

shows how to approach this with two levels of imputations at both the individual

and aggregated level.

21. Forty-seven percent of this missingness is due to respondents who answer

some, but not all, of the abortion scenarios that constitute the abortion scale.
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Knowing the pattern of answers to the other completed abortion questions, as

well as the other control variables in the model, help predict these missing

responses.

22. Catholics are still less likely to support abortion (a mean support of 3.1 com-

pared to 3.7 for non-Catholics), but this difference is explained by variables

controlled for in the model such as individual demographics and the social ties

of Catholic churches which have lower mean parish attitudes than non-Catholic

churches.
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