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Abstract. Inference is the process of using facts we know to learn about facts we do not
know. A theory of inference gives assumptions necessary to get from the former to the
latter, along with a definition for and summary of the resulting uncertainty. Any one theory
of inference is neither right nor wrong but merely an axiom that may or may not be useful.
Each of the many diverse theories of inference can be valuable for certain applications.
However, no existing theory of inference addresses the tendency to choose, from the range
of plausible data analysis specifications consistent with prior evidence, those that inad-
vertently favor one’s own hypotheses. Because the biases from these choices are a growing
concern across scientific fields, and in a sense the reason the scientific community was
invented in the first place, we introduce a new theory of inference designed to address this
critical problem. We introduce hacking intervals, which are the range of a summary statistic
one may obtain given a class of possible endogenous manipulations of the data. Hacking
intervals require no appeal to hypothetical data sets drawn from imaginary super-
populations. A scientific result with a small hacking interval is more robust to researcher
manipulation than one with a larger interval and is often easier to interpret than a classical
confidence interval. Some versions of hacking intervals turn out to be equivalent to classical
confidence intervals, which means they may also provide a more intuitive and potentially
more useful interpretation of classical confidence intervals.

History: Accepted by J. George Shanthikumar, big data analytics.
Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/
mnsc.2020.3818.
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1. Introduction

potential “plausible” analysis choices can lead to a wide
range of empirical estimates, a range that is often

The numerous choices in even “best practice” data
analysis procedures lead to high levels of unmea-
sured and unreported uncertainty in research pub-
lications. These choices include, among others, vari-
able selection and transformations, data subsetting,
identification and elimination of outliers, functional
forms, distributional assumptions, priors, estimators,
nonparametric preprocessing (such as matching), and
procedures to control for unmeasured confounders
(such as difference in differences or instrumental
variables). See Wicherts et al. (2016) for an attempt
to enumerate a complete list. Classical statistical in-
ference conditions on whichever choices the analyst
makes and focuses on uncertainty induced by ob-
serving only one possible sample of data. This is
uncertainty across hypothetical data sets, where one is
observed and the rest might have come from an imag-
ined superpopulation. However, within the single ob-
served data set, the often considerable variation across

considerably larger than the uncertainty induced by
hypothetical sampling.

We thus propose that researchers (and readers)
ask a simple question that gets to the heart of whether
a quantitative conclusion can be trusted: “Would
another honest researcher, choosing different but still
reasonable analysis techniques, come to a different
conclusion?” The best way to answer this question is
the very process of science, where numerous re-
searchers work in cooperation and competition in
pursuit of a common goal. If one researcher publishes
a result that can be questioned by another, a healthy
scientific community will ensure that will happen,
and together with others, they will be more likely to
find the right answer. But what happens in the in-
terim when we write or read a paper today? How
do we increase the likelihood that the conclusions
in this paper could not be overturned by minor changes
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in the analysis methods that another reasonable re-
searcher might choose? We offer a quantitative frame-
work for answering these questions.

We use the term hacking to describe an earnest re-
searcher working hard to choose appropriately among
many data analysis choices. Although this term is
sometimes used to describe dishonest manipulation of
results, we use it solely (in the positive sense of a
“hackathon”) to refer to honest scientists genuinely
trying to get the right answer by making analysis
choices among many reasonable alternatives. For a
given model class and loss function, a hacking interval
is the smallest and largest value of a summary sta-
tistic (e.g., a coefficient in a regression, first difference,
risk ratio, or other quantity of interest) that can be
achieved over a set of constraints for which the re-
searcher, readers, and the scientific community would
like robustness. It quantifies the extent to which a
different, also reasonable, analyst could come to dif-
ferent conclusions. Researchers who report hacking
intervals are being more transparent about the evi-
dence available to support their hypotheses. Hacking
intervals are designed to reveal information that any
research publication should provide to make it less
likely to mislead researchers and readers of their
work. A major benefit of hacking intervals is that
they are easy to understand, interpret, and teach: we
think much easier than introducing hypothetical draws
from imaginary superpopulations. They can be taught
alongside, before, or even without reference to classical
confidence intervals or any other theory of inference.
They do not require knowledge of probability.

The hacking intervals we propose come in two
varieties. Prescriptively constrained hacking intervals
allow for an explicit definition of the analysis choices
reasonable researchers make, and they identify the
range of a summary statistic over these choices. They
are useful when one can limit which analysis choices
are valid. The second type, tethered hacking intervals,
avoids the explicit enumeration of analysis choices
and requires only that the predictive model chosen by
the researcher has a small-enough loss on the ob-
served data. Each type of hacking interval is a con-
sequence of the defined set of researcher constraints.
In a maximum likelihood scenario, tethered hacking
intervals are mathematically equivalent to profile
likelihood confidence intervals (as shown in Online
Appendix C.1). Our work therefore provides a new
interpretation of profile likelihood confidence inter-
vals that requires no understanding of probability.

Quantifying the potential impact of hacking is
especially—but not only—important if researchers
are (inadvertently) biased toward a favored hypoth-
esis. This is crucial because standard data analysis
procedures leave researchers in a situation that meets
all the conditions social psychologists have identified

that lead to biased choices. In the presence of high
levels of discretion, many analysis choices, little ob-
jective way to know which is best, and access to the
estimates that each choice resultsin, even honest, hard-
working, earnest researchers are likely to inadver-
tently bias results toward their favorite hypotheses
(Gilbert 1998, Kahneman 2011, Banaji and Greenwald
2013). If a researcher (or reader) is concerned that
analysis choices were only chosen because they yielded
results consistent with the bias of the researcher, a
hacking interval informs them of the degree to which this
can matter. A small hacking interval says that any re-
searcher making choices within our defined con-
straints, whether biased toward a conclusion or not,
could only have a small impact on the result. Hacking
intervals, defined via specific norms such as the ones
we suggest here, are a natural solution for conveying
the impact analysis choices can have for any one
publication, without the costly, time-consuming, and
sometimes dubious or tendentious process of ad hoc
sensitivity testing designed anew for each article.
Hacking intervals characterize the space of analysis
choices systematically with precise computational
and mathematical tools. This process can also provide
insight into the state of researcher bias in an entire
literature: if the hacking interval is large and the range
of conclusions from many published studies is small,
then this suggests researchers may be collectively
biased toward a specific conclusion.

There exist some formalized procedures that aim to
mitigate the impact of bias: for example, preregis-
tration, lists of “best practices,” enforced ignorance
(e.g., double-blinding experiments and journal re-
views), or requiring replication data sets (King 1995);
however, the problem of reasonable researchers being
able to reach a different conclusions would still exist
even if researchers were each unbiased. The sheer
number of possible analysis choices leaves unchecked
uncertainty in scientific results unless the space of
choices is rigorously defined and explored.

The prescriptive constraints and amount of loss
tolerated for tethered hacking are up to the user to
choose, so one could argue that these choices are
themselves subject to hacking. Although we argue
thatany choice of hacking interval constraints is better
than none at all, a set of best practices cannot only
remove the burden of making this choice but facilitate
comparison of hacking intervals across studies. Ac-
companying this paper, we provide the R package
hackint, which computes constraint-based and teth-
ered hacking intervals for linear models. Like R’s
built-in function for standard confidence intervals
confint, hackint requires as input only a model fitted
with Im. This linear model represents a “base” model
in the sense that hacking is defined relative to this
model. That is, the threshold for tethered hacking is a
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percentage of the base model’s loss, and the pre-
scriptive constraints are specified as modifications of
the base model (e.g., removing a feature from the base
model). The package itself is available on GitHub,'
and a quick demonstration is available in Online
Appendix A. The code used to produce results in the
paper is also available on GitHub.?

Throughout this work, we offer examples and il-
lustrations of hacking intervals, in the context of k
nearest neighbors (k-NNs), matching, variable se-
lection, support vector machines (SVMs), and in more
detail, linear regression. In Section 6, we present an
analysis of recidivism prediction, where we find
evidence that the Correctional Offender Management
Profiling for Alternative Sanctions (COMPAS) score,
which isa commonly used risk-scoring system used in
bail and parole decisions, is often miscalculated. This
can lead in practice to high-risk criminals being re-
leased, as well as low-risk individuals being unfairly
sentenced or denied bail or parole. Our evidence for
this conclusion is a set of individuals for which all
reasonable models (by our definition of reasonable
and according to our data set) from a particular model
class disagree with their COMPAS score. This is
followed by related work and further discussion in
Section 7. All proofs are available in Online Appen-
dix D.

2. Theories of Inference

Each of the diverse theories of inference is united by a
common goal—to understand if an observed effect is
robust over counterfactual worlds imagined to have
occurred. These theories can be distinguished by
which set of counterfactual worlds is assumed to be of
interest. For example, p-values consider if an effect is
robust to counterfactual data from a superpopulation.
Fisher’s exact p-values fix the data and measure if an
effectis robust to counterfactual treatment assignments
from every possible randomization. Causal sensi-
tivity analysis considers if an effect is robust to
counterfactual unmeasured confounders from a defined
set (Liu et al. 2013, Ding and VanderWeele 2016).
Bayesian credible intervals define results as robust to
counterfactual worlds, generated by redrawing the
data from the same data-generating process, given
the observed data and assumed prior and likeli-
hood model.

In part because the sum of uncertainties from dif-
ferent forms of inference is usually too large to be able
to conclude almost anything at all, current practice is
to present, in every applied publication, intervals or
another summary from only one chosen form of un-
certainty, stemming from a single theory of inference,
and to temporarily assume away other forms of un-
certainty. Another reason for temporarily ignoring
all but one form of uncertainty is that one theory of

inference may seem to be of more use than another
depending on context. For example, despite studies
showing a strong correlation between smoking and
lung cancer, the question of whether smoking caused
lung cancer was unsettled in the 1950s because of the
possibility of an unmeasured confounding genetic
variable. The Cornfield Conditions assumed that the
causal effect was zero and deduced properties of the
unmeasured confounding genetic variable, proper-
ties that were deemed biologically infeasible (Cornfield
et al. 1959). This approach to inference was vital to
taking the scientific community from facts that were
known (smoking correlates with lung cancer, and
there is an approximate biological limit on how
much a genetic variable and smoking could be re-
lated) to a fact that was unknown (smoking causes
lung cancer). Many other sources of uncertainty also
afflicted this inference, but confounding bias was the
largest perceived threat to validity; therefore, it was
well worth it for researchers to at least temporarily
set aside other sources of uncertainty.

We introduce our hacking theory of inference to
address the growing crisis in science across fields
based on the mistrust of published scientific results
because of high degrees of researcher discretion. As
such, our theory of inference considers if a substan-
tive result is robust to counterfactual researchers mak-
ing counterfactual analysis choices from a defined
set larger than any one researcher would normally
consider. We try to define this set of analytical de-
cisions based on what all reasonable researchers
from the entire scientific community might choose.
Results from our theory of inference, like all others,
are based on a set of counterfactual worlds, but it is
designed precisely to respond to the current concern
in the community.

We hypothesize which analysis choices reasonable
researchers might make, either by explicitly con-
straining their choices or by allowing a tolerance in
the loss function. From this, we then deduce the range
of effects—the hacking interval—of results that would
have been found within these constraints. A hacking
interval can therefore be used to judge whether the
observed effect is robust to researcher choices. Al-
though a hacking interval is designed to estimate the
range of conclusions that reasonable researchers could
report, any researcher acting within the constraints
will report results within the hacking interval. Be-
cause hacking intervals are designed to character-
ize conservatively all reasonable researcher choices,
any researcher should report almost the same hack-
ing interval.

An alternative to our approach is a greatly ex-
panded Bayesian model (perhaps via robust Bayes
combined with Bayesian model averaging) that for-
mally specifies all possible modeling decisions, enables a
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choice of priors or classes of priors and the many as-
sociated hyperprior values over this large set, and
computes classes of posteriors as a result. We do not
recommend this approach because it adds numerous
researcher choices for which prior information is rarely
available and thus, may exacerbate the very problem of
hacking we seek to address. Our preferred theory of
inference explicitly gives up the goal of full posterior
distributions or classes of posterior distributions. In
their place, it seeks the more limited goal of an interval
as a summary of uncertainty. What we get in return for
limiting our goal to intervals is clearer ways of spec-
ifying assumptions, more effective ways of limiting
researcher discretion, and easy to interpret results.

Hacking intervals, classical frequentist confidence
intervals, Bayesian credible intervals, and others each
convey important but different components of the
strength of evidence in the observed data. However,
hacking intervals may offer an especially natural
starting point in analysis and in teaching. When re-
searchers calculate numerical results of scientific in-
terest, they need to quantify how strongly the ob-
served data support their result. As with p-values,
classical confidence intervals quantify the robustness
of the result to sampling variability. If the result could
be reversed under different data sets that are likely to
have occurred under a specific sampling scheme, the
result is not robust. Similarly, if a result could be
reversed under different but also reasonable analysis
choices, then the result is not robust. A large interval
of either type should be regarded as lack of robustness
of a type. However, hacking intervals may be a more
natural starting point. Compared with classic confi-
dence intervals, hacking intervals

1. represent uncertainty that always exists,

2. are easier to understand and explain,

3. are natural even when the superpopulation imag-
ined in classical inference is not, and

4. are often wider than classical confidence intervals.
On the second point, hacking intervals are the solu-
tions to an optimization problem that requires no
understanding of probability. In contrast, despite
repeated clarifications of their interpretation (Wasser-
stein and Lazar 2016), frequentist confidence intervals
are routinely misinterpreted and misexplained, to the
point where they have even been banned in some
circles (Trafimow and Marks 2015) (see Section 7).

In regard to the third point in the list, consider
problems from the political science fields of com-
parative politics and international relations, where
country-level or time series cross-sectional data are
available. The cause of (for instance) civil wars is
deeply important for understanding the past, and
we may like to determine patterns that characterize
political situations that have led to civil wars. One
might hypothesize that countries with many people

in poverty, having many young men, with neigh-
boring countries in civil war, and with no strong
government could be prone to have civil wars. The
data are observational, randomization is impossible
for events that happened in the past, and no more
relevant data may ever be collected (atleast until more
civil wars of the same type occur). In situations like
these, researchers often use some type of regression to
estimate causal relationships. If the researcher learns
that a variable has a large coefficient in the regression
for predicting aspects relating to a civil war, then she
may use confidence intervals to determine whether
this result is robust—robust across possible model
specifications. She may use traditional inference no-
tation (confidence intervals, null hypotheses), but
because the idea of a superpopulation may not even
make sense, the null hypothesis does not exist, and
she may find it more natural to compute a hacking
interval. Researchers in this field are not interested in
constructing an imaginary superpopulation of world
systems with different countries; we really only care
about the actual countries and their real civil wars.
The question of interest, which hacking intervals
address, is whether the researcher can claim a robust
empirical relationship or whether she demonstrated
only thatit was merely possible to find one of a million
model specifications that was consistent with her
causal hypothesis. In this case, the researcher may
wish to focus on the uncertainty in a hacking interval,
rather than a classic confidence interval. However, to
do this requires a specific mathematical framework
for this interval, a subject to which we now turn.
Given these four relative advantages of hacking
intervals and that the analyst simply wants to find
patterns in the data that are robust, we recommend
that researchers calculate a hacking interval first and
then decide if calculating a classical interval adds value.

3. Prescriptively Constrained

Hacking Intervals
Denote X € X Cc R™ as covariates, Y€ Y CR" as
outcomes, Z € Z =X x Y asdatasets,andf: X = Y
as prediction functions from a class 7, where ¢ € W
denotes a vector of hyperparameters. For example,
Fy could be the space of all binary decision trees of
maximum depth ¢. Let L : ZX Fy x W — R be a loss
or regularized loss function and t: ZX X X Fy, = R
be a summary statistic of interest. The loss function
may or may not depend on the hyperparameters 1,
so if not, we omit writing 1. Similarly, although the
summary statistic must depend on f, it may or may
not depend on Z, which is the observed training data,
or X"W) which are covariates for observations the
modelis not trained on. Depending on the context, we
may omit writing Z and /or X"¢") in the definition of £.
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For hyperparameters 1, training data Z € Z, and
optionally, test data X®ew) we assume the user finds
f* that minimizes the loss L(Z,f*, ) and then, com-
putes the summary statistic t* := {(Z, X"V, f*) based
on this result. For instance, in linear regression, the
user finds the linear function f*(x) = x’* that mini-
mizes the quadratic loss on the data set Z = [X,y].
Possible summary statistics include an estimate of a
single regression coefficient #(f*) = ,8;, a goodness-of-
fit measurement of f* on Z, or a prediction tH(x"¢W), f*) =
FH(xnew)) =xneWTB* on a single test observation
x("eW) € X Our interest is in the range of summary
statistics t* that could be achieved if the researcher
was permitted to adjust the data set Z and hyper-
parameters 1.

The approach to this problem is to explicitly con-
strain data adjustments ¢: Z — Z to a set ® and
hyperparameters to a set W. We assume that ¢ can be
separated into two functions ¢, and ¢, such that for
any Z = [X, Y] wehave ¢(Z) = [y (X), py(Y)]. We then
wish to calculate the minimum and maximum sum-
mary statistics over these two sets, ¥ and ®, which
constrain researcher choices:

nin = in, ¢ (¢<Z>,¢x (X<“6W))ra§§gin L@ f, w)),
1)

Amax := max f
YeW,ped

feFy
()

Notice that hyperparameters ¢ impact amin and amax
through F, (e.g., by controlling the maximum depth
of decision trees) as well as through the loss directly
(e.g., by controlling the regularization). In other words,
Y is assumed to contain all relevant hyperparameters
to determine hard constraints on the function class as
well as soft constraints through regularization. We
define the interval [amin, dmax] as the prescriptively
constrained hacking interval. For example, if the sum-
mary statistic t is a prediction of f on a new point
xMeW) then Equations (1) and (2) can be written as
Amin = Min

YeV,ped f((PX (X(HEW)))
st. f €argmin L((2),f, )
Fy
max

PeW ped f ((PX (x(neW)))
st. feargmin L(P(2),f, ),
Fy

y
where “s.t.” stands for “subject to.”

Although a prescriptively constrained hacking inter-
val is designed for a single loss function, one could in-
clude in ¢ a hyperparameter that switches between

Omax =

$(Z), i (x<“ew)),argminL(ep(zxf,eb)).

more than one loss function, allowing for specification of
the loss function to be among the researcher choices.

Instead of using her own discretion, a researcher
may pick all or some of the hyperparameters based
on cross validation. To compute the prescriptively
constrained hacking interval in this case, the objec-
tive function t in Equations (1) and (2) is evaluated
by first computing the optimal hyperparameters
based on cross validation (which will depend on the
data adjustment function ¢ and the remaining non-
cross-validated hyperparameters, if any) and then
plugging them into t.

3.1. Examples

We present examples of prescriptively constrained
hacking intervals for, first, the simple example of
k nearest neighbors (k-NN) (where the researcher
chooses k within a reasonable range) and then, the
more complex example of adding a new feature
(where the researcher adds a new feature constrained
by its relationship to existing data). Using results from
Morucci et al. (2018), we also show the example of
matching for causal inference (where the researcher
chooses a matching algorithm) in Online Appendix B.

3.1.1. k-NN. This is a simple example. Suppose we
have observed data Z = {x; y;}/.,;, and we wish to
predict on a new point x"¢V) by averaging nearby
observations. In this example, we will keep the data Z
fixed but allow the researcher to choose the hyper-
parameter k, the number of nearest neighbors over
which to average. To construct a simple prescriptively
constrained hacking interval, we define a subset of
reasonable hyperparameter choices W, which in this
case, we can write as a range [kmin, kmax], and find the
range of predictions on a new point x™") subject to
the constraint that k € [kmin, kmax]:

ind S0
max/ming ; My Yo
where 771(-]]-{) is an indicator that is one if x; is within the k
nearest neighbors of x; and zero otherwise. This range
of predictions is the prescriptively constrained hacking
interval. Notice that there is no loss function. The
hyperparameter k allows for only one function in the
function space Fi (namely, the one that averages over
the k nearest neighbors). To solve this problem, we
evaluate the nearest neighbor average for each k
within the range W = [kmin, kmax]-

Prescriptively constrained hacking intervals require
that the researchers justify to readers their choice of \¥,
and we recommend that this discussion be briefly
included in every paper. This approach therefore
does not remove all research discretion and arguably,
not all hacking, but it changes the nature of scholarly
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papers from a justification of a single specification to
one where they justify a definition for the range of
reasonable specifications.

One possibility for this choice is to center ¥ = [kpin,
kmax] around a fixed value and calculate the hacking
interval over [kmin, kmax] constraints of increasing width.
For example, find k* € [1,n — 1] that minimizes the
training error and then find the hacking interval over
W(m) = [k* —m, k* + m] N [1,n—-1] for each m=1,2,
3,...,Mmax. Figure 1 shows the results of such a
procedure for a data set in two dimensions and
xMeW) = (0.5,0.5). We find that k¥* = 5 minimizes the
training error, and the resulting prediction on x"¢") is
0.6. However, if the researcher is allowed to pick any k
in [k* =2,k +2] =[3,7], for example, then the pre-
diction ranges from 0.57 to 0.70. This is the hacking
interval for m = 2. Displaying the hacking interval as a
function of m illustrates the sensitivity of the hacking
interval to the freedom given to the researcher.

Another choice for the range of k could be to use
prior information of acceptable past researcher choices.
We might choose the range of k large enough to in-
clude the smallest and largest k values used in k-NN
in any article in the last five years in that field. In
practice, that interval may actually be the smallest
and largest values that would not be objected to
by reviewers.

Other researcher choices for k-NN that we did not
consider in this example could include the distance
function or the weighting of the k nearest neighbors.
The use of k-NN as the predictive function class could
alsobe considered a researcher degree of freedom. We
could use a binary hyperparameter to switch between
k-NN and any other regression algorithm.

3.1.2. Adding a New Feature. The addition of a new
feature to a given collection of features, possibly from
existing features (such as an interaction term) or from
new data, is a data adjustment that can impact the
conclusions about prediction models. A prescrip-
tively constrained hacking interval in this context is
the range of a summary statistic that can be achieved
over all of the possible choices made by the researcher
about new features, subject to explicit constraints on
those choices. If the researcher is given the freedom to
choose each of n feature values (one for each obser-
vation), then solving this problem requires optimiz-
ing over a potentially large space because there are n
choices made by the researcher. Fortunately, it may
only be necessary to specify a small number of at-
tributes about the new feature to calculate its impact
on the summary statistic. The prescriptively con-
strained hacking interval would then be an optimi-
zation problem over a smaller space of attributes,
subject to explicit constraints on those attributes.

In a causal inference setting, where the researcher
observes a treatment feature among other possibly
confounding features, sensitivity analysis deals with
this exact problem. The goal is to find the impact on a
causal effect (the summary statistic) of an unmea-
sured confounder u (the new feature).? To do this, one
needs to choose a value for several attributes about
the unmeasured confounder. There are a number of
approaches to this problem that require different
attributes of u to be chosen (see Liu et al. 2013 for a
review), but generally, only a few attributes are re-
quired: its distribution, its relationship to the out-
come, and its relationship to the treatment. In ap-
plications of causal sensitivity analysis, a researcher

Figure 1. (Color online) (Left panel) Observed Data with Distance to k = 3,5, and 7 Nearest Neighbors Highlighted,
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Notes. (Right panel) Hacking intervals as a function of the hyperparameters space width m. m = 2 corresponds to a hacking interval over

researcher choice [k* —2,k* +2] = [3,7].
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will often display the adjusted causal effect for each of
a few choices of these attributes. If we explicitly define a
range of choices for each attribute, then the maximum
and minimum causal effects over these ranges are a
prescriptively constrained hacking interval.

The motivations of causal sensitivity analysis and
prescriptively constrained hacking are different. In
causal sensitivity analysis, u exists but is unmeasured
by the researcher. Constraints on the values of the
attributes of u are based on what we believe is sci-
entifically reasonable. In prescriptively constrained
hacking, u is created by the researcher. Constraints on
the values of the attributes of u are based on what we
believe is a reasonable amount of researcher freedom.

We now define our approach in more detail. Let
Y=(y,.. .,yn)T €{-1,1}"be a n X 1 matrix of observed
binary outcomes, X = (x/,...,x)" be an n X p matrix
of observed covariates, and W = (wy, ..., w,)" € {0,1}"
be an 7 X 1 matrix of observed binary covariates. In a
causal inference setting, W is the treatment. The re-
searcher degrees of freedom constitute the choice
of an additional binary covariate U = (1, .. L)’ e
{0,1}". This is equivalent to the choice of a data ad-
justment function ¢ : [Y, X, W] = [Y, X, W, U]. After ¢
has been chosen, we assume the researcher finds a
model f from a set of linear functions F of the form
f([x,w,u]) = Bo + x' B, + Bww + Buu by minimizing the
logistic loss function:

L(IX, W, U],f) = Zlog(1+eyf(xl“’l“')

Notice that this is equivalent to maximizing the
likelihood under the model: logit Pr(Y =1 |x, w,u) =
f([x, w,u]), where Y is the random variable corre-
sponding to the observed y. In other words, the re-
searcher performs logistic regression. (For simplicity,
the objective is fixed, and there are no user choices
except to add the extra feature.) We further assume
the researcher is interested in the odds ratio of y and w
controlling for covariates x and u:

Pr(Y=1|x,w=1,u)
Pr(Y=1|x,w=0,u)’

ORywlx,u =

so we set the test statistic to be t(f) := ef. The steps
followed by the researcher can be summarized as follows:

e Step la. Choose a data adjustment ¢ € ® (we
discuss @ later).

e Step 1b. Find f([x, w, u]) = fo + X B, + Pt + Puut
that minimizes the logistic loss on the adjusted data,
(Y, X, W,U) = (Y, X, W).

° Step 1c. Calculate the summary statistic ORyw|x u=

H(f) = e,

The prescriptively constrained hacking interval is
the maximum and minimum values of #( f) that
can be achieved over all of the possible researcher
choices of ¢ € . There are no hyperparameters in
this example.

Interestingly, we can calculate OR},MX .« without
knowing the researcher-created covariate u exactly.
We need only know the relationship of u to the binary
covariate w, specified by po :=p(U|w = 0) and p; :=
Pr(U | w = 1) (where U is the random variable corre-
sponding to u), and the relationship of u to the bi-
nary outcome y, specified by OR,, :=Pr(Y =1|u=
1)/ Pr(Y = 1| u = 0). When po, p1,and OR,,, are known,
Lin et al. (1998) show* that we can derive the odds
ratio adjusting for x and u, ORywlxu t(f), from

the odds ratio that only adjusts for x, ORyw|x, by the
following formula:

ORywb(lu = ﬁ ORyw|x, where
ORy, -1 +1
ap = ORu=Dp1+1 3)
(ORyu = 1)po +1

We write ORy, rather than &{W because the former
quantity is the true odds ratio, not one estimated from
the data.

Because ORx can be estimated from the observed
data, Equation (3) implies the impact of the researcher
choice of u is completely summarized by p1, po, and
ORy, because they determine AF. Conversely, if we
knew the data adjustment ¢, we could estimate p1, po,
and ORy,, calling the estimates p1, po, and ORy,, re-
spectively, from the adjusted data. Steps 1a-Ic are
therefore equivalent to Steps 2a-2d defined by

* Step 2a. Calculate OR,yjx.

 Step 2b. Choose a data adjustment ¢ € ©.

* Step 2c. Calculate ORy,, p1, and pp using the
adjusted data [Y,X, W, U] = ¢([Y, X, W]).

o Step 2d. Calculate the summary statistic ORyjx, =

= ORyw|x, where AF is analogous to Equation (3) but
AF

depends on the estimated quantities ORW, p1, and po:
(cﬁzyu - 1);51 +1
(ORyu = 1)po +1

AF =

(4)

Notice that the researcher’s choice of a data adjust-
ment ¢ implies a value for u and the three attri-
butes about u—OR,,, p1, and pp—but it is through
these three attributes only that ¢ impacts the sum-
mary statistic. If we instead allow the researcher to
choose only the three attributes, we can find the impact on
the summary statistic without ever knowing 1. We just
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need to define the space of allowable data adjustments
® in terms of its impact on these three attributes:

D= {cp L (Y, X, W) > (Y,X,W,U) | ORy, € [a,b],
b1 = pol < c,po > d,

for constants a, b, and ¢ < d (the reason for these exact
constraints will become clear later). Then, Steps 2a-2d
can be replaced with Steps 3a-3c defined by

e Step 3a. Calculate &zyw,x.

¢ Step 3b. Choose ORy,, po, and p; such that ORy,, €
[a,b], Ip1 — pol < ¢, and po > d. .

¢ Step 3c. Calculate the summary statistic ORyjx, =
ﬁéﬁywb‘, where AF depends on OR,,, po, and p;.
For any equivalent choice of constraints, the maxi-
mum and minimum values of OR,x that could be
achieved by any of the three sequences of steps
(Steps la-1c, 2a-2d, and 3a—-3c) are all equal. We can
think of finding the maximum and minimum values
of ORyx, for each of the three sequences as the three
following optimization problems (each solved for the
maximum and minimum):

Steps la-1c: max/min {ORyuyu} (5)
Hed

1 —
Steps 2a-2d : max/min {ﬁ ORyw|x} (6)

—_

ORyu€[ab]
¢ 8.t [p1—pol<c

ﬁ0>d
1 =
Steps 3a-3c: max/min EORWIX . (7)
ORy,€[a,b]
[p1=pol<c
po=d

Optimization problem (7) will prove the most useful as
it does not require knowledge of u. Because ORx is
estimated from the observed data, solving optimization
problem (7) is equivalent to solving for the maximum and
minimum values of AF subject to the same constraints
and dividing ORx by each value. Using Equation (3)
for AF, we find the maximum and minimum values of
AF by solving the following optimization problem:

OR,, €a,b]
_ (ORy=1)py +1
max/min ——~——— st.q|p1—pol<c . (8)
ORyw,m Po (ORyu - 1)p0 + 1
po=d

Dividing a{yzle by the maximum and minimum values
given by optimization problem (8) gives the minimum
and maximum values, respectively, of ORyjx., which
define the hacking interval in this case.

We can solve Equation (8) for the case where ORy,
is fixed greater than 1 (implying Pr(Y=1|u=1) >
Pr(Y = 1| u = 0)). In this case, the maximization problem

in Equation (8) (i.e., the hacking interval upper

bound) becomes

(ORyu —1)(po +¢) +1
(ORy —1)po + 1

max QR =Uprtl
Ip1-pol<e (ORW - 1)}70 +1  poxd

po=d

=max 1+ —(ORW _ 1)C ’
po=d (ORW — 1)Po +1

whereas the minimization problem (i.e., the hacking
interval lower bound) becomes

(ORW - 1)p1 +1

oo (ORyy — L)po+1  pozd
Ip1-pPol=c - + >
po=d yu Po Fo

(ORyu —1)(po —c) +1
(ORyy — 1)po + 1

In each case, the optimum occurs at py = d. Therefore,
Equation (8) can be solved when ORy, is fixed greater
than one. We apply this result in Section 6.1.

This section shows how results from causal sensi-
tivity analysis can be leveraged to solve problems
where the researcher is permitted to hack a new
feature. Here, we have been in a noncausal inference
setting of logistic regression modeling. In Section 6.1,
we apply these results to a recidivism data set.

4. Tethered Hacking Intervals

In prescriptively constrained hacking intervals, dis-
cussed in Section 3, we optimize over a data adjust-
ment function ¢ and hyperparameters ) constrained
to be in sets ® and W, respectively. An advantage of
this approach is that we can clearly define acceptable
researcher adjustments. A disadvantage is that the
possible adjustments may be difficult to enumerate or
optimize over efficiently. One way to circumvent this
requirement is to allow any choice of ¢ and ¢ so long
as the loss using the unadjusted data Z and a set of
default hyperparameters ¢ is not too large. The
tethered hacking interval is the minimum and maxi-
mum summary statistics under this constraint. In
other words, it is given by the interval [bmin, bmax],

Bin = mint(Z,X(“ew),f) st. L(Zf, ) <6, (9)

fEflPd

bmax = max t(Z, X"V, f) st L(Z,f,0) <6, (10)

wad

given a fixed, chosen value of 6. The default hyper-
parameters 1; could be specified based solely on
problem-specific standards, cross validation, or a com-
bination of both. To do the combination in the case
that there are multiple viable values of the problem-
specific hyperparameters, we would first choose
values for the problem-specific hyperparameters and
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perform cross validation on the rest, repeating this
procedure for every viable value of the problem-specific
hyperparameters. After a single set of hyperparameters
Y, is selected, we can proceed with computing the
tethered hacking interval by Equations (9) and (10).
In contrast to the computation of prescriptively con-
strained hacking intervals in the case of cross validation,
as described in Section 3, any cross validation of the
hyperparameters is done prior to solving the opti-
mization problems.

For example, suppose F is the set of constant
functions f(x) = A, H(Z, X(new), f) = Ais the parameter A
that defines f, and L is the quadratic loss for each of
n observations in data set Z. There are no hyper-
parameters ¢4, so we suppress their notation. Then,
Equations (9) and (10) become

n
2A-y)<o
i=1
n

(A -w)<e.

i=1

bmmzm)\in A st
bmaxzmAax A st

For another example, if F is the set of linear functions
f(x) =Ag+ Mix, H(Z, x<“ew),f) = Ag + A1 x(eW) s a pre-
diction of f on a new point xX™*"), and L is the same
quadratic loss, then Equations (9) and (10) become

bmin = min

Mo + Agx(new)
Ao, A1

n

s.t. Z(Ao + Ax; — yi)z <6
i=1

bmax = max  Ag + Ay x®ew)

Ao,
n

s.t. Z(/\O + Ax; — y[)2 <0.

i=1
In general, when the summary statistic is a prediction

on a new point x"¥), Equations (9) and (10) become

bmin = min
feFy,

_ (new)
bmax _j%l_gg f(X ) s.t. L(Z,f, ll)d) <6.

f(x<“eW>) st. L(Zf, ) <6

The interpretation of a tethered hacking interval is
that a researcher could have hacked the data or ad-
justed the hyperparameters to obtain values of the test
statistic in the interval. In other words, for each point
b’ € [bmin, bmax] there could exist a data adjustment
function ¢ and a set of hyperparameters 1)’ such that
b’ is the output of the summary statistic when applied
to the minimum loss predictive model f using ¢’
and ¢’. That is,

b= t(¢'<2), 0x(X") argmin L(g'2)f, /)|

Fyr

This interpretation describes how results are hacked
in practice. A researcher first chooses how to adjust a
data set and which hyperparameters are appropriate
and then, summarizes the resulting best function in a
class. The purpose of a tethered hacking interval is to
bound the results of this procedure by specifying a
single constraint on the loss function.

The set of models achieving small loss is also called
the Rashomon set (Fisher et al. 2019), based on ter-
minology originally from Leo Breiman’s analogy to
the 1950 Akira Kurosawa film Rashomon (Breiman
2001). Fisher et al. (2019) introduce a measure of
variable importance for a class of prediction functions
based on the Rashomon set. Although the computa-
tion and interpretation of their “empirical model class
reliance” measure of variable importance could be
viewed as similar to those of hacking intervals, their
ultimate goal is to study the population version of this
quantity in order to study the Rashomon set for
the population.

We note two things about tethered hacking inter-
vals. First, when the loss function corresponds to a
likelihood function, tethered hacking intervals are
equivalent to profile likelihood confidence intervals
for an appropriate choice of the loss threshold 6.
See Online Appendix C.1 for details. Second, as with
prescriptively constrained hacking intervals, a teth-
ered hacking interval is a statement about the degree
to which summaries of a single observed data set
could be hacked by a researcher. It does not require
an assumption about a true data-generating proce-
dure. If we make such an assumption about the
true data-generating procedure, we can derive an
appropriate generalization bound in order to unite
traditional inference with our new inference para-
digm. See Online Appendix C.2 for details.

Next, we discuss tethered hacking intervals for
predictions made by SVM. The examples of predic-
tions made by kernel regression and features selected
using Principal Component Analysis (PCA) can be
found in Online Appendices C.3 and C.4, respectively.

4.1. Example: SVM

In this section, we demonstrate how hacking intervals
can be calculated in the context of SVMs with a linear
kernel. Recall that SVM is trained by minimizing the
following loss function:

n

LEZf, 9a) = 5 INB + Ya 30 - yf ().

i=1

where f(x) := ATx + A is the scaled distance of x to
the separating hyperplane and i; € R* is a hyper-
parameter that controls the degree of regularization.
Here, we define the summary statistic as the distance
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of anew point x"¥) to the separating hyperplane. The
hacking interval is then given by

max/min ATx™W) 4+ A,
Ao

1 n
s.t. §||)\||%+1,bd2:(1—yi()\Txi+/\0))+s 0, (11)
i=1

where 0 controls the loss tolerance. Figure 2 illustrates
this problem.

For simplicity, we can write both the minimum and
maximum problems from Equation (11) as a single
minimization problem that depends on the choice of a
binary variables € {-1,+1} (s = 1 for minimum, s = -1
for maximum). If we also write the loss constraint in
terms of slack variables &, then Equation (11) becomes

yi(ATxi + Ag) 2 1-&;, Vi

& >0, Vi

LA + g S & < 6.
(12)

min sATx™™) 4+ 51, st
AAosg

This is a convex optimization problem. The objective
is linear. The first two constraints are the same as in
nonseparable SVM and are linear. The last constraint
is the sum of a norm (always convex) and a linear
function in &, so it is convex; also, it is the objective
function for nonseparable SVM. Therefore, we can
apply the Karush-Kuhn-Tucker (KKT) conditions to
obtain the dual problem.

Proposition 1 (Hacking Intervals for SVM). The solution to
optimization problem (12) is given by
1 n
Af = 5 —sx"™) + 3" afyix
i=1

* _ *T
/\0 - yisv -A Xisv/

and

where is, is such that 0 < aj < g and the optimal
dual variables (a”, %) are the solutions to the following
dual problem:

max —

1
na _ |:x(new)TX(new) —2s Z aiyix"ifx(new)

+ >0 > aiayiyix x| + > ai — poO
Pk
0<a; < pyu, Vi

s.t. Z?zlaiyi =5 . (13)
£>0

In Section 6.2, we apply SVM hacking intervals to a
recidivism data set.

5. Tethered Hacking Intervals for

Linear Regression
We develop hacking intervals in detail for two linear
regression scenarios.
® Scenario 1: average treatment effect (ATE). We
assume a class of linear functions F with p con-
founders and an indicator covariate for the treatment
(one if treatment, zero if control). We write f € F as

f(x, treated or control)

= ﬁlx.l + ,BZx.Z +.. ~ﬁpx.p + ,Boltreated-

® The goal is to construct a tethered hacking in-
terval for fo, the coefficient of the treatment indicator.
In other words, the test statistic is #Z,f) = fo. The
coefficient fy represents the average treatment effect.
Section 5.1 develops this in detail.

¢ Scenario 2: individual treatment effect (TE). We
assume a class of linear functions F with p confounders

Figure 2. (Color online) Lower Bound (LB) and Upper Bound (UB) of the Hacking Interval for an SVM Prediction

5

2
qc’ Hacking Interval
< T : Hacking UB
215¢ :
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Q
>
T
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o L
< 0.5 Hacking LB
3
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Notes. The summary statistic being hacked is the distance from the separating hyperplane to a new observation, x™"). For a default regu-
larization trade-off of 14 = 1 and a 5% tolerance on the loss relative to the minimum loss solution, SVM will always predict a +1 label, but the
scaled distance to the hyperplane, ATxmew) 4 Ao can range from about 0.4 to about 1.6.
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for both the treatment and control groups. We write f €
F as

f(x, treated or control)
= 1control[,3(1:x.l + ﬁ;x‘z +.. .,B;x,p]

+ ltreated[ﬁix.l + ‘Btzx'z + .. .ﬁ;x,p],

e where leoniol is 1 only for the control group
and lireated is 1 only for the treatment group. The goal
is to construct a tethered hacking interval for a pre-
diction of f on a new point [x"®"), treated or control.
In other words, the test statistic is #(Z,[x™"), treated
or control],f) =f (x"ew) treated or control). The value
f(xeW), treated or control) represents the prediction
for a person with covariates x™"*"). Section 5.2 develops
this in detail.

In both scenarios, we maintain the canonical as-
sumptions of overlap, Stable Unit Treatment Value
Assumption (SUTVA), and conditional ignorability,
and we use a quadratic loss function L(Z,f) = >, (y; —
f(xifl[itreated]))zf where Z:{[Xill[itreated]lyi]}?:l is the
observed data. There are no hyperparameters, so we
suppress their notation in the loss function.

5.1. Scenario 1: Average Treatment Effect

The goal is to find the range of treatment effects, fy,
corresponding to all possible ways the analyst can
hack the observed data subject to a constraint on the
loss. Thus, our goal is to solve

n

D= XI B Polpitreatea))* < 0

i=1

max fop s.t and

PER?,freR
(14)

n

Z(yl _X?ﬁ _ﬁol[itreated])2 <0. (15)

i=1

min fp s.t
PERP, BoeR

This is a convex quadratically constrained linear
program. Because there are inequality constraints,
we require the full KKT conditions (the method of
Lagrange multipliers does not handle inequality con-
straints). As it turns out, answers to these problems can
be found analytically. This is one of the rare problems
for which a subset of the KKT conditions can be used
to find a closed form solution. The proof is available in
Online Appendix D.

Theorem 1 (Hacking Interval for Least Squares ATE).
Define the following:

o Bis:= (X"X)'XTY, the optimal least square solution
from regressing Y on X.

o Bis = (XIX)'XTY, the optimal least square solution
from regressing Y on X :=[X, 1jeatea)]. The coefficient
within this vector for the treatment variable is deno-

ted ﬁS,LS‘

o ¥is = (XXX Y yentea), the optimal least square
solution from regressing 1jseareq) 01 X.

o Vy = ([XTX]™Y),,, the diagonal entry corresponding
to the treatment variable of [X"X] L.

o SSE:= (Y -XB;s) (Y= XB}s), the sum of squared
errors of the optimal least square solution.

Then, the solutions of the optimization problem (14) are

ﬁs,max = ﬁS,LS + VVtt 0 — SSE,
ﬁfnax = ﬁZs - ﬁg,maxyzsl (16)

and the solutions of the optimization problem (15) are

ABS,min = ‘BS,LS - VVuVO - SSE,
:B:nin = .st - ﬁ;,min)/ZS' (17)

From this theorem, one can see that the range 5 ..., —
B0,min Scales as the square root of the permitted level of
optimality 0. The solution is not difficult to find if the
relevant KKT conditions are substituted into each
other in a particular order.

Next, we relate the new confidence intervals to the
standard ones and then produce new interpretations
for confidence intervals, based on in-sample error
increases. In the process, we will discuss possible
meanings for the user-defined parameter 0.

5.1.1. Relationship to Classical Confidence Intervals.
We have just produced a confidence interval for f.
How does that compare with a typical confidence
interval produced using the standard approach
where we assume a null distribution? The confi-
dence interval is symmetric in both cases around the
least squares solution, so we must be able to equate
them. We next equate traditional confidence inter-
vals with our confidence intervals, which relates a
for a significance test with 6 for our robust confi-
dence interval.

Theorem 2 (ATE Hacking Intervals and Standard Confi-
dence Intervals). Start with a standard confidence interval
for Bo under usual assumptions (normality of errors given a
linear model), which is given by

N SSE
[ﬁ&s = ta-a/2),(-p-1) p— VVi,

_ [ ssE
Boss + ta-arp0n [ 1 p—1V k

where t(1_aj2)(m-p-1) is the 1 —a/2 quantile of a t distri-
bution with n —p — 1 degrees of freedom (we estimate p
coefficients plus the treatment variable). Then, in order to
keep the new confidence interval from Theorem 1 the same

(18)

7
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as the standard one, we would take the following value
for ©:

Faa/2) oy
6 = SSE(1 4 =2l “).
n-p-1

Thus, for teaching purposes, rather than explaining
the t distribution or the meaning of a to a student
unfamiliar with these topics, we can explain 0 first and
later convert to a for those who want this interpretation.

5.1.2. Nonclassical Choices for 6. In classical hy-
pothesis testing, one would choose the significance
level @ and say that if the data were drawn repeatedly
from the true model, the probability that an estimated
value of fy would be within the confidence interval
with probability at least 1 — a. We propose in-sample
alternatives based on the meaning of 0. Here are some
natural choices.

® Choose 0 as a percentage of the SSE. Assume the
user would not allow a model that would achieve
more than 10% higher error than the SSE. Then, we
set 0 =1.1-SSE. Generally, if we do not tolerate
more than r% error higher than the SSE, we would
choose 6 = (1 +r)SSE.

To use this, we would ask questions like: “If we were to
tolerate any type of change to the data or model that
would incur an additional error of 10%, what are the
largest and smallest treatment effects one could estimate?”
If the answer is that the treatment effect estimate is robust
to 10% error because of user hacking, then the estimate is
reliable inside the hacking interval.

® Choose 0 as the minimum loss suffered to allow
the treatment effect coefficient to be zero. Let us say
without loss of generality that the estimated treat-
ment effect coefficient is negative. Then, the upper
confidence interval is (using Theorem 1)

ﬁ;,max = ﬁg,LS + VVtt 9 - SSE

e We can set this value to zero, which would
provide the minimum sacrifice in least square error
necessary for that coefficient to become zero. We thus
need to solve for 0y in the following:

(Bsss)

+ SSE.
Vi

0=B5.5 + VVi0y — SSE & 0 =

¢ Inother words, we would need to sacrifice a least

squared error of at least (8, s)*/ Vi beyond that of the
optimal solution in order that the regression coeffi-
cient could be zero.

To use this, we would ask questions like: “How
much loss would need to be sacrificed in order for the
treatment to have the opposite estimated effect?”

5.1.3. Combining with Data Variance. The bounds of
the hacking interval, ..., and B .;,, are determin-

istic functions of a fixed data set [X, Y]. If we assume
the outcomes Y are one possible realization of a
ground truth linear process given by

Y ~ N(XB, °I), (19)

then the bounds of the hacking interval are random
variables. The following theorem gives their variance.

Theorem 3. (Variance of Least Squares ATE Hacking
Interval Bounds). If outcomes Y are generated by Equa-
tion (19) and the threshold O is set to (1 + r)SSE for any
r >0, then the wvariance of both hacking interval bounds
Bomin @14 Py max Siven by Equations (17) and (16), re-
spectively, is:

V|85 min | X| = VB o | X| = 2 Vis(1 1= p = 1= 1),
(20)

where

(VA= p)2)
= (r«n—p—l)/z))' -

5.1.4. lllustration. Let us consider an illustrative ex-
ample. We suppose a ground truth with two cova-
riates called v, and v, chosen uniformly and inde-
pendently over the interval [1,5], a 1/2 probability of
treatment assignment for each observation, and out-
comes generated by the following process:

Yi = 2 X Ljtreated] + Vit + V2 + €, (22)

where €; ~ N(0,1). In this illustration, the researcher
observes more than v;, v, and the treatment indi-
cator, 1j; ¢reated]- We assume they observe monomials
Xz:(Uﬂ,Uz‘zlv,-zl,Ufg,vilviz/vilU,ervflvizrv,zlv?z) and 1i treated]-
In the language of Online Appendix C.2, {[vi, v,
1[1’ treated], yi]};jzl is the PriStine data/ and {[Xir 1[i treated],
yil}, is the observed data. This puts the researcher at
risk for overfitting the observed covariates in x; that
are not part of the ground truth.

We simulated a data set of n = 500 observations and
used Theorem 1 to find the values of B, Bo maxs Bonins
and B i, Where 6 was set to 10% higher than the
least squares loss of f} ;. Table 1 gives the results for
the coefficient on treatment indicator, y. To illustrate
these results, on a grid of v}*" and v3", we found the
vector of monomials that would be observed by the
researcher, x™") and evaluated the four possible
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Table 1. Minimum, Least Squares, and Maximum
Coefficients on the Treatment Indicator

% *
ﬁO,min ﬁO,LS ﬁO,max

1.52 2.16 2.80

Notes. [By mins Pomax] 15 the tethered hacking interval. The ground
truth is fy = 2.

outcome predictions (maximum and minimum, treat-
ment and control):

Jmaxtreated = XL FIXBy, (23)
9min,treated = X(neW)Tﬁ:nin +1X ﬁ;,min (24)
]?min,untreated = x(neW)Tﬁ;in +0X ﬁ;,min (25)
Fmaxuntreated = X"IBL HOX B (26)

Equations (23)—(26) are ordered by value, from largest
to smallest. This gives four surface plots, shown in
Figure 3 from different rotations. Asymptotically, or
if we had a larger number of points, the curves would
be hyperplanes because the ground truth in Equa-
tion (22) depends linearly on v.; and v.,. As it stands,
the curves are very close to the optimal hyperplanes,
overfitting only slightly.

We would like to consider individual treatment
effects, where the treatment effects can differ between
units. The simple regression setting will predict a
constant treatment effect for all units, so we need to
have a more flexible modeling approach.

5.2. Scenario 2: Individual Treatment Effect
For the second regression scenario we consider, the
regression model is more flexible, including separate
terms for treatment and control. Our goal is to find the
range of treatment effects for a particular point x"¢").

To explain the motivation for this problem, let us
consider a new patient receiving a prediction of the
expected treatment effect for a drug. Before taking the
drug, the patient might want to know whether there
are other reasonable models that give different pre-
dictions. That is, the patient might want to know the
answer to the following: considering all reasonable
models for predicting treatment effects, what are the largest
and smallest possible predicted treatment effects for this
drug on me?

To determine the range, we solve

max f (x(new)) s.t. i( f (x(new)) yfnew)) <0.

i=1

mmf( (“ew)) s.t. Z( ( (new)) yl(new)) <e.

B.Po

The model is
f(x, treated or control)
= Teontrol B + B2 + .- |
+ ltreated[ﬁﬁx,l +Bhxo + .. .ﬁ;x.p].

Using notation w; = 1 for treatment points and w; = 0
for control points, the least squares loss thus decou-
ples, leading to separate regression problems for the
treatment and control points:

n

;(f(xi/ w;) — %)2
> (Foa 1) =)+ > (f(xi, 0) — i)

w;=1 iw;=0

2. ([ﬁlxﬂ + X + . ,B;xip] - yz‘)2

iw;=

+ Z ([,lezl + poxin + . Bpxlr’] y,) .

iw;=0

Because the first sum involves only the control ob-
servations and control coefficients and the second
sum involves only treatment observations and treatment
coefficients, this decouples as two separate regressions,
one for the control group and one for the treatment
group. We will assume that the user wants neither of the
regressions to be too suboptimal, so we will have sep-
arate constraints 6 on the quality of each regression.
We will find the maximum and minimum values for
the control regression and the treatment regressions
(four values). All of these optimization problems are
very similar, so for simplicity, we solve the optimi-
zation problem on a generic regression problem, for
point x"*W). Here, x™"*") does not need to be one of the
training observations.

Theorem 4 (Hacking Intervals for Least Squares Indi-
vidual TE). Consider the hacking interval optimization
problems:

max (x(“eW)Tﬁ) s.t. i(y,- ~xIp)’< 0,

mﬁin(x(“ew)T )st Z —xlﬁ <9

Define B¢ :=
which is a vector of size p, SSE =

XTX)IXTY; define Y = (XTX) 1x(ew),
IY = XB: |, and

_ \O-SSE
=T
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Figure 3. (Color online) For Each of the Three Panels, the Left and Right Panels Are Two Different Vantage Points of the

Same Figure

pliew

e

All four treatment prediction curves.

Jhew
R 1 =
1w ylew

Prediction curves for maximum treatment effect.

4 4

uliew o

Prediction curves for minimum treatment effect

Notes. Because the true data generation process in Equation (22) depends linearly on only v.; and v.1, the optimal prediction curve as a function of
v1 and v, is a hyperplane. The addition of monomials to the observed x causes some overfitting. (a) All four prediction curves (max/min,
treatment/ control). (b) Prediction curves that yield the maximum treatment effect. The upper curve shows f/max treated, and the lower curve shows
Jmaxuntreated - The difference between the curves is the maximum treatment effect, ﬁé,max~ These curves correspond to the top and bottom curves in
panel (a). (c) Prediction curves that yield the minimum treatment effect. The upper curve shows fmin treated, and the lower curve shows
Jminuntreated- The difference between the curves is the minimum treatment effect, ﬁamin. These curves correspond to the middle two curves in

panel (a).

The solutions to the optimization problems are

B.=Bis—iY,  B.=Ps+0Y.

Theorem 5 (Individual TE Hacking Intervals and Standard
Confidence Intervals). Start with a standard confidence
interval for x"TB under usual assumptions (normality
of errors given a linear model), which is given by the
boundary points:

/ SSE )
ﬁzSit(l—a/z),(n—p—l) m\/x(new)T(XTX) x(new)

where t(1_aj2),(m-p-1) is the 1 —a/2 quantile of a t distri-
bution with n — p — 1 degrees of freedom. Then, in order to
keep the hacking interval from Theorem 4 the same as the
standard one, we would take the following value for 6:

2
6 = SsE(1 4+ U=e2l0pD
Tl—p_l .

We can use the result of Theorem 4 to determine
the hacking interval, which in this case, is the range
of causal effect estimates for x™"). Let us apply
Theorem 4 to the treatment regression and the control

regression separately. We thus obtain g, B, B,

and . To find the maximum of the causal effect
estimate, use

max (X(new)Tﬁiﬁl X(new)Tﬁt_*) —min (x(new)Tﬁi*,x(new)Tﬁi*) )
To find the minimum of the causal effect estimate, use

min (X(new)Tﬁf,x(new)Tﬁ‘_* ) —max (x(new)T ﬁi*,x(new)T ﬁc_*) ‘

5.2.1. lllustration. We continue with the same data
generation process we used in Section 5.1.4, where
the ground truth outcomes are created as follows:

Yi = 2 X 1jtreated] + Vi1 +Vi2 + €.

We chose x"¢") to be created from the point v}¢" = 3,
3" = 2. Here, we created four separate regressions.
One regression maximizes the expected outcome at
xeW) for the treatment observations. Another re-
gression minimizes the expected outcome at x™"*") on
the treatment observations. Analogous regressions
are created for the control observations. Figure 4
shows these regressions explicitly for x"W) = (3,2).
One can see the regressions starting to bend away
from each other at x"*") for the maximization prob-
lem and bend toward each other for the minimization
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Figure 4. (Color online) For All Three Panels, the Left and Right Panels Are Two Different Vantage Points of the Same Figure

Llew

vgew

All four models: max and min at x®e%) of

regressions for treatment and control.

phew

new)

Max of treatment and min of control at x! .

Vertical line drawn at x(™%),

Min of treatment and max of control at x(™e%),

Vertical line drawn at x(™e%).

Notes. (a) All four regressions (max/min, treatment/ control). (b) Maximizing the gap between treatment and control at xMeW) The upper curve is
the regression for maximizing expected outcomes on the treated at x™**). The lower curve is the regression for minimizing expected outcomes on
the control units at x"*¥). One can see how the curves pull away from each other at x™"**) to make the differences between treatment and control
as large as possible. (c) Minimizing the gap between treatment and control at ™). The upper curve is the regression for minimizing outcomes
on the treatment units at x"*"). The lower curve is the regression for maximizing the control outcomes at x"**). Here, the curves pull toward each

other to minimize the estimated treatment effect.

problem. We placed a blue line between the curves at
the point x™eW),

6. Application: Recidivism Prediction
Understanding the potential impact of researcher choices
on machine learning methods becomes especially
important when issues of fairness are involved. Al-
though there does not exist a widely accepted mathe-
matical definition of fairness when assessing risk with
machine learning (Berk et al. 2018), if a machine
learning method could reach opposing conclusions
about a person or group of persons were small ad-
justments to a data set or hyperparameters made, then
this could potentially undermine any definition of
fairness (one could simply argue a negative decision
to be unfair because an equally good model exists that
predicts the opposite). A hacking interval quantifies
the degree to which this can happen.

In the criminal justice system, algorithms are in-
creasingly being used to make risk assessments about
defendants: for example, their risk of failing to appear
in court or reoffending. Clearly, issues of fairness are
involved. One such algorithm is COMPAS, created by
Northpointe, Inc. COMPAS produces three decile
scores that indicate the risk that a defendant will fail

to reappear in court, reoffend, or violently reoffend.
As of October 2017, it was used by 4 of 58 counties in
California (Back et al. 2017). It is a proprietary al-
gorithm that bases its assessment on a question-
naire that is either pulled from criminal records or
answered by the defendant. The data gathered by
the questionnaire are not publicly available. ProPublica
assembled COMPAS scores and other data—including
criminal history and demographic information—
on more than 7,000 defendants in Broward County,
Florida, from 2013 to 2014 with the help of the Bro-
ward County Sheriff’s Office (Angwin et al. 2016).
Using the same metric used by Northpointe, Inc.—
whether a defendant was charged with a crime
within two years of the COMPAS score calculation—
ProPublica concluded that COMPAS was biased
against African Americans. For example, they found
that of African-American defendants who did not
reoffend, 45% were misclassified as higher risk, whereas
of Caucasian defendants who did not reoffend, only
23% were misclassified as higher risk. Northpointe, Inc.
has issued a rebuttal that argues a definition of fair-
ness based on a false-positive rate is not appropriate in
this case (Dieterich et al. 2016). Angelino et al. (2018)
argue that, although COMPAS is ostensibly not



Coker, Rudin, and King: Theory of Statistical Inference for Ensuring Robustness

16

Management Science, Articles in Advance, pp. 1-24, © 2021 INFORMS

influenced by race, its dependence on prior record could
effectively induce dependence on race because of dis-
proportionate arrest rates that count toward one’s prior
record. This agrees with the sentiment of other work
on interpretable models for recidivism (Zeng et al.
2017). More work on this data set has provided fur-
ther insight into how COMPAS may depend on prior
record as well as age (Rudin et al. 2020).

In our analysis, we use the data collected by Pro-
Publica, but our interest is not in comparing a risk
assessment score like COMPAS against a given def-
inition of fairness. Rather, we are interested in the
impact that researcher choices could have on con-
clusions made about this data set. In Section 6.1, we
use the methods of Section 3.1.2 to assess the impact
that a new feature created by the researcher could
have on inferences about the population, in this case
the odds ratio of reoffending and gender. This is an
example of a prescriptively constrained hacking in-
terval because we explicitly constrain researcher choices
about the new feature. In Section 6.2, we use the
methods of Section 4.1 to assess the impact of re-
searcher choices on the predictions of a support vector
machine about individual defendants. This is an ex-
ample of a tethered hacking interval because we
constrain researcher choices only through their im-
pact on the loss function. For both applications, we
use the following set of features:

® c_charge_degree_F: binary indicator if the most
recent charge prior to the COMPAS score calculation
is a felony.

* sex_Male: binary indicator if the defendant is male.

® age screening: age in years at the time of the
COMPAS score calculation.

* age 18 20, age_21_22, age_23_25, age_26_45, and
age__45: binary indicators based on age_screening for
age groups 18-20, 21-22, 23-25, 26-45, and greater
than 45, respectively.

¢ juvenile_felonies_ 0, juvenile_misdemeanors_ 0,
and juvenile_crimes__0: binary indicators one or more
juvenile felony, misdemeanor, or crime, respectively. We
use binary indicators because the counts of each are
highly right skewed.

e priors__0, priors__1, priors_2_3, and priors__3:
binary indicators of whether the number of priors is
zero, one, two to three, or more than three, respectively.

We filtered the data set to include only defendants
whose most recent charge prior to the COMPAS score
calculation was a felony or misdemeanor and oc-
curred at most 30 days prior to the COMPAS score
calculation (otherwise, we assume this charge did not
trigger the COMPAS score calculation, so it seems
that data about this defendant are missing). The bi-
nary indicator variables for age and number of priors
were added to the data set because in general, recidivism
is highly nonlinear with respect to these features.

6.1. Prescriptively Constrained Example:
Adding a New Feature

We suppose a researcher is interested in the odds
ratio between gender and recidivism but is allowed
to create a new binary feature u, perhaps as a function
of the existing features or by introducing new data.
Notice that this is not a valid causal question because
gender is not assignable, but we only use the math-
ematical tools of causal sensitivity analysis. A benefit
of this approach is that we do not need to understand
exactly what the new feature is, only its relationship
to the outcome y (whether a defendant reoffends)
and “treatment” w (gender). In the setup described
in Section 3.1.2, this means the researcher specifies
constraints ORy, € [a,b], |p1 —pol < ¢, and po > d (by
specifying a, b, ¢, and d), where p :=p(U|w = 0),
p1 = p(U | w =1). We will use a simple version where
ORy, is fixed (or equivalently, 2 = b = OR,,). As shown
in Section 3.1.2, the hacking interval can be calculated
as a function of c.

Figure 5 shows hacking intervals for OR x,,—the
odds ratio between recidivism and gender adjusted
for the observed covariates x and the new feature
u—for each combination of ¢ € (0.1,0.15,0.2,0.25,0.3)
and OR,, € (1.5,1.75). These constraints are picked
arbitrarily for illustration. In practice, the choice of
these constraints describes the degree of freedom
given to the researcher. For example, if the researcher
were permitted to pick any new binary feature u such
that the odds ratio between the outcome and the new
feature was ORy, = 1.5 and the difference between p;
and py (the probability of the new feature when the
treatment w is present or not present, respectively)
was constrained to be less than or equal to ¢ = 0.3, then
the value of ORyx, they could get would necessarily
be in the hacking interval [1.03,1.37]. For the same

Figure 5. (Color online) Hacking Intervals for OR . for
Different Values of Constraints ¢ and a = b = ORy,
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restriction of ¢ = 0.3, if the researcher was permitted to
pick u such that OR,, = 1.75, indicating a stronger
relationship between the new feature and the out-
come, then she could obtain a value of OR, ), above
or below 1 because Figure 5 shows that the hacking
interval in this case overlaps with 1. In other words,
with this freedom given to the researchers, they could
conclude that the odds ratio between recidivism and
gender, after controlling for measured covariates and
the new covariate they created, could be above or
below one.

6.2. Tethered Example: SVM
We now consider the impact of researcher hacking on
predictions of two-year recidivism for individual
defendants. We use an SVM as our predictive model.
For prediction on a new defendant represented by
xMew) QVM calculates the distance of x™W) to the
hyperplane that minimizes the hinge loss. If the
distance is positive, the model predicts the defendant
will reoffend within two years. If the distance is
negative, the model predicts the defendant will not
reoffend within two years. By adjusting the hyper-
plane, the tethered hacking interval is the range of
distances of x™") to the hyperplane that can be
achieved within a constraint on the loss. As discussed
in Section 4.1, we can find this range of values by
solving the dual problem in Equation (13) for s = -1
and s = 1. We do this using the fmincon function in
MartLas. We thus solved two optimization problems
for each defendant.

Figure 6 shows the hacking intervals for 10 selected
defendants from each group of COMPAS scores. We

included a few individuals highlighted in an article by
ProPublica (Angwin et al. 2016) and randomly se-
lected the rest. The loss is constrained to be within 5%
of the minimum loss on a group of 1,000 defendants
randomly selected from the remaining defendants
(so, each prediction in Figure 6 is out of sample).

Consider three possible cases: (i) the hacking in-
terval is entirely below zero, (ii) the hacking interval
is entirely above zero, or (iii) the hacking interval
overlaps with zero. In case (i), this means that there
does not exist an SVM model such that the loss on the
1,000 training observations is within 5% of the min-
imum loss, and the model predicts that the defendant
will reoffend; all “reasonable” models (i.e., within
this loss constraint) predict that the defendant will
not reoffend. In case (ii), when the hacking interval is
entirely above zero, the interpretation is the same
except that all reasonable models predict that the
defendant will reoffend. In case (iii), when the hacking
interval overlaps with zero, then reasonable SVM
models exist that make either prediction. Although
this is only a sample of the data, notice that of the 10
defendants shown here with COMPAS scores of 10—
the riskiest possible COMPAS score—9 of them have
hacking intervals that overlap with zero. On the other
hand, of the 10 people shown here with COMPAS
scores of 1— the least risky COMPAS score—5 of
them have hacking intervals entirely above zero.

In the ProPublica article (Angwin et al. 2016), sev-
eral pairs of defendants are highlighted. For each pair,
one defendant received a low COMPAS score de-
spite a significant criminal history, whereas the
other received a high COMPAS score despite a limited

Figure 6. (Color online) SVM Hacking Intervals for 10 Defendants for Each COMPAS Score

valentina parrish

s————

victor moreno
bernard parker

€——— robert cannon

€& mallory williams
.
.
—

D ——

—————
—_—
.
.
—

.
.
.
[
[

3 4 5

‘ " III ‘1 il
ol

6

~
e}
©
—_
o

COMPAS Score

African—-American — Asian — Caucasian — Hispanic

Other * Reoffend

Note. Loss is constrained to be within 5% of the minimum loss on a random sample of 1,000 defendants.



Coker, Rudin, and King: Theory of Statistical Inference for Ensuring Robustness

18

Management Science, Articles in Advance, pp. 1-24, © 2021 INFORMS

criminal history. For example, James Rivelli and Robert
Cannon were both charged with theft, but Rivelli was
charged with felony grand theft and possession of
heroin, whereas Cannon was charged with misde-
meanor petit theft. In addition, Rivelli had three prior
arrests, including for felony aggravated assault and
felony grand theft, whereas Cannon had none. De-
spite this, Rivelli—who is white—received a low-risk
COMPAS score of 3, whereas Cannon—who is
black—received a medium-risk COMPAS score of six.
Rivelli later reoffended in Broward County with
grand theft again, whereas Cannon did not. Inter-
estingly, the hacking intervals for both defendants
overlapped with zero, indicating that justifiable SVM
models (on our limited feature set) could have made
either prediction. The hacking intervals also overlap
with zero for the similarly contrasting pair of Bernard
Parker and Dylan Fugett, both arrested on drug
charges. For the pair of Vernon Prater and Brisha
Borden, both arrested on petty theft charges, the more
experienced criminal Prater also has a hacking in-
terval that overlaps with zero, but we donothave data
on Borden. The exception is Mallory Williams, who
received a medium-risk COMPAS score of six after a
Driving Under the Influence (DUI) arrest and only
two prior misdemeanors. Her hacking interval is
entirely below zero, meaning no justifiable SVM
model would predict that she would reoffend in this
experiment. She did not reoffend. In general, we see a
high degree of uncertainty from SVM models for the
individuals discussed in this article. The counterpart
to Mallory Williams in the ProPublica article, Gregory
Lugo, illustrates how offense data can be easily
misinterpreted. Gregory Lugo was charged with a
DUI but had zero priors according to the data we
used in our analysis. Not surprisingly, his COMPAS
score was low, and his hacking interval was entirely
below zero. However, ProPublica claimed he had four
priors, including three DUIs, and used this as an
example of a poorly calibrated COMPAS score. This
seems to be a misinterpretation of the data: all of his
supposed prior offenses have the same offense date as
the offense related to his COMPAS score calculation,
so the supposed prior offenses seem to be rerecord-
ings (perhaps for ordinary bureaucratic reasons) of
the same offense.

There are other interesting examples in Figure 6.
Claudio Tamarez, a 30-year-old Caucasian male, re-
ceived a COMPAS score of 4, which means low risk,
following a charge for possession of phentermine and
despite 9 priors that included battery on an officer. In
contrast, his hacking interval was entirely above zero.
He did not, however, recidivate within the 2-year
follow-up period. Daniel Chiswell, a 41-year-old
Caucasian male, was assigned a COMPAS score of
only one despite being charged with felony possession

of heroin and having previously been charged with
felony battery on an officer. His hacking interval
overlapped with zero, meaning there exists a rea-
sonable SVM model that would have predicted he
would reoffend. He was charged again with felony
possession of heroin later that year. Valentina Parrish,
a 21-year-old Caucasian female, was charged with
driving under the influence and possession of less
than 20 grams of cannabis. She was given a COMPAS
score of 10. In contrast, her hacking interval, [-2.16, 0.50],
was mostly below 0, although not entirely. She did
not reoffend. There are also examples that illustrate
limitations of our limited feature set. Victor Moreno,
a 31-year-old African-American male, received a
COMPAS score of 10 despite zero priors. However,
the arrest related to his COMPAS score calculation
included felony charges of battery, tampering with a
victim, tampering with physical evidence, and de-
livering cocaine. Our SVM model, without access to
the content of these charges, not surprisingly gave him
a low hacking interval given his lack of prior offenses.

Figures 7 and 8 show the hacking intervals for every
defendant in our data set with COMPAS scores of 3
and eight, respectively. The loss constraint is the same
(within 5% of the minimum loss on the same 1,000
defendants). Of the 663 people in our data set with
COMPAS scores of 3—a “low-risk” score—75 of them
had hacking intervals entirely above zero. Again, this
means that, had SVM been used for prediction, any
reasonable model would have predicted that they
would reoffend. These 75 people had an average of
about 6.3 priors, and 35 of them reoffended. Conversely,
of the 428 people in our data set with COMPAS scores
of 8—a “high-risk” score—121 of them had hacking
intervals entirely below zero, meaning any reasonable
SVM model would predict that they would not reoffend.
These 121 people had an average of about 8.75 priors,
and 94 of them reoffended. This potentially means we
may be missing data on their past criminal history thatis
not in the data set we use for our analysis. Although it is
possible that missing information can explain COMPAS
scores that are high, it cannot explain COMPAS scores
that are too low.

We also show hacking intervals grouped by race in
Figure 9. As before, we allow for a 5% tolerance on the
loss on a sample of 1,000 defendants, but for this
figure, we use a different sample of defendants. Each
hacking interval in Figure 9 is out of sample (i.e., the
defendant corresponding to the hacking interval was
not included in the 1,000-defendant training sample
used for the loss constraint). Some of the COMPAS
scores again do not align with the hacking intervals.
Consider Edwin Chaj, a 27-year-old Hispanic male
with only one prior related to trespassing, who re-
ceived a COMPAS score of nine following a charge of
disorderly intoxication. In contrast to the high-risk
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Figure 7. (Color online) SVM Hacking Intervals for All Defendants with a COMPAS Score of 3
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COMPAS score, his hacking interval was low ([-1.59,
0.24]), although not entirely below 0. He did not
reoffend. Similarly, Cuong Do, a 32-year-old Asian
male with no priors, received a COMPAS score of
8 following charges with felony burglary and mis-
demeanor petit theft. In contrast to the high-risk
COMPAS score, his hacking interval was entirely
below zero. He did not reoffend. On the other hand,

consider Mories Abdo, a 27-year-old Asian male with
six priors, who received a COMPAS score of 3
following a battery charge. In contrast to the low-risk
COMPAS score, his hacking interval was entirely
above zero. He did not reoffend during the two-year
follow-up period but did commit felony aggravated
assault with a firearm just after the follow-up pe-
riod ended according to the Broward County Clerk of

Figure 8. (Color online) SVM Hacking Intervals for All Defendants with a COMPAS Score of 8
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Figure 9. (Color online) SVM Hacking Intervals for 10 Randomly Selected Defendants for Each Race in the Data Set (Except

Native American as There Are Only 11 in the Data Set)
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the Courts.” Figure 9 also indicates the individuals
discussed in the ProPublica article. Because the 1,000-
defendant training sample is different from Figure 6,
the hacking intervals are slightly different, but they
are each in the same category (below zero, over-
lapping with zero, or above zero).

We summarize Figures 6-9 with a couple observations.

o If we had used SVM on our limited data set rather
than the COMPAS score to predict reoffense, then for most
people there is enough uncertainty in predictions that we
could justifiably predict either reoffend or not reoffend.
This can be seen in Figures 7 and 8, where 75% and
67% of defendants with COMPAS scores of 3 and 8,
respectively, have hacking intervals that overlap
with zero, meaning justifiable SVM models exist that
could make either prediction. Even for the extreme
cases discussed in the ProPublica article, the hacking
intervals often overlapped with zero.

o There are many individuals for which no justifi-
able SVM model would agree with the COMPAS score
using our feature set. In the case of an individual with
alow COMPAS score, this means the hacking interval
is entirely above zero, whereas in the case of an in-
dividual with a high COMPAS score, this means the
hacking interval is entirely below zero. In either case,
this is suggestive of an error in the COMPAS cal-
culation. Figure 7 shows 75 examples of the former
case, and Figure 8 shows 121 examples of the lat-
ter case.

7. Related Work and Discussion
Hacking intervals are designed to quantify a form of
uncertainty that is usually ignored in statistical

inference. This could have implications for scien-
tific research; let us discuss this first.

7.1. Problems with Replication of Scientific Studies
and Proposed Solutions

The evidence for p-hacking primarily comes from two
types of meta-analyses: replication studies and the
distribution of p-values for a set of independent
findings (or “p-curve”) (Simonsohn et al. 2014). For an
example of the former approach, a major 2015 study
attempted to replicate 100 studies and found that very
few findings could be reproduced (Open Science
Collaboration 2015), although a replication of this
replication found that the percentage of studies that
were replicated was not statistically different from
the fraction that would be expected to replicate be-
cause of chance alone (Gilbert et al. 2016). Camerer
et al. (2016) found a higher initial percentage being
replicable in 18 economic studies, but this still reflects
a problem in the field. In commercial applications,
large corporations are keenly aware of this problem:
based on their own comparisons, Bayer HealthCare
found that only about 20%-25% of preclinical studies
were completely in line with their in-house findings
(Prinz et al. 2011). Amgen replicated 11% of 53 sci-
entific findings (Begley and Ellis 2012).

For the p-curve approach, a uniform distribution of
p-values across articles indicates a lack of significant
results; a right skew indicates a general existence of
significant results; and a left skew, especially near the
0.05 threshold, supposedly indicates p-hacking. Head
et al. (2015) concluded that the evidence indicates
the existence of “widespread” evidence for p-hacking
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after searching all open access papers in the PubMed
database (~ 100,000 papers). This type of analysis
has also been contested (Bishop et al. 2016), and not
all meta-analyses have found evidence of p-hacking
(Jager and Leek 2014).

Several types of solutions to p-hacking have
been proposed.

¢ We could require researchers to “preregister” the
details of their study, so that they cannot selectively
make choices to achieve significant results, but this
rules out learning from the data in any other way.

* Another proposal is to reduce the significance
threshold (Simmons et al. 2011, Humphreys et al.
2012, Gelman and Loken 2013, Monogan 2015) be-
cause when explicitly considering multiple compar-
isons, decreasing the threshold for significance is
sensible (e.g., the Bonferroni correction). Recently, a
group of 72 scientists advocated reducing it to 0.005
(Benjamin et al. 2018), which might lessen false posi-
tives but would also invalidate the quantitative meaning
of the p-value in the first place. This is also a drastic
measure, leading to a higher true-negative rate and
thus, many important results being dismissed as
insignificant.

e We could create Bayesian confidence intervals or
Bayesian hierarchical models. In comparison with
frequentist hypothesis testing, Bayesian hypothesis
testing provides a more comfortable interpretation of
the conclusion (the probability that the alternative
hypothesis is true), but it is still subject to hacking: the
introduction of a prior gives the researcher even more
discretion, which may lead to more user choices (see
Gelman et al. 2012 for examples of complicated priors
leading to bias). If we place a prior on analysts’ de-
cisions, it is easy to argue that any given prior is
wrong. An example of this, discussed earlier, is the
choice of matching algorithm for treatment and con-
trol units in a matched pairs experiment. This is a case
where uniform priors do not make sense, but any other
choice of prior is not defensible either.

® In the case where the researcher does variable
selection, post-selection inference can be used to adjust
classical confidence intervals in order to account for
the variables being chosen after examining the data.
In the case of linear regression, Tibshirani et al. (2016)
present a framework for specific variable selection
procedures (forward stepwise regression, least angle
regression, and the lasso regularization path), and
Berketal. (2013) present a framework that holds forall
variable selection procedures that is more conserva-
tive than Scheffé protection (Scheffé 1959). Hacking
intervals differ from post-selection inference in at least
two ways. (1) Hacking intervals are more general as
they could include uncertainty to many choices made
by the analyst for any prediction problem (not just
regression) and do not necessarily require independent

and identically distributed (i.i.d.) Gaussian errors. (2)
Post-selection is useful when you already have a
model selected and you want to do regular inference,
whereas hacking intervals consider robustness to
other models that could have been selected. Post-
selection confidence intervals can be combined with
hacking intervals to account for other researcher choices.

e The work of Dwork et al. (2015) provides a
method to avoid p-hacking in a setting where data are
provided sequentially, chosen i.i.d. from the same
distribution. Our setting is very different; in our
work, the data could be subject to preprocessing, and
the underlying distribution may not exist.

These solutions are obviously sometimes useful but
often unfulfilling, highlighting the importance, in-
herent difficulty, and urgency of the problem.

7.2. Problems with Classical Inference That Are
Easy to Overlook
Here, we highlight some drawbacks to classical in-
ference, including frequentist, Bayesian, and fiducial
inference (see Hannig et al. 2016 for a review of a
modern version of fiducial inference), in the way they
are used in practice and how hacking intervals can
help to fix these issues.

e In cases where a superpopulation exists, the null
hypothesis for data analysis is not the correct null
hypothesis. The entire confidence interval calculation
for an observed data set is conditional on statistical
assumptions about measurement, distributions, as-
ymptotics, and modeling, among others. Changes in
any of these can greatly impact the resulting sub-
stantive conclusions, a problem known as model de-
pendence (King and Zeng 2006, lacus et al. 2011). The
null hypothesis used for the analysis depends on the
processed data and thus, is subject to model depen-
dence. Let us say we want to know whether a phar-
maceutical drug causes a side effect. We might pro-
cess data by choosing covariates, choosing a match
assignment, performing regression with a choice of
regularization, and so on. The “true” null hypothesis
is that the drug does not have any side effect. Instead,
the null hypothesis that is actually tested is that the
drughasno effect after the researcher’s preprocessing
is done to future instances of raw data. It is not clear
which preprocessing steps will make the researcher’s
null hypothesis close to the true null hypothesis on the
correct superpopulation. If the researcher’s results are
robust to a range of possible data-processing options,
then this range may include processing that brings the
data closer to a sample drawn from the true super-
population. To analyze the data in this case, we would
wanta combination of a hacking interval (for the data-
processing choices) and a regular confidence interval
(for the processed data) to ensure robustness both to
user manipulation and to randomness in the sample
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of data. We discuss such combinations in Section 5.1.3
forregression. To summarize, hacking intervals help
to ensure that the conclusions about the true null
hypothesis with respect to the true superpopulation
are valid.

¢ [t does not make sense to explicitly model analyst
choices. In the case of Bayesian model averaging or
other decision-making frameworks, one might try to
model the way the analyst might treat the data and
average over realistic choices an analyst might make.
However, this makes little sense. The hypothesis is
about the ground truth, not about researcher choices.
We would like the result to be robust to any choices
made by a reasonable researcher.

The example of matching, discussed earlier, is an
example where placing a prior on analyst choices of
matching method does not make sense.

7.3. Enumerative Approaches Similar to
Prescriptively Constrained Hacking Intervals

In the social sciences, there are several works that
propose enumerating all reasonable model specifi-
cations and computing the effect estimate of interest
for each specification. The “extreme bound analysis”
of Leamer (1983) focuses on covariate combinations;
the “specification curve” of Simonsohn et al. (2015)
proposes a graphical display of all effect estimates
and a method for conducting joint inference across all
specifications; and the method of Young and Holsteen
(2015) investigates a variety of model specification
types, including functional form, and develops a
model influence analysis showing how each model
component impacts the effect estimate. Each of these
approaches proposes brute force calculation of all
chosen model specifications, which can be costly.
Muifoz and Young (2018) draws on the framework of
Young and Holsteen (2015) to a simulated data set,
fitting a total of 9 billion linear regression models on a
simulated data set, but the computation takes several
months. Tethered hacking intervals differ in that they
aim only to identify the smallest and largest effect
estimates, which permit an optimization-based ap-
proach. We also provide a variety of examples for
machine learning models in addition to linear models,
whereas the approaches mentioned only consider
linear or generalized linear models.

7.4. Mathematical Equivalence of Hacking Intervals
to Other Problems but with Different Meaning
In some contexts, hacking intervals bear mathemat-
ical equivalence to other problems, which means we
can leverage existing methods in some cases. Pre-
scriptively constrained hacking intervals often fall
under a form of sensitivity analysis (Leamer 2010). If
we consider uncertainty in the inputs to a mathe-
matical model (usually in an applied math context),

they fall under the field of uncertainty quantification.
If we consider uncertainty in prior specification, they
fall under robust Bayesian analysis. If we consider
uncertainty in assumptions for causal inference, they
fall under (causal) sensitivity analysis. See Ghanem
et al. (2017), Berger et al. (1994), and Liu et al. (2013),
for overviews of these fields, respectively. Uncer-
tainty quantification provides useful computational
tools, like Monte Carlo simulation and surrogate
models (Sudret et al. 2017). In the latter two methods,
theoretical bounds on effect estimates have been
proven. Berger (1990) determines the range of a pos-
terior quantity for priors contained in a certain class. In
linear regression, difference in betas (DFBETAS) and
difference in fits (DFFITS) measure the change in a
coefficient and a prediction of a linear model, respec-
tively, when a single observation is removed and can be
computed without refitting the model (Belsley et al.
1980). These results can be used to compute tethered
hacking intervals for linear models when the space of
data adjustment functions includes those that
remove a single observation. In causal inference, we
can find the range of effect estimates subject to an
unmeasured confounder being within specified
bounds on its relationship to both the treatment and
the outcome (Lin et al. 1998, Vanderweele and Arah
2011). If we think of an unmeasured confounder as an
additional feature created by a researcher, we can use
these results to find the prescriptively constrained
hacking interval under this researcher degree of
freedom. We applied this idea in Section 3.1.2.
Tethered hacking intervals are equivalent to profile
likelihood confidence intervals (Bjornstad 1990) when
the loss function corresponds to a likelihood. We
discuss this in more detail in Online Appendix C.1.

Finding hacking intervals can be viewed as a form
of robust optimization. Robust optimization serves
as a worst case analysis in decision theory. Uncer-
tainty sets are the primitives for hacking intervals,
namely the ranges of user choices we are willing to
consider. In prescriptively constrained hacking in-
tervals, the uncertainty set is the range of prescriptive
choices the researcher is allowed to make. In tethered
hacking intervals, the uncertainty set is determined
by the set of functions achieving low loss. If we cannot
easily determine the uncertainty set in advance, we
may be able to learn the uncertainty sets from related
problems if data (from other sources) are available.
This is done by Tulabandhula and Rudin (2014b) for
machine learning to determine uncertainty sets for
decision making.

The “Machine Learning with Operational Costs”
framework (Tulabandhula and Rudin 2013, 2014a)
computes a tethered hacking interval of the cost that
a company might incur to enact an optimal policy
in response to any good predictive model. The work
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of Letham et al. (2016) uses tethered hacking intervals
in the setting of uncertainty quantification and op-
timal experimental design for dynamical systems.
They recommend to perform an experiment that
would most reduce the hacking interval on the quantity
the experimenter wishes to estimate.

7.5. Teaching of Hacking Intervals
A major benefit of hacking intervals is that they are
easy to explain. Confidence intervals and p-values are
difficult to teach and interpret, and they are regularly
misinterpreted. In response, the American Statistical
Association recently issued a document explaining
hypothesis testing to users (Wasserstein and Lazar
2016), and the field of basic and applied social psy-
chology banned p-values altogether (Trafimow and
Marks 2015), but as the authors of these proposals
recognize, this does not fully solve the problem.
Hacking intervals are easy to explain, do not re-
quire knowledge of probability to understand, and
sometimes capture as much, if not more, uncertainty
as regular confidence intervals. Teaching hacking
intervals first may give a gentle introduction to the
effect of uncertainty on conclusions.

8. Conclusion

In this work, we presented an alternative theory of
inference. It complements existing theories in that it
handles a form of uncertainty that arises from analyst
choices, rather than from randomness in the data.
We presented several examples of hacking intervals
stemming from regression and classification, as well
as dimension reduction and feature selection. We
showed in a real example how hacking intervals can
be helpful—in particular, our results indicate that a
commonly used model for pretrial risk analysis may
sometimes be miscalculated, potentially leading to
suboptimal judicial decision making throughout the
United States. Our examples indicate that it is pos-
sible that these incorrectly computed risk scores could
lead (or have led) to high-risk individuals being re-
leased or low-risk individuals being detained.
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Endnotes

! The repository for the hacking package is at https://github.com/
beauCoker/hacking.

2The repository for paper results is at https: // github.com /beauCoker/
hacking_paper_results.

% Alternatively, the goal may be to assume that the unmeasured
confounder reduced the causal effect to zero and see what this would
imply about the unmeasured confounder.

*Lin et al. (1998) show this result exactly for log-linear regression, but
they argue it should hold approximately for logistic regression.

¥ Mories Abdo also committed a Municipal Ordinance for Possession
of a Controlled Substance during the two-year follow-up period, but
this charge does not count as a reoffense in our data set (there are many
charges, like ordinary traffic violations, that do not count as reoffenses).
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