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Numerical Issues Involved 
in Inverting Hessian Matrices 
Jeff Gill and Gary King 

6.1 INTRODUCTION 

In the social sciences, researchers typically assume the accuracy of generalized 
linear models by using an asymptotic normal approximation to the likelihood 
function or, occasionally, by using the full posterior distribution. Thus, for stan- 
dard maximum likelihood analyses, only point estimates and the variance at the 
maximum are normally seen as necessary. For Bayesian posterior analysis, the 
maximum and variance provide a useful first approximation (but see Chapter 4 
for an alternative). 

Unfortunately, although the negative of the Hessian (the matrix of second 
derivatives of the posterior with respect to the parameters and named for its 
inventor in slightly different context, German mathematician Ludwig Hesse) must 
be positive definite and hence invertible so as to compute the variance matrix, 
invertible Hessians do not exist for some combinations of datasets and models, so 
statistical procedures sometimes fail for this reason before completion. Indeed, 
receiving a computer-generated "Hessian not invertible" message (because of 
singularity or nonpositive definiteness) rather than a set of statistical results is a 
frustrating but common occurrence in applied quantitative research. It even occurs 
with regularity during many Monte Carlo experiments where the investigator is 
drawing data from a known statistical model, due to machine effects. 

The Hessian can be noninvertible for both computational reasons and data rea- 
sons. Inaccurate implementation of the likelihood function (see Chapters 2 and 3), 
inaccurate derivative methods (see Chapter 8), or other inappropriate choices in 
optimization algorithms can yield noninvertible Hessians. Where these inaccura- 
cies cause problems with Hessians, we recommend addressing these inaccuracies 
directly. 

If these methods aren't feasible, or don't work, which often happens, we pro- 
vide an innovative new library for doing generalized inverses . Moreover, when 
a Hessian is not invertible for data reasons, no computational trick can make 
it invertible, given the model and data chosen, because the desired inverse does 
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not exist. The advice given in most textbooks for this situation is to rethink the 
model, respecify it, and rerun the analysis (or in some cases get more data). For 
instance, in one of the best econometric textbooks, Davidson and MacKinnon 
(1993, pp. 185-86) write: "There are basically two options: Get more data, or 
estimate a less demanding model . . . . If it is not feasible to obtain more data, 
then one must accept that the data one has contain a limited amount of infor- 
mation and must simplify the model accordingly. Trying to estimate models that 
are too complicated is one of the most common mistakes among inexperienced 
applied econometricians." The point of this chapter is to provide an alternative 
to simplifying or changing the model, but the wisdom of Davidson and M a c l n -  
non's advice is worth emphasizing in that our approach is appropriate only when 
the more complicated model is indeed of interest. 

Respecification and reanalysis is important and appropriate advice in some 
applications of linear regression because a noninvertible Hessian has a clear sub- 
stantive interpretation: It can only be caused by multicollinearity or including 
more explanatory variables than observations (although even this simple case 
can be quite complicated; see Searle 1971). As such, a noninvertible Hessian 
might indicate a substantive problem that a researcher would not be aware of 
otherwise. It is also of interest in some nonlinear models, such as logistic regres- 
sion, where the conditions of noninvertibility are also well known. In nonlinear 
models, however, noninvertible Hessians are related to the shape of the posterior 
density, but how to connect the problem to the question being analyzed can often 
be extremely difficult. 

In addition, for some applications, the textbook advice is disconcerting, or 
even misleading, because the same model specification may have worked in 
other contexts and really is the one from which the researcher wants estimates. 
Furthermore, one may find it troubling that dropping variables from the specifi- 
cation substantially affects the estimates of the remaining variables and therefore 
the interpretation of the findings (Leamer 1973). 

The point developed in this chapter is that although a noninvertible Hessian 
means the desired variance matrix does not exist, the likelihood function may 
still contain considerable information about the questions of interest. As such, 
discarding data and analyses with this valuable information, even if the infor- 
mation cannot be summarized as usual, is an inefficient and potentially biased 
procedure. 

In situations where one is running many parallel analyses (say, one for each 
U.S. state or population subgroup), dropping only those cases with noninvert- 
ible Hessians, as is commonly done, can easily generate selection bias in the 
conclusions drawn from the set of analyses. Here, restricting all analyses to the 
specification that always returns an invertible Hessian risks other biases. Simi- 
larly, Monte Carlo studies that evaluate estimators risk severe bias if conclusions 
are based (as usual) on only those iterations with invertible Hessians. 

Rather than discarding information or changing the questions of interest when 
the Hessian does not invert, we discuss some methods that are sometimes able to 
exgact information in a convenient format from problematic likelihood functions 
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or posterior distributions without respecification. ' This has always been possible 
within Bayesian analysis, by using algorithms that enable one to draw directly 
from the posterior of interest. However, the algorithms, such as those based on 
Monte Carlo Markov chains or higher-order analytical integrals, are normally 
much more involved to set up than calculating point estimates and asymptotic 
variance approximations to which social scientists have become accustomed, 
and so they have not been adopted widely. Our approach can be thought of as 
Bayesian, too, although informative prior distributions need not be specified; we 
focus only on methods that are relatively easy to apply. Although a sophisticated 
Bayesian analyst could figure out how to elicit information from a posterior with 
a noninvertible Hessian without our methods in particular instances, we hope 
that our proposals will make this information available to many more users and 
may even make it easier for those willing to do the detailed analysis of particular 
applications. In fact, the methods we discuss are appropriate even when the 
Hessian does invert and in many cases may be more appropriate than classical 
approaches. We begin in Section 6.2 by providing a summary of the posterior 
that can be calculated, even when the mode is uninteresting and the variance 
matrix is nonexistent. The road map to the rest of the chapter concludes that 
motivating section. 

6.2 MEANS VERSUS MODES 

When a posterior distribution contains information but the variance matrix cannot 
be computed, all hope is not lost. In low-dimensional problems, plotting the 
posterior is an obvious solution that can reveal all relevant information. In a good 
case, this plot might reveal a narrow plateau around the maximum, or collinearity 
between two reIatively unimportant control variables (as represented by a ridge 
in the posterior surface). Unfortunately, most social science applications have 
enough parameters to make this type of visualization infeasible, so some summary 
is needed. [Indeed, this was the purpose of maximum likelihood estimates, as 
opposed to the better justified likelihood theory of inference, in the first place; 
see King 19891. 

We propose an alternative strategy. We do not follow the textbook advice 
by asking the user to change the substantive question they ask, but instead, ask 
the researcher to change their statistical summary of the posterior so that useful 
information can still be elicited without changing their substantive questions, 
statistical specification, assumptions, data, or model. All available information 
from the model specified can thus be extracted and presented, at which point one 
may wish to stop or instead respecify the model on the basis of substantive results. 

In statistical analyses, researchers collect data, specify a model, and form the 
posterior. They then summarize this information, essentially by posing a question 

'For simplicity, we refer to the objective function as the posterior distribution from here on, although 
most of our applications will involve flat priors, in which case, of course, the posterior is equivalent 
to a likelihood function. 
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about the posterior distribution. The question answered by the standard maximum 
likelihood (or maximum posterior) estimates is: What is the mode of the posterior 
density and the variance around this mode? 

In cases where the mode is on a plateau or at a boundary constraint, or 
the posterior's surface has ridges or saddlepoints, the curvature will produce a 
noninvertible Hessian. In these cases, the Hessian also suggests that the mode 
itself may not be of use even if a reasonable estimate of its variability were 
known. That is, when the Hessian is noninvertible, the mode may not be unique 
and is, in any event, not an effective summary of the full posterior distribution. 
In these difficult cases, we suggest that researchers pose a different but closely 
related question: What is the mean of the posterior density and the variance 
around the mean? 

When the mode and mean are both calculable, they often give similar answers. 
If the likelihood is symmetric, which is guaranteed if n is sufficiently large, the 
two are identical, so switching questions has no cost. Indeed, the vast majority 
of social science applications appeal to asymptotic normal approximations for 
computing the standard errors and other uncertainty estimates, and for these the 
mode and the mean are equal. As such, for these analyses, our proposals involve 
no change of assumptions. 

If the maximum is not unique, or is on a ridge or at the boundary of the 
parameter space, the mean and its variance can be found, but a unique mode and 
its variance cannot. At least in these difficult cases, when the textbook suggestion 
of substantive respecification is not feasible or if it is not desirable, we propose 
switching from the mode to the mean. 

Using the mean and its variance seems obviously useful when the mode or 
its variance do not exist, but in many cases when the two approaches differ 
and both exist, the mean would be preferred to the mode. For an extreme case, 
suppose that the posterior for a parameter 8 is truncated normal with mean 0.5, 
standard deviation 10, and truncation is on the [O, I] interval (cf. Gelman et al. 
1995, p. 114, Prob. 4.8). In this case, the posterior, estimated from a sample of 
data, will be a small segment of the normal curve. Except when the unit interval 
captures the mode of the normal posterior (very unlikely given the size of the 
variance), the mode will almost always be a comer solution (0 or 1). In contrast, 
the mean posterior will be some number within (0,l). In this case, it seems 
clear that 0 or 1 does not make good single-number summaries of the posterior, 
whereas the mean is likely to be much better. 

In contrast, when the mean is not a good summary, the mode is usually 
not satisfactory either. For example, the mean will not be very helpful when 
the likelihood provides little information at all, in which case the result will 
effectively return the prior. The mean will also not be a very useful summary for 
a bimodal posterior, since the point estimate would fall between the two humps 
in an area of low density. The mode would not be much better in this situation, 
although it does at least reasonably characterize one part of the density. 

In general, when a point estimate makes sense, the mode is easier to compute, 
but the mean is more likely to be a useful summary of the full posterior. We 
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believe that if the mean were as easy to compute as the mode, few would choose 
the mode. We thus hope to reduce the computational advantage of the mode over 
the mean by proposing some procedures for computing the mean and its variance. 

6.3 DEVELOPING A SOLUTION USING BAYESIAN 
SIMULATION TOOLS 

When the inverse of the negative Hessian exists, we compute the mean and its 
variance by importance resampling. That is, we take random draws from the 
exact posterior in two steps. We begin by drawing a large number of random 
numbers from a normal distribution, with mean set at the vector of maximum 
posterior estimates and variance set at the estimated variance matrix. Then we use 
a probabilistic rejection algorithm to keep only those draws that are close enough 
to the correct posterior. These draws can then be used directly to study some 
quantity of interest, or they can be used to compute the mean and its variance. 

When the inverse of the negative Hessian does not exist, we suggest two sep- 
arate procedures to choose from. One is to create a pseudovariance matrix and 
use it, in place of the inverse, in our importance resampling scheme. In brief, 
applying a generalized inverse (when necessary, to avoid singularity) and general- 
ized Cholesky decomposition (when necessary, to guarantee positive definiteness) 
together often produce a pseudovariance matrix for the mode that is a reasonable 
summary of the curvature of the posterior distribution. (The generalized inverse 
is a commonly used technique in statistical analysis, but to our knowledge, the 
generalized Cholesky has not been used before for statistical purposes.) Surpris- 
ingly, the resulting matrix is not usually ill conditioned. In addition, although this 
is a "pseudo" rather than an "approximate" variance matrix (because the thing 
that would be approximated does not exist), the calculations change the resulting 
variance matrix as little as possible to achieve positive definiteness. We then take 
random draws from the exact posterior using importance resampling as before, 
but using two diagnostics to correct problems with this procedure.2 

Our solution is nothing more than a way to describe the difficult posterior 
form using importance sampling, which is a standard tool for Bayesians because 
they often end up with posterior forms that are difficult to describe analytically. 
This method of using a convenient candidate distribution and then accepting or 
rejecting values depending on their resemblance to those produced by the real 
posterior is supported by a large body of theoretical work starting with Ott (1979), 
Rubin (1987a), and Smith and Gelfand (1992). Recent discussions of the theoret- 
ical validity as well as properties of importance sampling are given by Geweke 
(1989), Gelman et al. (1995), Robert and Casella (1999), and Tanner (1996). 
Before continuing, it is also important to note that this proposed solution uses 
simulation but is not estimation based on Markov chain Monte Carlo analysis. 

2 ~ h i s  part of our method is what most separates it from previous procedures in the literature that 
sought to find a working solution based on the generalized inverse alone (Riley 1955; Marquardt 
1970; Searle 197 1). 
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6.4 WHAT IS IT THAT BAYESIANS DO? 

We are certainly "borrowing" from the Bayesian perspective: mean summaries 
and statistical summary through simulation. However, philosophically we are not 
requiring that one subscribe to the tenants of Bayesian inference: stipulation of 
prior distributions for unknown parameters, a belief that these parameters should 
be described distributionally conditional on the data observed and posteriors based 
on updating priors with likelihoods. 

The essence of Bayesian inference is encapsulated in three general steps: 

1. Specify a probability model for unknown parameter values that includes 
some prior knowledge about the parameters if available. 

2. Update knowledge about the unknown parameters by conditioning this 
probability model on observed data. 

3. Evaluate the fit of the model to the data and the sensitivity of the conclu- 
sions to the assumptions. 

The second step constitutes the core of this process and is accomplished 
through Bayes' law: 

posterior probability oc prior probability x likelihood function 

where D is a generic symbol denoting the observed data at hand. A consequence 
is that n(6JD) is a model summary that obviously retains its distributional sense. 
This is useful because it allows a more general look at what the model is assert- 
ing about parameter location and scale. It also pushes one away from simply 
describing thls posterior with a point estimate and standard error for each param- 
eter since this could miss some of the important features of the posterior shape. 
These additional features can include multimodality, skewness, and flat regions. 

The Bayesian reporting mechanisms include the credible interval (computed 
exactly like the non-Bayesian confidence interval) and the highest posterior den- 
sity (HPD) interval. The HPD interval contains the 100(1 -a)% highest posterior 
density and therefore meets the criteria C = {8 : n(61x) 2 k), where k is the 
largest number assuring that 1 - a! = Je:n(e,x),k n(8lx) d8. This is the region 
where the probability that 0 is in the region is maximized at 1 -a, regardless of 
modality. 

Bayesian statistical methods have some distinct advantages over conventional 
approaches in modeling social science data (Poirer 1988; Western 1998, 1999), 
including overt expression of model assumptions, an exclusive focus on proba- 
bility-based statements, direct and systematic incorporation of prior knowledge, 
and the ability to "update" inferences as new data are observed. Standard Bayesian 
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statistical references include Box and Tiao (1973), Berger (1985), Bernardo and 
Smith (1994), and Robert (2001). 

Our solution to the noninvertible Hessian problem is technically not at all 
Bayesian since there is no stipulation of priors and no treatment of posteriors 
as general conditional distributions in this Bayesian sense. We do, however, use 
this distributional treatment as an interim process since the importance sampling 
step samples from the difficult posterior as a complete distribution. Since the 
point estimate and subsequent standard errors are reported, it is essentially back 
to a likelihoodist result in summary. The key point from this discussion is that 
researchers do not need to subscribe to the Bayesian inference paradigm to find 
our techniques useful. 

We next describe in substantive terms what is "wrong" with a Hessian that is 
noninvertible (Section 6.5), describe how we create a pseudovariance matrix (in 
Section 6.7), with algorithmic details and numerical examples, outline the concept 
of importance resampling to compute the mean and variance (in Section 6.9). We 
give our alternative procedure in Section 6.1 1.1, an empirical example (Section 
6. lo), and other possible approaches (in Section 6.11). 

6.5 PROBLEM IN DETAIL: NONINVERTIBLE HESSIANS 

Given a joint probability density f (~10) for an n x 1 observed data vector y and 
unknown p x 1 parameter vector 0, denote the n x p matrix of first derivatives 
with respect to 0 as 

and the p x p matrix of second derivatives as 

Then the Hessian is H, normally considered to be the estimate 

The standard maximum likelihood or maximum posterior estimate, which we 
denote as 0, is obtained by setting g(6ly) equal to zero and solving, analytically 
or numerically. When -H is positive definite in the neighborhood of6 ,  the theory 
is well known and no problems arise in application. This occurs the vast majority 
of the time. 

The problem described as "a noninvertible Hessian" can be decomposed into 
two distinct parts. The first problem is singularity, which means that (-H)-' does 
not exist. The second is nonpositive de$niteness, which means that (-H)-' may 
exist but its contents do not make sense as a variance matrix. (A matrix that is pos- 
itive definite is nonsingular, but nonsingularity does not imply positive definite- 
ness.) Statistical software normally describes both problems as noninvertibility 
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because their inversion algorithms take computational advantage of the fact that 
the negative of the Hessian must be positive definite if the result is to be a vari- 
ance matrix. This means that these programs do not bother to invert nonsingular 
matrices (or even to check whether they are nonsingular) unless it is established 
first that they are also positive definite. 

We first describe these two problems in single-parameter situations, where 
the intuition is clearest but where our approach does not add much of value 
(because the full posterior can easily be visualized). We then move to more 
typical multiple-parameter problems, which are more complicated but where we 
can help more. In one dimension, the Hessian is a single number measuring 
the degree to which the posterior curves downward on either side of the max- 
imum. When all is well, H < 0, which indicates that the mode is indeed at 
the top of the hill. The variance is then the reciprocal of the negative of this 
degree of curvature, - 1 /H, which, of course, is a positive number, as a variance 
must be. 

The first problem, singularity, occurs in the one-dimensional case when the 
posterior is flat near the mode-so that the posterior forms a plateau at best or a 
flat line over (-co, co) at worst. Thus, the curvature is zero at the mode and the 
variance does not exist, since 1/0 is not defined. Intuitively, this is as it should 
be since a flat likelihood indicates the absence of information, in which case any 
point estimate is associated with an (essentially) infinite variance (to be more 
precise, 1/H 4 oo as H 4 0). 

The second problem occurs when the "mode" identified by the maximization 
algorithm is at the bottom of a valley instead of the top of a hill [g(Bly) is zero 
in both cases], in which case the curvature will be positive. (This is unlikely in 
one dimension, except for seriously defective maximization algorithms, but the 
corresponding problem in high-dimensional cases of saddlepoints, where the top 
of the hill for some parameters may be the bottom for others, is more common.) 
The difficulty here is that -1/H exists, but it is negative (or in other words, is 
not positive definite), which obviously makes no sense as a variance. 

A multidimensional variance matrix is composed of variances, which are the 
diagonal elements and must be positive, and correlations that are off-diagonal 
elements divided by the square root of the corresponding diagonal elements. 
Correlations must fall within the [-I, 11 interval. Although invertibility is an 
eitherlor question, it may be that information about the variance or covariances 
exist for some of the parameters but not for others. 

In the multidimensional case, singularity occurs whenever the elements of H 
that would map to elements on the diagonal of the variance matrix, (-H)-~, 
combine in such a way that the calculation cannot be completed because they 
would involve divisions by zero. Intuitively, singularity indicates that the vari- 
ances to be calculated would be (essentially) infinite. When (-H)-' exists, it is a 
valid variance matrix only if the result is positive definite. Observe that (-H)-' 
is a positive definite matrix if for any nonzero p x 1 vector x, xr(-H)-'x > 0. 
Nonpositive definiteness occurs in simple cases either because the variance is 
negative or the correlations are exactly - 1 or 1. 
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6.6 GENERALIZED INVERSEIGENERALIZED 
CHOLESKY SOLUTION 

The alternative developed here uses a generalized inverse, then a generalized 
Cholesky decomposition [if necessary when the generalized inverse of (-H) 
is not positive definite], and subsequent refinement with importance sampling. 
The generalized inverse is produced by changing the parts of -H that get 
mapped to the variances so that they are no longer infinities. The generalized 
Cholesky adjusts inappropriate terms that would get mapped to the correlations 
(by slightly increasing variances in their denominator) to keep them within the 
required range of [-I, 11. So the pseudovariance matrix is calculated as V'V, 
where V = GCHOL(H-), GCHOL(.) is the generalized Cholesky, and H- is 
the generalized inverse of the Hessian. 

The result of this process is a pseudovariance matrix that is in most cases 
well conditioned in that it is not nearly singular. Actually, this generalized 
inverselgeneralized Cholesky approach is closely related to, but distinct from, 
the quasi-Newton Davidson-Fletcher-Powell (DFP) method. The difference is 
that the DFP method uses iterative differences to converge on an estimate of 
the negative inverse of a nonpositive definite Hessian. [See Greene (2003) for 
details.] However, the purpose of the DFP method is computational rather than 
statistical and therefore does not include our importance sampling step. Note that 
this method includes a default such that if the Hessian is really invertible, the 
pseudovariance matrix is the usual inverse of the negative Hessian. 

6.7 GENERALIZED INVERSE 

The literature on the theory and application of the generalized inverse is vast 
and spans several fields. Here we summarize some of the fundamental principles. 
[See Harville (1997) for further details.] The procedure begins with a generalized 
inverse procedure to address singularity in the -H matrix. This process resembles 
a standard matrix inversion to the greatest extent possible. The standard inverse 
A-I of A meets five well-@own conditions: 

(where conditions 1 to 4 are implied by condition 5). However, the Moore-Pen- 
rose generalized inverse matrix, A- of A, meets only the first four conditions 
listed above. Any matrix, A, can be decomposed as 
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and both L (lower triangular) and U (upper triangular) are nonsingular (even given 
a singular A). The diagonal matrix DYxr has dimension and rank r corresponding 
to the rank of A. When A is nonnegative definite and symmetric, the diagonals 
of Drxr are the eigenvalues of A. If A is nonsingular, positive definite, and 
symmetric, as in the case of a proper invertible Hessian, D,,, = JD (i.e., r = 
q) and A = LKDL'. The matrices L, D, and U are all nonunique unless A is 
nonsingular. 

By rearranging (6.1) we can diagonalize any matrix as 

Now define a new matrix, D-, created by taking the inverses of the nonzero 
(diagonal) elements of D: 

If DID- = Iqxq, we could say that D- is the inverse of D. However, this is not 
true: 

Instead, we notice that 

So ID- is a generalized inverse of D because of the extra structure required. Note 
that this is a generalized inverse, not the generalized inverse, since the matrices 
on the right side of (6.1) are nonunique. By rearranging (6.1) and using (6.3) 
we can define a new q x p matrix: G = U-~D-L-'. The importance of the 
generalized inverse matrix G is revealed in the following t h e ~ r e m . ~  

Theorem. (Moore 1920). G is a generalized inverse of A since AGA = A. 

The new matrix G necessarily has rank r since the product rule states that the 
result has rank less than or equal to the minimum of the rank of the factors, and 
AGA = A requires that A must have rank less than or equal to the lowest rank of 
itself or G. Although G has infinitely many definitions that satisfy the Theorem, 
any one of them will do for our purposes: for example, in linear regression, the 

3 ~ h e  generalized inverse is also sometimes referred to as the conditional inverse, pseudo inverse, 
and g-inverse. 
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fitted values, defined as XGX'Y, with G as the generalized inverse of X'X, X as 
a matrix of explanatory variables, and Y as the outcome variable, are invariant 
to the definition of G. In addition, we use our pseudovariance only as a first 
approximation to the surface of the true posterior, and we will improve it in our 
importance resampling stage. Note, in addition, that AG is always idempotent 
[GAGA = G(AGA) = GA], and rank(AG) = rank(A). These results hold 
whether or not A is singular. 

Moore (1920) and (apparently unaware of Moore's work) Penrose (1955) 
reduced the infinity of generalized inverses to the one unique solution given 
above by imposing four reasonable algebraic constraints, all met by the standard 
inverse. This G matrix is unique if the following hold: 

1. General condition: AGA = A 
2. Reflexive condition: GAG = G 
3. Normalized condition: (AG)' = GA 
4. Reverse normalized condition: (GA)' = AG 

The proof is lengthy, and we refer the interested reader to Penrose (1955). 
There is a vast literature on generalized inverses that meet some subset of the 
Moore-Penrose condition. A matrix that satisfies the first two conditions is called 
a reflexive or weak generalized inverse and is order dependent. A matrix that sat- 
isfies the first three conditions is called a normalized generalized inverse. A 
matrix that satisfies the first and fourth conditions is called a minimum norm 
generalized inverse. 

Because the properties of the Moore-Penrose generalized inverse are intu- 
itively desirable, and because of the invariance of important statistical results 
to the choice of generalized inverse, we follow standard statistical practice by 
using this form from now on. The implementations of the generalized inverse in 
Gauss and Splus are both the Moore-Penrose version. 

The Moore-Penrose generalized inverse is also easy to calculate using QR 
factorization. QR factorization takes the input matrix, A, and factors it into the 
product of an orthogonal matrix, Q, and a matrix, R, which has a triangular lead- 
ing square matrix (r) followed by rows of zeros corresponding to the difference 
in rank and dimension in A: 

This factorization is implemented in virtually every professional-level statistical 
package. The Moore-Penrose generalized inverse is produced by 

G = [r-lo] Q', 

where 0 is the transpose of the zeros' portion of the R matrix required for 
conformability. 
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6.7.1 Numerical Examples of the Generalized Inverse 

As a means of motivating a simple numerical example of how the generalized 
inverse works, we develop a brief application to the linear model where the X'X 
matrix is noninvertible because X is singular. In this context, the generalized 
inverse provides a solution to the normal equations (Campbell and Meyer 1979, 
p. 94), and both the fitted values of Y and the residual error variance are invari- 
ant to the choice of G (Searle 1971, pp. 169-71). We use the Moore-Penrose 
generalized inverse. 

Let 

(Our omission of the constant term makes the numerical calculations cleaner but 
is not material to our points.) Applying the least squares model to these data (X 
is of full rank) yields the coefficient vector 

fitted values, 

and variance matrix 

What we call the standardized correlation matrix, a correlation matrix with stan- 
dard deviations on the diagonal, is then 

Now suppose that we have a matrix of explanatory effects that is identical to 
X except that we have changed the bottom left number from 2.95 to 2.99: 
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Using the same Y outcome vector and applying the same least squares calculation 
now gives 

and 

However, the variance-covariance matrix reacts sharply to the movement toward 
singularity as seen in the standardized correlation matrix: 

Indeed, if Xg = 2.999, X'X is singular (with regard to precision in Gauss and 
Splus) and we must use the generalized inverse. This produces 

bs = GX'Y = (1.774866, -5.762093, 1.778596)' 

and 

Y = XGX'Y = (11111.11, -11.89, -11104.11)'. 

The resulting pseudovariance matrix (calculated now from GO') produces larger 
standard deviations for the first and third explanatory variables, reflecting greater 
uncertainty, again displayed as a standardized correlation matrix: 

6.8 GENERALIZED CHOLESKY DECOMPOSITION 

We now describe the classic Cholesky decomposition and recent generalizations 
designed to handle nonpositive definite matrices. A matrix C is positive defi- 
nite if for any x vector except x = 0, x'Cx > 0, or in other words, if C has 
all positive eigenvalues. Symmetric positive definite matrices are nonsingular, 
have only positive numbers on the diagonal, and have positive determinants for 
all principal leading submatrices. The Cholesky matrix is defined as V in the 
decomposition C = V'V. We thus construct our pseudovariance matrix as V'V, 
where V = GCHOL(HP), GCHOL(.) is the generalized Cholesky described 
below, and H- is the Moore-Penrose generalized inverse of the Hessian. 



156 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES 

6.8.1 Standard Algorithm 

The classic Cholesky decomposition algorithm assumes a positive definite matrix 
and symmetric variance matrix (C). It then proceeds via the matrix decomposition 

C = L  D L ' .  
( k x k )  ( k x k ) ( k x k ) ( k x k )  

The basic Cholesky procedure is a one-pass algorithm that generates two output 
matrices which can then be combined for the desired "square root" matrix. The 
algorithm moves down the main diagonal of the input matrix determining diag- 
onal values of D and triangular values of L from the current column of C and 
previously calculated components of L and C. Thus the procedure is necessar- 
ily sensitive to values in the original matrix and previously calculated values in 
the D and L matrices. There are k stages in the algorithm corresponding to the 
k-dimensionality of the input matrix. The jth step (1 4 j 5 k) is characterized 
by two operations: 

and 

where D is a positive diagonal matrix so that on completion of the algorithm, 
its square root is multiplied by L to give the Cholesky decomposition. From this 
algorithm it is easy to see why the Cholesky algorithm cannot tolerate singular 
or nonpositive definite input matrices. Singular matrices cause a divide-by-zero 
problem in (6.6), and nonpositive definite matrices cause the sum in (6.5) to be 
greater than C j ,  j , causing negative diagonal values. Furthermore, these problems 
exist in other variations of the Cholesky algorithm, including those based on svd 
and qr decomposition. Arbitrary fixes have been tried to preserve the mathemati- 
cal requirements of the algorithm, but they do not produce a useful result (Fiacco 
and McCormick 1968, Matthews and Davies 1971; Gill et al. 1974). 

6.8.2 Gill-Murray Cholesky Factorization 

Gill and Murray (1974) introduced, and Gill et al. (1981) refined, an algorithm 
to find a nonnegative diagonal matrix, E, such that C + E is positive definite and 
the diagonal values of E are as small as possible. This could easily be done by 
taking the greatest negative eigenvalue of C, hl,  and assigning E = -(A1 + E )  I, 
where 6 is a small positive increment. However, this approach (implemented in 
various computer programs, such as the Gauss "maxlike" module) produces E 

I 
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values that are much larger than required, and therefore the C +E matrix is much 
less like C than it could be. 

To see Gill et al.'s (1981) approach, we rewrite the Cholesky algorithm pro- 
vided as (6.5) and (6.6) in matrix notation. The jth submatrix of its application 
at the jth step is 

where cj,j  is the jth pivot diagonal, c )  is the row vector to the right of cj, , ,  
which is the transpose of the cj column vector beneath c j , j ,  and Cj+1 is the 
( j  + 1)th submatrix. The jth row of the L matrix is calculated by: L j ,  = G, 
and L(j+l):k,j = ~ ( j + l j : k , ~ / L ~ , ~ .  The ( j  + 1)th submatrix is then updated by 

Suppose that at each iteration we defined L j ,  = J-, where 6 j  is a small 
positive integer sufficiently large so that Cj+1 > C ~ C ' / L ? , ~ .  This would obviously 
ensure that each of the j iterations does not produce a negative diagonal value 
or divide-by-zero operation. However, the size of 6 j  is difficult to determine and 
involves trade-offs between satisfaction with the current iteration and satisfaction 
with future iterations. If 6 j  is picked such that the new jth diagonal is just barely 
bigger than zero, subsequent diagonal values are greatly increased through the 
operation of (6.8). Conversely, we don't want to be adding large 6 j  values on 
any given iteration. 

Gill et al. (1981) note the effect of the cj vector on subsequent iterations and 
suggest that minimizing the summed effect of 6 j  is equivalent to minimizing the 
effect of the vector maximum norm of c j ,  llcj at each iteration. This is done 
at the jth step by making a j  the smallest nonnegative value satisfying 

where 

where Em is the smallest positive number that can be represented on the computer 
used to implement the algorithm (normally called the machine epsilon) (see 
Chapter 4). This algorithm always produces a factorization and has the advantage 
of not modifying already positive definite C matrices. However, the bounds in 
(6.9) have been shown to be nonoptimal and thus provide C + E that is again 
farther from C than necessary. 
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6.8.3 Schnabel-Eskow Cholesky Factorization 

Schnabel and Eskow (1990) improve on the C 4 E procedure of Gill and Murray 
by applying the Gerschgorin circle theorem to reduce the infinity norm of the E 
matrix. The strategy is to calculate S j  values that reduce the overall difference 
between C and C + E. Their approach is based on the following theorem (stated 
in the context of our problem): 

Theorem. Suppose that C E IBk with eigenvalues h l ,  . . . , h k ,  and define the 
ith Gerschgorin bound as 

But we know that hl is the largest negative amount that must be corrected, so 
the process suggested by the theorem simplifies to the following decision rule: 

In addition, we do not want any S j  to be less than S j - l  since this would cause 
subsequent submatrices to have unnecessarily large eigenvalues, so a smaller 
quantity is subtracted in (6.8). Adding this condition to (6.10) and protecting 
the algorithm from problems associated with the machine epsilon produces the 
following determination of the additional amount in L j , j  = d m :  

The algorithm follows the same steps as that of Gill-Murray except that the 
determination of S j  is done by (6.1 1). The Gerschgorin bounds, however, pro- 
vide an order-of-magnitude improvement in IIElloo. We refer to this Cholesky 
algorithm based on Gerschgorin bounds as the generalized Cholesky since it 
improves the common procedure, accommodates a more general class of input 
matrices, and represents the "state of the art" with regard to minimizing (IEl(,. 

6.8.4 Numerical Examples of the Generalized Cholesky Decomposition 

Suppose that we have the positive definite matrix 
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This matrix has the Cholesky decomposition: 

Now suppose that we have a very similar but nonpositive definite matrix that 
requires the generalized Cholesky algorithm. The only change from the input 
matrix above is that the values on the corners have been changed from 2.4 
to 2.5: 

This matrix has the generalized Cholesky decomposition 

So the generalized Cholesky produces a very small change here so as to obtain a 
positive definite input matrix. This reflects the fact that this nonpositive definite 
matrix is actually very close to being positive definite. Now suppose that we 
create a matrix that is deliberately very far from positive definite status: 

I 2 0 10 

10 0 3 

I This matrix has the Cholesky decomposition 

The effects are particularly evident when we square the Cholesky result: 

so the diagonal of the E matrix is very large: [8,6, 111. 
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6.9 IMPORTANCE SAMPLING AND SAMPLING 
IMPORTANCE RESAMPLING 

The algorithm called sampling importance resampling (SIR) or simply impor- 
tance resampling is a Monte Carlo simulation technique used to draw random 
numbers directly from an exact (finite sample) posterior distribution. The original 
idea comes from Rubin (1987a, pp. 192-94), but see also Wei and Tanner (1990), 
Tanner (1996), and Gill (2002). For social science applications, see King (1997) 
and King et al. (1998). The primary requirement for effective implementation of 
the algorithm is the specification of a reasonable approximation to the exact (but 
inconvenient) posterior. If this requirement is not met, the procedure can take 
excessively long to be practical or can miss features of the posterior distribution. 
Also, while the approximating distribution is required, it need not be normalized. 
So there is a lot of flexibility in this choice. 

A common choice for the approximation distribution, based on flexibility and 
convenience, is the multivariate normal distribution. Sometimes the multivariate 
t distribution is substituted when the sample size is small or there is general 
concern about the tails. Using the normal or t-distribution should be relatively 
uncontroversial for our purposes here, since the algorithm in applied cases for 
which the asymptotic normal approximation was assumed appropriate from the 
start, and for most applications it probably would have worked except for the 
failed variance in the original matrix calculation. So this first approximation 
retains as many of the assumptions of the original model as possible. However, 
other distributions can easily be used if that seems necessary. 

Using either the normal or t-distribution, the mean is set at 6, the vector of 
maximum likelihood or maximum posterior estimates. Recall that this vector of 
point estimates was reported by the computer program that failed before it failed 
the variance calculation. For the normal this is simple: Set the variance equal to 
our pseudovariance matrix. For the t ,  the pseudovariance is required that there be 
an adjustment by the degrees of freedom to yield the appropriate scatter matrix. 

6.9.1 Algorithm Details 

The basic idea of importance resampling is to draw a large number of sim- 
ulations from the approximation distribution, decide how close each is to the 
target posterior distribution, and keep those close with higher probability than 
for those farther away. The main difficulty is in determining an approximation 
distribution that somewhat resembles the difficult posterior. So we use normal 
or t-distributions centered at the posterior mean and the pseudovariance matrix 
calculated as VrV, where V = GCHOL(H-), GCHOL(.) is the generalized 
Cholesky, and H- is the generalized inverse of the Hessian. 

Denote 9 as one random draw of 0 from the approximating distribution, 
and use it to compute the importance ratio: the ratio of the posterior P ( . )  to 
the normal approximation, where both are evaluated at 8: ~ ( 8  1 y ) / ~  (9 19, VrV). 
Then keep 8, as if it where a random draw from the posterior, with probability 
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proportional to this ratio. The procedure is repeated until the desired (generally 
large) number of simulations have been accepted. 

Suppose that we wish to obtain the marginal distribution for some parameter 
el from a joint distribution: f (81, 82IX). If we actually knew the parametric form 
for this joint distribution, it would be straightforward to integrate out the second 
parameter analytically over its support as shown in basic texts: 

However, in many settings this is not possible, and more involved numerical 
approximations are required. Suppose that we could posit a normalized condi- 
tional posterior approximation density of 02, f ^ ( & ) ~ ~ ,  X), that would often be 
given a normal or t form, as mentioned above. The trick that this approximation 
gives is that an expected value formulation can be substituted for the integral 
and repeated draws used for numerical averaging. Specifically, the form for the 
marginal distribution is developed as 

The friction 

called the importance weight, determines the probability of accepting sampled 
values of 02. This setup provides a rather simple procedure to obtain the estimate 
of f (81 (X). The steps are summarized as follows: 

1. Divide the support of el into a grid with the desired level of granularity 
(1) (2) ( k )  determined by k: el , el , . . . , el . 

2. For each of the of )  values along the k-length grid, determine the density 
estimate at that point by performing the following steps: 

(a) Simulate N values of 4 from f"(82(t)l(i), X). 

(b) Calculate f (ef),  &, (~)/[j(&, (el('), X) for i = 1 to N. 

(c) Use (6.13) to obtain f (B~(')(x) by taking the means of the N ratios just 
calculated. 
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T(2) Approximation distribution 

I 
I I I I I I 

I 
I 

-3 -2 -1 0 1 2 3 

Support of the target distribution 

Fig. 6.1 Importance sampling illustration. 

The user controls the level of accuracy of this estimate by increasing the 
granularity of the grid and the number of draws per position on that grid. In addi- 
tion, this procedure can also be used to perform standard numerical integration, 
provided that a suitable normalized approximation function can be found (albeit 
somewhat less efficiently than standard algorithms; see Gill 2002, Chap. 8). These 
considerations make importance sampling a very useful and very common tool 
in applied mathematics. 

The importance sampling algorithm is illustrated in Figure 6.1, where the 
importance ratio calculation is shown for an arbitrary point along the x-axis. 
The approximation distribution is t with two degrees of freedom and the target 
distribution is a contrived problematic form. The point indicated is accepted into 
the sample with probability A/(A + B), which can be viewed as the quality of 
the approximation at this point. 

6.9.2 SIR Output 

The resulting simulations can easily be displayed with a histogram to give the full 
marginal distribution of a quantity interest (see Tanner 1996; King et al. 2000) 
or just a parameter of the model. Taking the sample average and sample standard 
deviation of the simulations can be used to compute the mean and standard error 
or full variance matrix of the parameters if these common summaries are desired. 
The computed variance matrix of the means will almost always be positive def- 
inite, as long as enough simulations are drawn such that there are sufficient 
elements of the mean vector and variance matrix (normally, one would want at 
least one order of magnitude more than that number). It is also possible, how- 
ever, that the resulting variance matrix will be singular even when based on many 
simulations if the likelihood or posterior contains exact dependencies among the 
parameters. But in this case, singularity in the variance matrix (as opposed to the 
Hessian) poses no problem, since it is already on the variance-covariance metric 
(inverted), and the only problem is that some of the correlations will be exactly 1 
or - 1, which can actually be very informative substantively, and standard errors, 
for example, will still be available. 
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One diagnostic often used to detect a failure of importance resarnpling is when 
many candidate values of 6 are rejected due to low values of the importance ratio. 
In this case the procedure will take a very long time, and to be useful a better 
approximation is certainly needed. Here, the long run time indicates a problem, 
and letting it run longer may eventually yield sufficient sample size. However, 
this can be very frustrating and time consuming from a practical point of view. 
There is a danger here, though: if the approximation distribution entirely misses a 
range of values of 8 that have posterior density systematically different from the 
rest. Since the normal has support over (-oo, oo), the potential for this problem 
to occur vanishes as the number of simulations grows. Therefore, one check is 
to compute a very large number of simulations with an artificially large variance 
matrix, such as the pseudovariance matrix multiplied by a positive factor, which 
we label F. This works since obviously the coverage is more diffuse. Like all 
related simulation procedures, it is impossible to cover the full continuum of 
values that 8 can take, and the procedure can miss subtle features such as pinholes 
in the surface, very sharp ridges, or other eccentricities. 

6.9.3 Relevance to the Generalized Process 

The importance sampling procedure cannot be relied on completely in our case, 
since we know that the likelihood surface is nonstandard by definition of the 
problem. The normal approximation requires an invertible Hessian. The key to 
extracting at least some information from the Hessian via the derived pseudovari- 

l 
ance matrix is determining whether the problems are localized or, instead, affect 
all the parameters. If they are localized, or the problem can be reparameterized so 
that they are localized, some parameters effectively have infinite standard errors, 
or pairs of parameters have perfect correlations. The suggestion here is to perform 
two diagnostics to detect these problems and to alter the reported standard errors or 
covariances accordingly. For small numbers of parameters, using profile plots of 
the posterior can be helpful, and trying to isolate the noninvertibility problem in a 
distinct set of parameters can be very valuable in trying to understand the problem. 

To make the normal or t-approximation work more efficiently, it is generally 
advisable to reparameterize so that the parameters are unbounded and approxi- 
mately symmetric. This strategy is pretty standard in this literature and normally 
makes the maximization routine work better. This can be broadly used; for 
example, instead of estimating a2 > 0 as a variance parameter directly, one 
could estimate y, where a2 = eY, since y can take on any real number. 

6.10 PUBLIC POLICY ANALYSIS EXAMPLE 

This real-data example looks at public policy data focused on poverty and its 
potential causes, measured by state at the county level (FIPS). The data high- 
light a common and disturbing problem in empirical model fitting. Suppose that 
a researcher seeks to apply a given model specification to multiple datasets for 
the purpose of comparison: comparing models across 50 U.S. states, 25 OECD 
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countries, 15 EU countries, or even the same unit in some time series. Nor- 
mally, if the Hessian fails to invert for a small number of the cases, generally 
the researcher respecifies the model for nonsubstantive, technical reasons, even 
though some other specification may be preferred for substantive reasons. If 
the researcher respecifies only the problem cases, differences among the results 
are contaminated by investigator-induced omitted variable bias. Otherwise, all 
equations are respecified in an effort to get comparable results, in which case 
the statistical analyses differs from the original substantive question posed. Obvi- 
ously, neither approach is satisfactory from a substantive research perspective. 

It is important to note, prior to giving the empirical example, that we do not 
extract, fabricate, or simulate information from the likelihoodfunction that does not 
exist. That is, the culpable dimension will be given an infinite variance posterior, 
reflecting a complete lack of information about its form. What the algorithm does 
accomplish is the recovery of information on the other dimensions that otherwise 
would not be available to researchers. Therefore, a model that would have been 
dismissed as nonidentified for purely data reasons can now be partially recovered. 

6.10.1 Texas 

The example here uses data from the 1989 county-level economic and demo- 
graphic survey for all 2276 nonmetropolitan U.S. counties ("ERS Typology") 
organized hierarchically by state such that each state is a separate unit of anal- 
ysis with counties as cases. The U.S. Bureau of the Census, U.S. Department 
of Agriculture, and state agencies collect these data to provide policy-oriented 
information about conditions leading to high levels of rural poverty. The dichoto- 
mous outcome variable indicates whether 20% or more of the county's residents 
live in poverty (a standard measure in this field). The specification includes the 
following explanatory variables: 

Govt: a dichotomous factor indicating whether various government activ- 
ities contributed a weighted annual average of 25% or more labor and 
proprietor income over the three preceding years. 
Service: a dichotomous factor indicating whether service-sector activities 
contributed a weighted annual average of 50% or more labor and proprietor 
income over the three preceding years. 
Federal: a dichotomous factor indicating whether federally owned lands 
make up 30% or more of a county's land area. 
Transfer: a dichotomous factor indicating whether income from transfer 
payments (federal, state, and local) contributed a weighted annual average 
of 25% or more of total personal income over the preceding three years. 
Population: the log of the county population total for 1989. 
Black: the proportion of black residents in the county. 
Latino: the proportion of Latino residents in the county. 

This model provides the results given in Table 6.1. 
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Table 6.1 Logit Regression Model: Nonsingular Hessian, Texas 

Standard Results Without F e d e r a l  Importance Sampling 

Parameter Est. Std. Err. Est. Std. Err. Est. Std. Err. 

B lack  15.91 3.70 16.04 3.69 15.99 3.83 
L a t i n o  8.66 1.48 8.73 1.48 8.46 1.64 
Govt 1.16 0.78 1.16 0.78 1.18 0.74 
S e r v i c e  0.17 0.62 0.20 0.63 0.19 0.56 
F e d e r a l  -5.78 16.20 - - -3.41 17.19 
T r a n s f e r  1.29 0.71 1.17 0.69 1.25 0.63 
P o p u l a t i o n  -0.39 0.22 -0.39 0.22 -0.38 0.21 
I n t e r c e p t  -0.47 1.83 -0.46 1.85 -0.51 1.68 

A key substantive question is whether the black fraction predicts poverty lev- 
els even after controlling for governmental efforts and the other control variables. 
Since the government supposedly has a lot to do with poverty levels, it is impor- 
tant to know whether they are succeeding in a racially fair manner or whether 
there is more poverty in counties with larger fractions of African Americans. 
That is, whether the hypothesized effect is due to more blacks being in poverty 
or more whites and blacks in heavily black counties being in poverty would be 
interesting to know but is not material for our substantive purposes. 

We analyze these data with a standard logistic regression model, so P(Yi = 
1 ( X , )  = [1+ exp(Xij3)l-', where Xi is a vector of all our explanatory variables 
for case i. Using this specification, 43 of the U.S. states produce invertible Hes- 
sians and therefore available results. Rather than alter our theory and search for 
a new specification driven by numerical and computational considerations, we 
apply our approach to the remaining state models. From this 43:7 dichotomy, 
a matched pair of similar states is chosen for discussion here, where one case 
produces a (barely) invertible Hessian with the model specification (Texas) and 
the other is noninvertible (Florida). These states both have large rural areas, 
similar demographics, and similar levels of government involvement in the local 
county economies, and we would like to know whether the black fraction predicts 
poverty in similar fashions. 

The logit model for Texas counties (n = 196) produces the results in the first 
pair of columns in Table 6.1. The coefficient on the black fraction is very large, 
and statistically reliable, thus supporting the racial bias hypothesis. It turns out 
that the variable Federal is problematic in these models and as noted below, 
actually prevents estimation using the Florida data. The second pair of columns 
reestimates the Texas model without the Federal variable, and the results for 
the black fraction (and the other variables) are mostly unchanged. In contrast to 
the modes and their standard deviations in the first two sets of results, the final 
pair of columns gives the means and their standard deviations by implementing 
our importance resampling but without the need for a pseudovariance matrix 
calculation. The means here are very close to the modes, and the standard errors 



166 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES 

in the two cases are very close as well, so the importance resampling in this 
(invertible) case did not generate important differences. 

Below is the Hessian from this estimation, which supports the claim that the 
variable Federal is a problematic component of the model. Note the zeros and 
very small values in the- fourth row and column of H. 

To see this near singularity implied by this Hessian, Figure 6.2 provides a 
matrix of the bivariate profile contour plots for each pair of coefficients from 
the Texas data, with contours at 0.05,0.15, . . . ,0.95 where the 0.05 contour line 
bounds approximately 0.95 of the data, holding all other parameters constant at 
their maxima. These easy-to-compute profile plots are distinct from the more 
desirable but harder-to-compute marginal distributions: Parameters not shown 
are held constant in the former but integrated out in the latter. In these data, 
the likelihood is concave at the global maximum, although the curvature for 
Federal is only slightly greater than zero. This produces a near-ridge in the 
contours for each variable paired with Federal, and although it cannot be seen 
in the figure, the ridge is gently sloping around the maximum value in each 
profile plot, thus allowing estimation. 

The point estimates and standard errors correctly pick up the unreliability 
of the Federal coefficient value by giving it a very large standard error, but 
as is typically the case, the graphed profile contours reveal more information. 
In particular, the plot indicates that distribution of the coefficient on Federal 
is quite asymmetric, and indeed, very informative in the manner by which the 
probability density drops as we come away from the near ridge. The modes and 
their standard errors, in the first pair of columns in Table 6.1, cannot reveal this 
additional information. In contrast, the importance resampling results reveal the 
richer set of information. For example, to compute the entries in the last two 
columns of Table 6.1, we first took many random draws of the parameters from 
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their exact posterior distribution. If instead of summarizing this information with 
their means and standard deviations, as in Table 6.1, we presented univariate 
or bivariate histograms of the draws, we would reveal all the information in 
Figure 6.2. In fact, the histograms would give the exact marginal distributions 
of interest (the full posterior, with other parameters integrated out) rather than 
merely the profile contours as shown in the figures, so the potential information 
revealed, even in this case where the Hessian is invertible, could be substantial. 
We do not present the histograms in this example because they happen to be 
similar to the contours in this particular dataset. 

Note that although logit is known to have a globally concave likelihood surface 
in theory, actual estimates are not strictly concave, due to numerical impreci- 
sion. In the present data, the Hessian is barely invertible, making the likelihood 
surface sensitive to numerical imprecision. As it turns out, there are at least 
two local maxima on the marginal likelihood for Federal and thus potential 
attractors. The statistical package Gauss found a solution at - 11.69 and the pack- 
age R at -5.78 (reported). This discrepancy is typical of software solutions to 
poorly behaved likelihood functions, as algorithmic differences in the applied 
numerical procedures have different intermediate step locations. The difference 
in the results here is not particularly troubling, as no reasonable analyst would 
place faith in either coefficient estimate for Federal, given the large reported 
standard error. Note also that Govt and Service fall below conventional sig- 
nificance threshold levels as well. Our primary concern with Federal is that it 
alone prevents the Florida model (Section 6.10.2) from producing conventional 
results. 

6.10.2 Florida 

We ran the same specification used in Texas for Florida (33 counties), provid- 
ing the maximum likelihood parameter estimates in Table 6.2 and the following 
Hessian, which is now noninvertible. The standard errors are represented in the 
table with question marks since standard estimates are not available. 

Table 6.2 Logit Regression Model: Singular Hessian, Florida 

Standard Results Without Federal Importance Sampling 

Parameter Est. Std. Err. Est. Std. Err. Est. Std. Err. 

Black 
Latino 
Government 
Service 
Federal 
Transfer 
Population 
Intercept 
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Consider first Figure 6.3, which provides the same type of matrix of the bivari- 
ate profile plots for each pair of coefficients for the Florida data, like Texas with 
contours at 0.1,0.2, . . . ,0.9. The problematic profile likelihood is clearly for 
Federal, but in this case the modes are not unique, so the Hessian is not invert- 
ible. Interestingly, except for this variable, the posteriors are very well behaved 
and easy to summarize. If one was forced to abandon the specification at this 
point, this is exactly the information that would be lost forever. The loss is espe- 
cially problematic when contrasted with the Texas case, for which the contours 
do not look a lot more informative, but we were barely able to get an estimate. 

Here is the key trap. A diligent data analyst using classical procedures with 
our data might reason as follows: 

The Texas data clearly suggest racial bias, but no results are available in 
Florida with the same specification. 
Follow the textbook advice and respecify by dropping Federal and rerun- 
ning the model for both Texas and Florida (these results are in both Tables 6.1 
and 6.2). 
Note that the new results for black reveal a coefficient for Florida that 
is only a third of the size it was in Texas and only slightly larger than its 
standard error. 

Now the contrast with the previous results is striking: a substantial racial bias 
in Texas and no evidence of such in Florida. However, with this approach it is 
impossible to tell whether these interesting and divergent substantive results in 
Florida are due to omitted variable bias rather than true political and economic 
differences between the states. 

What can our analysis do? One reasonable approach is to assume that the 
(unobservable) bias that resulted from omitting Federal in the Florida speci- 
fication would be of the same degree and direction as the (observable) bias that 
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would occur by omitting the variable in the Texas data. Therefore, one can easily 
estimate the bias in Texas by omitting Federal. This is done in the second pair 
of columns in Table 6.1, and the results suggest that there is no bias introduced 
since the results are nearly unchanged from the first two columns. Although this 
seems like a reasonable procedure (and one that most analysts have no doubt 
tried at one time or another), it is of course based on the completely unverifiable 
assumption that the biases are the same in the two states. With the present data, 
this assumption is false, as our procedure now shows. 

We now recover the information lost in the Florida case by first applying our 
generalized inverse and generalized Cholesky procedures to the singular Hes- 
sian to create a pseudovariance matrix. We then perform importance resampling 
using the multivariate normal, with the mode and pseudovariance matrix, as the 
first approximation. We use a t-distribution with three degrees of freedom as 
the approximation distribution so as to be as conservative as possible since we 
know from graphical evidence that one of the marginal distributions is problem- 
atic. The last two columns of Table 6.2 give the means and standard deviations 
of the marginal posterior for each parameter. We report GO for the standard 
error of Federal to emphasize the lack of information. Although the data 
and model contain no useful information about this parameter, the specification 
did control for Federal, so any potentially useful information about the other 
parameters and their standard errors are revealed with our procedure without the 
potential for omitted variable bias that would occur by dropping the variable 
entirely. 

The results are indeed quite informative. They show that the effect of Black 
is indeed smaller in Florida than in Texas, but the standard error for Florida is now 
almost a third of the size of the coefficient. Thus, the racial bias is clearly large 
in both states, although larger in Texas than Florida. This result thus precisely 
reverses the conclusion from the biased procedure of dropping the problem- 
atic Federal variable. Of course, without the generalized inverselgeneralized 
Cholesky technique, there would be no results to evaluate for Florida at all. 

6.11 ALTERNATIVE METHODS 

6.11.1 Drawing from the Singular Normal 

In this section we describe another procedure for drawing the random numbers 
from a different approximating density: the truncated singular normal. The key 
idea is to draw directly from the singular multivariate density with a nonin- 
vertible Hessian. It should be true that the generalized Cholesky procedure will 
work better if the underlying model is identified, but numerical problems lead to 
apparent nonidentification. However, the singular normal procedure will perform 
better when the underlying model would have a noninvertible Hessian even if 
one were able to run it on a computer with infinite precision. 

Again consider the matrix of second derivatives, H, along with a k x 1 associ- 
ated vector of maximum likelihood estimates, 6. Again, the matrix (-H)-' does 
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not exist due either to nonpositive definiteness or to singularity (r 5 k). Suppose 
that one can actually set some reasonable bounds on the posterior distribution of 
each of the k coefficient estimates in e .  These bounds may be set according to 
empirical observation with similar models, as a Bayes-like prior assertion (Hath- 
away 1985; O'Leary and Rust 1986; McCullagh and Nelder 1989; Geyer 1991; 
Wolak 1991; Geyer and Thompson 1992; Dhrymes 1994, Sec. 5.1 1). Thus, we 
assume that 0 E [g, h], where g is a k x 1 vector of lower bounds and h is a 
k x 1 vector of upper bounds. 

The goal now is to draw samples from the distribution of 6 : 6  - 
N(0, ( - H ) - ' )  m eCTI2, truncated to be within [g, h], and where T = (6 - 
0 ) ' ~ ( 6  - 8). Note that the normal density does not include an expression for the 
variance-covariance matrix-only the inverse (i.e., the negative of the Hessian), 
which exists here. We thus decompose T as follows: 

where U'LU is the spectral decomposition of H; rank(H) = r 5 k; H has r 
non-zero eigenvalues, denoted d l ,  . . . , d,; U is k x k and orthogonal and hence 
(u)-' = U'; and L = diag(Ll , O), where L1 = diag(dl , . . . , d,). Thus, the L 
matrix is a diagonal matrix with r leading values of eigenvalues and n - r trailing 
zero values. 

Now make the transformation A = ~ ( i  - [h + g]/2), the density for which 
would normally be A -- N(U(8 - [h + g]/2), (-L)-I). This transformation 
centers the distribution of A at the middle of the bounds, and since L is diagonal, 
it factors into the product of independent densities. But this expression has two 
problems: 

(-L)-' does not always exist. 
A has complicated multivariate support (a hypercube not necessarily parallel 
with the axes of the elements of A), which is difficult to draw random 
numbers from. 

We now address these two problems. First, in place of L, we use L* defined 
such that L f  = Li if Li > 0 and L f  is equal to some small positive value 
otherwise (where the subscript refers to the row and column of the diagonal 
element). Except for the specification of the support of A that we consider next, 
this transforms the density into 
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Second, instead of trying to draw directly from the support of A, we draw from a 
truncated density with support that is easy to compute and encompasses the support 
of A (but is larger than it), transform back via 8" = U'A + (h + g)/2, and accept the 
draw only if 8" falls within its (easy to verify) support, [g, h]. The encompassing 
support we use for each element in the vector A is the hypercube [- Q, Q], where 
the scalar Q is the maximum Euclidean distance from 0 to any of the 2k corners of 
the hyperrectangle defined by the bounds. Since by definition 0 E [g, h], we should 
normally avoid the sometimes common pitfall of rejection sampling-having to 
do an infeasible number of draws from A to accept each draw of 8". 

Now the principle of rejection sampling is satisfied here: that we can sample 
from any space (in our case, using support for A larger than its support) as long 
as it fully encompasses the target space and the standard accept-reject algorithm 
operates appropriately. If -H were positive definite, this algorithm would return 
random draws from a truncated normal distribution. When -H is not positive 
definite, it returns draws from a singular normal, but truncated as indicated. 

So now we have draws of 8" from a singular normal distribution. We then repeat 
procedure m, which serves to provide draws from the enveloping distribution that 
is used in the importance sampling procedure. That is, we take these simulations 
of 8" and accept or reject according to the importance ratio. We keep going until 
we have enough simulated values. 

6.11.2 Aliasing 

The problem of computational rnisspecification and covariance calculation is well 
studied in the context of generalized linear models, particularly in the case of the 
linear model (Albert 1973). McCullagh and Nelder (1989) discuss this problem 
in the context of generalized linear models where specifications that introduce 
overlapping subspaces due to redundant information in the factors produce intrin- 
sic aliasing. This occurs when a linear combination of the factors is reduced to 
fewer terms than the number of parameters specified. McCullagh and Nelder 
solve the aliasing problem by introducing suitable constraints, which are linear 
restrictions that increase the dimension of the subspace created by the factors 
specified. A problem with this approach is that the suitable constraints are nec- 
essarily an arbitrary and possibly atheoretical imposition. In addition, it is often 
difficult to determine a minimally affecting, yet sufficient set of constraints. 

McCullagh and Nelder also identify extrinsic aliasing, which produces the 
same modeling problem but as a result of data values. The subspace is reduced 
below the number of factors because of redundant case-level information in the 
data. This is only a problem, however, in very low sample problems atypical of 
political science applications. 

6.11.3 Ridge Regression 

Another well-known approach to this problem in linear modeling is ridge regres- 
sion, which essentially trades the multicollinearity problem for introduced bias. 
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Suppose that the X'X matrix is singular or nearly singular. Then specify the 
smallest scalar possible, <, that can be added to the characteristic roots of X'X 
to make this matrix nonsingular. The linear estimator is now defined as 

There are two very well known problems with this approach. First, the coeffi- 
cient estimate is by definition biased, and there currently exists no theoretical 
approach that guarantees some minimum degree of bias. Some approaches have 
been suggested that provide reasonably small values of ( based on graphical 
methods (Hoerl and Kennard 1970a,b), empirical Bayes (Efron and Morris 1972; 
Amemiya 1985), minimax considerations (Casella 1980, 1985), or generalized 
ridge estimators based on decision-theoretical considerations (James and Stein 
1961; Berger 1976; Strawdennan 1978). Second, because is calculated with 
respect to the smallest eigenvalue of X'X, it must be added to every diagonal of 
the matrix: X'X + (I. So by definition the matrix is changed more than necessary 
(in contrast to the Schnabel-Eskow method). For a very important critique, see 
Smith and Campbell (1980) along with the comments that follow. 

6.11.4 Derivative Approach 

Another alternative was proposed by Rao and Mitra (1971). Define 68 as an 
unknown correction that has an invertible Hessian. Then (ignoring higher-order 
terms in a Taylor series expansion of SO) 

Since H(8) is singular, a solution is available only by the generalized inverse: 

When there exists a parametric function of 8 that is estimable and whose first 
derivative is in the column space of H(8), there exists a unique, maximum 

I 
likelihood estimate of this function, @(i ) ,  with asymptotic variance-covariance 
matrix: 

The difficulty with this procedure is finding a substantively reasonable version of 
@(8"). Rao and Mitra's point is nevertheless quite useful since it points out that 
any generalized inverse has a first derivative in the column space of H(8). 

6.11.5 Bootstrapping 

An additional approach is to apply bootstrapping to the regression procedure so 
as to produce empirical estimates of the coefficients, which can then be used to 
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obtain subsequent values for the standard errors. The basic procedure (David- 
son and MacKinnon 1993, pp. 330-31; Efron and Tibshirani 1993, pp. 11 1-12) 
is to bootstrap from the residuals of a model where coefficients estimates are 
obtained but where the associated measures of uncertainty are unavailable or 
unreliable. 

The steps for the linear model are given by Freedman (1981): 

1. For the model y = X/l + 6, obtain /? and the centered residuals c* .  

2. Sample size n with replacement m times from c *  and calculate rn replicates 
of the outcome variable by y* = XB + c* .  

3. Regress the rn iterates of the y* vector on X to obtain rn iterates of ). 
4. Summarize the coefficient estimates with the mean and standard deviation 

of these bootstrap samples. 

The generalized linear model case is only slightly more involved since it is 
necessary to incorporate the link function and the (Pearson) residuals need to be 
adjusted (see Shao and Tu 1995, pp. 341-43). 

Applying this bootstrap procedure to the problematic Florida data where the 
coefficient estimates are available but the Hessian, fails, we obtain the standard 
error vector: [9.41,9.08, 1.4,2.35,25.83, 1.43, 11.86,6.32] (in the same order as 
Table 6.2). These are essentially the same standard errors as those in the model 
dropping Federal except that the uncertainty for Populat ion is much higher. 
This bootstrapping procedure does not work well in non-iid settings (it assumes 
that the error between y and ~ f i  is independent of X) and it is possible that 
spatial correlation that is likely to be present in FIPS-level population data is 
responsible for this discrepancy. 

An alternative bootstrapping procedure, the paired bootstrap, generates m sam- 
ples of size n directly from (yj , xj) together to produce y*, X* and then generates 
B values. While the paired bootstrap is less sensitive to non-iid data, it can pro- 
duce simulated datasets (the y*, X*) that are very different from the original data 
(Hinkley 1988). 

6.11.6 Respecification (Redux) 

Far and away the most common way of recovering from computational prob- 
lems resulting from forms of collinearity is respecification. Virtually every basic 
and intermediate textbook on linear and nonlinear regression techniques gives 
this advice. The respecification process can vary from ad hoc trial error strate- 
gies to more sophisticated approaches based on principal components analysis 
(Krzanowski 1988). Although these approaches often work, they force the user 
to change their research question due to technical concerns. As the example in 
Section 6.10 shows, we should not be forced to alter our thinking about a research 
question as a result of computational issues. 
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6.12 CONCLUDING REMARKS 

The purpose of this chapter is twofold. The first objective is to illuminate the cen- 
tral role of the Hessian in standard likelihood-based estimation. The second objec- 
tive is to provide a working solution to noninvertible Hessian problems that might 
otherwise cause researchers to discard their substantive objectives. This method is 
based on some established theories, but is new as a complete method. Currently, 
the generalized inverselgeneralized Cholesky procedure is implemented in King's 
EI software (<http: //gking. harvard. edu/stats. shtml>), and theR 
and Gauss procedures are freely available at <ht tp : //www . hmdc . harvard . 
edu/numerical~issues/~. 

So what can a frustrated practitioner do? We have given several alternatives 
to the standard (albeit eminently practical) recommendation to respecify. Our 
new method is intended to provide results even in circumstances where it is 
not usually possible to invert the Hessian and obtain coefficient standard errors. 
The usual result is that the problematic coefficient has huge posterior variance, 
indicating statistical unreliability. This is exactly what should happen: A model 
is produced and poor contributors are identified. 

Although the likelihood estimation process from a given dataset may have 
imposing problems, the data may still contain revealing information about the 
question at hand. The point here is therefore to help researchers avoid giving up 
the question they posed originally and instead, to extract at least some of the 
remaining information available. The primary method we offer here is certainly 
not infallible, nor are the listed alternatives. Therefore, considerable care should 
go into their use and interpretation. 


