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Introduction

« Individual-level Effects

Outcome variable: individual knowledge and opinion

Effects: Persuasion, attitude formation, diffusion, gatekeeping,
priming, issue framing, etc.

Measurement: survey research

« Collective Effects: Impact on the national conversation

Outcome variable: activated public opinion, views of all those
trying to express themselves publicly about policy and politics
Classic definition of public opinion, predating survey research
Measurement

+ Previously: hallway conversations, “water-cooler events”,

soapbox speeches in public squares, editorials, etc.

« Now: 750M public social media posts/day
Target population: different than survey research!

* Surveys: pop quizzes of everyone, even uninformed & inactive

+ Social media: counts only activated opinion
Democracies: Can ignore individuals, but collective expression
sets agendas
Autocracies: Ignore criticism, but censor expression about
collective action
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Setup

« Signup 48 small media outlets (& > 12 others just for info)

+ 17 for trial runs, 33 in experiment, 2 in both
+ Median size: The Progressive, 50,000 subscribers

Thei

BEYONCE
FIERCE FEMINISM
HEALTH REFORM
FRACKING IS A
FEMINIST ISSUE

DEBSIERS &
NEW MEMOIR

« Establish 11 broad policy areas

+ Rules: (a) major national importance; (b) interest to outlets

+ race, immigration, jobs, abortion, climate, food policy, water,
education policy, refugees, domestic energy production, and
reproductive rights

- Using 11 rather than 1: more representative; larger n needed
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« Outlets Publish Simultaneously: (following usual procedures)
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- Distribute via website, print, video, podcast, etc.

+ Promote via Google adwords, social media, email lists, SEO...
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« (Ex post: Predictions accurate; flips, news shocks uncorrelated)
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Reasoning

« Cf. complete randomization: more power, efficiency, &
“political” robustness; less bias, model dependence, & research
costs; SEs as much as 600% smaller (Imai, King, Nall 2008)

-« Few experiments/outlet: Less interference; more heterogeneity

« Nation as unit of treatment: no spillover, more cost

« (Ex post: Automated text analysis & qualitative evidence:
indistinguishable from normal publications & practices; no
outlet received a single complaint)
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Quantities of Interest (& observable implications)

TN

Random Articles Pageviews Posts on Posts in

Research Design

Treatment Published
- Downloads from outlets
tics

Special access to Google Analy
Social media: King, Pan, Roberts (2017

Social media: Crimson Hexagon, Inc.;
Methods: readme, 2010; readme2, 2019

Subject Policy Area
)
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« Most analysts: fix n, run experiment, discover p-value

- If nis too large: waste time & resources
- If nis too small: waste the entire experiment

~ neither is acceptable with such massive logistical costs
« Power calculations: require knowing QOI!

- Better: fix p-value, run experiment sequentially, discover n

+ Collect only as much data as you need
(Why should you be in grad school longer than necessary?)
« Valid statistically under likelihood or Bayes
(Careful of misinformation in some applied literatures)
+ Need to check sensitivity to priors and models
+ We introduce new methods to:
« Evaluate robustness under frequentist theory
* Remove parametric assumptions

Research Design
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+ Our Stopping Rule:
-+ p < 0.05, joint test: day 1,2,3, policy, subject; forn,n -1, & n-2
+ recognizing more data is better
- and logistics are complicated (they might stop us!)

- Empirical result: n = 70 (35 experiments)

Classical p-values

Days

« Frequentist validation: extensive [non]parametric tests
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« More Results

« Opinion change: 2.3% change in direction of article opinion

« Large news media outlets: Observational evidence, >15x effect
+ Robustness checks

- # of unique authors: little change from effect on posts

+ Removing bots, retweets: No real change

+ Week 1 to 2 spillover, noncompliance: No evidence

- Treatment articles: representative of all on complexity, type
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« Summary
+ Small outlets: very large average effects
on pageviews, agenda (subject & policy), opinion change
- Larger outlets: even bigger average effects
- Heterogeneous effects: large, highly variable viral patterns
« Implications: for individual journalists
- Remarkable power; serious responsibility; not just another job
+ Implications: for ecosystem of media outlets
- Control over editorial boards and mastheads
+ Balance and diversity of outlet opinion
- Effects of fake news
+ Impact on agendas, elections, public policy, discourse
+ Journalism jobs: 25% drop in last decade
« What should be next?
+ We wrote a paper, built a platform, & showed how others can
« What experiment would you (or should we) run next?
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+ Quantities of Interest
- Absolute Increase: A5 = mean[Y,,.4(1)] - mean[ Y,eq(0)]
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Aa

+ Proportionate Increase: ¢y = ———————
mean,, [ Y,,4(0)]
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+ Model-Free Approach:

« Drop linearity & conditional independence assumptions
- Regress z,,4 on T, separately for each d

. Equivalent to dlfference in means for each day

« (perhaps with policy fixed effects)
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