Demographic Forecasting

Gary King
Harvard University

Joint work with Federico Girosi (RAND) with contributions from Kevin Quinn and Gregory Wawro

What this Talk is About

What this Talk is About

- Mortality forecasts, which are studied in:

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning
- actuarial science \& insurance companies

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning
- actuarial science \& insurance companies
- medical research \& pharmaceutical companies

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning
- actuarial science \& insurance companies
- medical research \& pharmaceutical companies
- political science \& public policy

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning
- actuarial science \& insurance companies
- medical research \& pharmaceutical companies
- political science \& public policy
- A better forecasting method

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning
- actuarial science \& insurance companies
- medical research \& pharmaceutical companies
- political science \& public policy
- A better forecasting method
- A better farcasting method

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning
- actuarial science \& insurance companies
- medical research \& pharmaceutical companies
- political science \& public policy
- A better forecasting method
- A better farcasting method
- Other results we needed to achieve this original goal

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning
- actuarial science \& insurance companies
- medical research \& pharmaceutical companies
- political science \& public policy
- A better forecasting method
- A better farcasting method
- Other results we needed to achieve this original goal
- Approach: Formalizing qualitative insights in quantitative models

Other Results (Needed to Develop Improved Forecasts)

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression
- Estimates a set of linear regressions together (over countries, age groups, years, etc.)

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression
- Estimates a set of linear regressions together (over countries, age groups, years, etc.)
- Can include different covariates in each regression

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression
- Estimates a set of linear regressions together (over countries, age groups, years, etc.)
- Can include different covariates in each regression
- We demonstrate that most hierarchical and spatial Bayesian models with covariates misrepresent prior information

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression
- Estimates a set of linear regressions together (over countries, age groups, years, etc.)
- Can include different covariates in each regression
- We demonstrate that most hierarchical and spatial Bayesian models with covariates misrepresent prior information
- Better ways of creating Bayesian priors

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression
- Estimates a set of linear regressions together (over countries, age groups, years, etc.)
- Can include different covariates in each regression
- We demonstrate that most hierarchical and spatial Bayesian models with covariates misrepresent prior information
- Better ways of creating Bayesian priors
- Produces forecasts and farcasts using considerably more information

The Statistical Problem of Global Mortality Forecasting

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections:

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized:

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
- Numerous variables specific to a cause, age group, sex, and country

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
- Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short.

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
- Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short. A majority of countries have only a few isolated annual observations;

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
- Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short. A majority of countries have only a few isolated annual observations; only 54 countries have at least 20 observations;

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
- Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short. A majority of countries have only a few isolated annual observations; only 54 countries have at least 20 observations; Africa, AIDS, \& Malaria are real problems

Existing Method 1: Parameterize the Age Profile

All Causes (m)

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20
- reduces 17 age-specific mortality rates to 2 parameters (intercept and slope)

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20
- reduces 17 age-specific mortality rates to 2 parameters (intercept and slope)
- Then forecast only these 2 parameters

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20
- reduces 17 age-specific mortality rates to 2 parameters (intercept and slope)
- Then forecast only these 2 parameters
- Reduces variance, constrains forecasts

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20
- reduces 17 age-specific mortality rates to 2 parameters (intercept and slope)
- Then forecast only these 2 parameters
- Reduces variance, constrains forecasts
- Dozens of more general functional forms proposed

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20
- reduces 17 age-specific mortality rates to 2 parameters (intercept and slope)
- Then forecast only these 2 parameters
- Reduces variance, constrains forecasts
- Dozens of more general functional forms proposed
- But does it fit anything else?

Mortality Age Profile: The Same Pattern?

Cardiovascular Disease (m)

Mortality Age Profile: The Same Pattern?

Breast Cancer (f)

Mortality Age Profile: The Same Pattern?

Other Infectious Diseases (f)

Mortality Age Profile: The Same Pattern?

Suicide (m)

Parameterizing Age Profiles Does Not Work

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
- Adjacent age groups have similar mortality rates

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
- Adjacent age groups have similar mortality rates
- Age profiles are more variable for younger ages

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
- Adjacent age groups have similar mortality rates
- Age profiles are more variable for younger ages
- We don't know much about levels or exact shapes

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
- Adjacent age groups have similar mortality rates
- Age profiles are more variable for younger ages
- We don't know much about levels or exact shapes
- Key question: how to include this qualitative information

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
- Adjacent age groups have similar mortality rates
- Age profiles are more variable for younger ages
- We don't know much about levels or exact shapes
- Key question: how to include this qualitative information
- Also: Method ignores covariate information; the leading current method (McNown-Rogers) not replicable

Existing Method 2: Deterministic Projections

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates; forecasts fan out

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates; forecasts fan out; age profile becomes less smooth

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates; forecasts fan out; age profile becomes less smooth
- Does it fit elsewhere?

The same pattern?

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

The same pattern?

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

Deterministic Projections Do Not Work

Deterministic Projections Do Not Work

- Linearity does not fit most time series data

Deterministic Projections Do Not Work

- Linearity does not fit most time series data
- Out-of-sample age profiles become unrealistic over time

Regression Approaches (Murray and Lopez, 1996)

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell} \in \mathbb{R}^{d_{c a}}$: covariates (GDP, tobacco ...) lagged ℓ years.

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell} \in \mathbb{R}^{d_{c a}}$: covariates (GDP, tobacco \ldots) lagged ℓ years.
- $\beta_{c a} \in \mathbb{R}^{d_{c a}}$: coefficients to be estimated

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell} \in \mathbb{R}^{d_{c a}}$: covariates (GDP, tobacco \ldots) lagged ℓ years.
- $\beta_{c a} \in \mathbb{R}^{d_{c a}}$: coefficients to be estimated
- Cannot estimate equation by equation (variance is too large);

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell} \in \mathbb{R}^{d_{c a}}$: covariates (GDP, tobacco \ldots) lagged ℓ years.
- $\beta_{c a} \in \mathbb{R}^{d_{c a}}$: coefficients to be estimated
- Cannot estimate equation by equation (variance is too large);
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell} \in \mathbb{R}^{d_{c a}}$: covariates (GDP, tobacco \ldots) lagged ℓ years.
- $\beta_{c a} \in \mathbb{R}^{d_{c a}}$: coefficients to be estimated
- Cannot estimate equation by equation (variance is too large);
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$
- Properties:

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell} \in \mathbb{R}^{d_{c a}}$: covariates (GDP, tobacco \ldots) lagged ℓ years.
- $\beta_{c a} \in \mathbb{R}^{d_{c a}}$: coefficients to be estimated
- Cannot estimate equation by equation (variance is too large);
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$
- Properties:
- Small variance (due to large n)

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell} \in \mathbb{R}^{d_{c a}}$: covariates (GDP, tobacco \ldots) lagged ℓ years.
- $\beta_{c a} \in \mathbb{R}^{d_{c a}}$: coefficients to be estimated
- Cannot estimate equation by equation (variance is too large);
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$
- Properties:
- Small variance (due to large n)
- large biases (due to restrictive pooling over countries),

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell} \in \mathbb{R}^{d_{c a}}$: covariates (GDP, tobacco \ldots) lagged ℓ years.
- $\beta_{c a} \in \mathbb{R}^{d_{c a}}$: coefficients to be estimated
- Cannot estimate equation by equation (variance is too large);
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$
- Properties:
- Small variance (due to large n)
- large biases (due to restrictive pooling over countries),
- considerable information lost (due to no pooling over ages)

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell} \in \mathbb{R}^{d_{c a}}$: covariates (GDP, tobacco \ldots) lagged ℓ years.
- $\beta_{c a} \in \mathbb{R}^{d_{c a}}$: coefficients to be estimated
- Cannot estimate equation by equation (variance is too large);
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$
- Properties:
- Small variance (due to large n)
- large biases (due to restrictive pooling over countries),
- considerable information lost (due to no pooling over ages)
- same covariates required in all cross-sections

Partial Pooling via a Bayesian Hierarchical Approach

- Likelihood for equation-by-equation least squares:

$$
\mathcal{P}\left(m \mid \boldsymbol{\beta}_{i}, \sigma_{i}\right)=\prod_{t} \mathcal{N}\left(m_{i t} \mid \mathbf{Z}_{i t} \boldsymbol{\beta}_{i}, \sigma_{i}^{2}\right)
$$

Partial Pooling via a Bayesian Hierarchical Approach

- Likelihood for equation-by-equation least squares:

$$
\mathcal{P}\left(m \mid \boldsymbol{\beta}_{i}, \sigma_{i}\right)=\prod_{t} \mathcal{N}\left(m_{i t} \mid \mathbf{Z}_{i t} \boldsymbol{\beta}_{i}, \sigma_{i}^{2}\right)
$$

- Add priors and form a posterior

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) & \propto \mathcal{P}(m \mid \boldsymbol{\beta}, \sigma) \times \mathcal{P}(\boldsymbol{\beta} \mid \theta) \times \mathcal{P}(\theta) \mathcal{P}(\sigma) \\
& =(\text { Likelihood }) \times(\text { Key Prior }) \times(\text { Other priors })
\end{aligned}
$$

Partial Pooling via a Bayesian Hierarchical Approach

- Likelihood for equation-by-equation least squares:

$$
\mathcal{P}\left(m \mid \boldsymbol{\beta}_{i}, \sigma_{i}\right)=\prod_{t} \mathcal{N}\left(m_{i t} \mid \mathbf{Z}_{i t} \boldsymbol{\beta}_{i}, \sigma_{i}^{2}\right)
$$

- Add priors and form a posterior

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) & \propto \mathcal{P}(m \mid \boldsymbol{\beta}, \sigma) \times \mathcal{P}(\boldsymbol{\beta} \mid \theta) \times \mathcal{P}(\theta) \mathcal{P}(\sigma) \\
& =(\text { Likelihood }) \times(\text { Key Prior }) \times(\text { Other priors })
\end{aligned}
$$

- Calculate point estimate for $\boldsymbol{\beta}$ (for \hat{y}) as the mean posterior:

$$
\boldsymbol{\beta}^{\text {Bayes }} \equiv \int \boldsymbol{\beta} \mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) d \boldsymbol{\beta} d \theta d \sigma
$$

Partial Pooling via a Bayesian Hierarchical Approach

- Likelihood for equation-by-equation least squares:

$$
\mathcal{P}\left(m \mid \boldsymbol{\beta}_{i}, \sigma_{i}\right)=\prod_{t} \mathcal{N}\left(m_{i t} \mid \mathbf{Z}_{i t} \boldsymbol{\beta}_{i}, \sigma_{i}^{2}\right)
$$

- Add priors and form a posterior

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) & \propto \mathcal{P}(m \mid \boldsymbol{\beta}, \sigma) \times \mathcal{P}(\boldsymbol{\beta} \mid \theta) \times \mathcal{P}(\theta) \mathcal{P}(\sigma) \\
& =(\text { Likelihood }) \times(\text { Key Prior }) \times(\text { Other priors })
\end{aligned}
$$

- Calculate point estimate for $\boldsymbol{\beta}$ (for \hat{y}) as the mean posterior:

$$
\boldsymbol{\beta}^{\text {Bayes }} \equiv \int \boldsymbol{\beta} \mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) d \boldsymbol{\beta} d \theta d \sigma
$$

- The hard part: specifying the prior for $\boldsymbol{\beta}$ and, as always, \mathbf{Z}

Partial Pooling via a Bayesian Hierarchical Approach

- Likelihood for equation-by-equation least squares:

$$
\mathcal{P}\left(m \mid \boldsymbol{\beta}_{i}, \sigma_{i}\right)=\prod_{t} \mathcal{N}\left(m_{i t} \mid \mathbf{Z}_{i t} \boldsymbol{\beta}_{i}, \sigma_{i}^{2}\right)
$$

- Add priors and form a posterior

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) & \propto \mathcal{P}(m \mid \boldsymbol{\beta}, \sigma) \times \mathcal{P}(\boldsymbol{\beta} \mid \theta) \times \mathcal{P}(\theta) \mathcal{P}(\sigma) \\
& =(\text { Likelihood }) \times(\text { Key Prior }) \times(\text { Other priors })
\end{aligned}
$$

- Calculate point estimate for $\boldsymbol{\beta}$ (for \hat{y}) as the mean posterior:

$$
\boldsymbol{\beta}^{\text {Bayes }} \equiv \int \boldsymbol{\beta} \mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) d \boldsymbol{\beta} d \theta d \sigma
$$

- The hard part: specifying the prior for $\boldsymbol{\beta}$ and, as always, \mathbf{Z}
- The easy part: easy-to-use software to implement everything we discuss today.

The (Problematic) Classical Bayesian Approach

The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among coefficients ($\boldsymbol{\beta}^{\prime}$ s).

The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among coefficients ($\boldsymbol{\beta}^{\prime} \mathrm{s}$).
Requirements:

The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among coefficients ($\boldsymbol{\beta}^{\prime}$ s).
Requirements:

- $s_{i j}$ measures the similarity between cross-section i and j.

The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among coefficients ($\boldsymbol{\beta}^{\prime} \mathrm{s}$).
Requirements:

- $s_{i j}$ measures the similarity between cross-section i and j.
- $\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right)^{\prime} \Phi\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right) \equiv\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{\Phi}^{2}$ measures the distance between $\boldsymbol{\beta}_{i}$ and $\boldsymbol{\beta}_{j}$.

The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among coefficients ($\boldsymbol{\beta}$'s).
Requirements:

- $s_{i j}$ measures the similarity between cross-section i and j.
- $\left(\boldsymbol{\beta}_{\boldsymbol{i}}-\boldsymbol{\beta}_{j}\right)^{\prime} \Phi\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right) \equiv\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{\Phi}^{2}$ measures the distance between $\boldsymbol{\beta}_{\boldsymbol{i}}$ and $\boldsymbol{\beta}_{\boldsymbol{j}}$.
Natural choice for the prior:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \Phi) \propto \exp \left(-\frac{1}{2} \sum_{i j} s_{i j}\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{\Phi}^{2}\right)
$$

The (Problematic) Classical Bayesian Approach

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,
- An informative prior can't be used since we don't have information

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,
- An informative prior can't be used since we don't have information
- Common practice: make some wild guesses.

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,
- An informative prior can't be used since we don't have information
- Common practice: make some wild guesses.
- The classical approach can be harmful: Making $\boldsymbol{\beta}_{\boldsymbol{i}}$ more smooth may make μ less smooth $(\mu=\mathbf{Z} \boldsymbol{\beta})$:

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,
- An informative prior can't be used since we don't have information
- Common practice: make some wild guesses.
- The classical approach can be harmful: Making $\boldsymbol{\beta}_{\boldsymbol{i}}$ more smooth may make μ less smooth $(\mu=\mathbf{Z} \boldsymbol{\beta})$:

$$
\mu_{i t}-\mu_{j t}
$$

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,
- An informative prior can't be used since we don't have information
- Common practice: make some wild guesses.
- The classical approach can be harmful: Making $\boldsymbol{\beta}_{i}$ more smooth may make μ less smooth ($\mu=\mathbf{Z} \boldsymbol{\beta}$):

$$
\mu_{i t}-\mu_{j t} \quad=\quad \mathbf{Z}_{i t}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right) \quad+\quad\left(\mathbf{Z}_{i t}-\mathbf{Z}_{j t}\right) \boldsymbol{\beta}_{j}
$$

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,
- An informative prior can't be used since we don't have information
- Common practice: make some wild guesses.
- The classical approach can be harmful: Making $\boldsymbol{\beta}_{i}$ more smooth may make μ less smooth ($\mu=\mathbf{Z} \boldsymbol{\beta}$):

$$
\begin{array}{rlrlr}
\mu_{i t}-\mu_{j t} & = & \mathbf{Z}_{i t}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right) & + & \left(\mathbf{Z}_{i t}-\mathbf{Z}_{j t}\right) \boldsymbol{\beta}_{j} \\
& = & \text { Coefficient variation } & + & \text { Covariate variation }
\end{array}
$$

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,
- An informative prior can't be used since we don't have information
- Common practice: make some wild guesses.
- The classical approach can be harmful: Making $\boldsymbol{\beta}_{i}$ more smooth may make μ less smooth ($\mu=\mathbf{Z} \boldsymbol{\beta}$):

$$
\begin{array}{rlrlr}
\mu_{i t}-\mu_{j t} & = & \mathbf{Z}_{i t}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right) & + & \left(\mathbf{Z}_{i t}-\mathbf{Z}_{j t}\right) \boldsymbol{\beta}_{j} \\
& = & \text { Coefficient variation } & + & \text { Covariate variation }
\end{array}
$$

- Extensive trial-and-error runs, yielded no useful parameter values.

Our Alternative Strategy: Priors on μ

Three steps:

Our Alternative Strategy: Priors on μ

Three steps:

(1) Specify a prior for μ :

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right) \text {, e.g., } H[\mu, \theta] \equiv \frac{\theta}{T} \sum_{t=1}^{T} \sum_{a=1}^{A-1}\left(\mu_{\mathrm{at}}-\mu_{\mathrm{a}+1, t}\right)^{2}
$$

Our Alternative Strategy: Priors on μ

Three steps:

(1) Specify a prior for μ :

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right) \text {, e.g., } H[\mu, \theta] \equiv \frac{\theta}{T} \sum_{t=1}^{T} \sum_{a=1}^{A-1}\left(\mu_{a t}-\mu_{a+1, t}\right)^{2}
$$

- To do Bayes, we need a prior on $\boldsymbol{\beta}$

Our Alternative Strategy: Priors on μ

Three steps:

(1) Specify a prior for μ :

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right) \text {, e.g., } H[\mu, \theta] \equiv \frac{\theta}{T} \sum_{t=1}^{T} \sum_{a=1}^{A-1}\left(\mu_{\mathrm{at}}-\mu_{a+1, t}\right)^{2}
$$

- To do Bayes, we need a prior on $\boldsymbol{\beta}$
- Problem: How to translate a prior on μ into a prior on β (a few-to-many transformation)?

Our Alternative Strategy: Priors on μ

Three steps:

(1) Specify a prior for μ :

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right) \text {, e.g., } H[\mu, \theta] \equiv \frac{\theta}{T} \sum_{t=1}^{T} \sum_{a=1}^{A-1}\left(\mu_{\mathrm{at}}-\mu_{a+1, t}\right)^{2}
$$

- To do Bayes, we need a prior on $\boldsymbol{\beta}$
- Problem: How to translate a prior on μ into a prior on β (a few-to-many transformation)?
(2) Constrain the prior on μ to the subspace spanned by the covariates: $\mu=\mathbf{Z} \boldsymbol{\beta}$

Our Alternative Strategy: Priors on μ

Three steps:

(1) Specify a prior for μ :

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right) \text {, e.g., } H[\mu, \theta] \equiv \frac{\theta}{T} \sum_{t=1}^{T} \sum_{a=1}^{A-1}\left(\mu_{\mathrm{at}}-\mu_{a+1, t}\right)^{2}
$$

- To do Bayes, we need a prior on $\boldsymbol{\beta}$
- Problem: How to translate a prior on μ into a prior on β (a few-to-many transformation)?
(2) Constrain the prior on μ to the subspace spanned by the covariates: $\mu=\mathbf{Z} \boldsymbol{\beta}$
(3) In the subspace, we can invert $\mu=\mathbf{Z} \boldsymbol{\beta}$ as $\boldsymbol{\beta}=\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mu$, giving:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right)=\exp \left(-\frac{1}{2} H[\mathbf{Z} \boldsymbol{\beta}, \theta]\right)
$$

the same prior on μ, expressed as a function of $\boldsymbol{\beta}$ (with constant Jacobian).

Say that again?

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

- Suppose $\delta=\beta_{1}-\beta_{2}$ and $P(\delta)=N\left(\delta \mid 0, \sigma^{2}\right)$

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

- Suppose $\delta=\beta_{1}-\beta_{2}$ and $P(\delta)=N\left(\delta \mid 0, \sigma^{2}\right)$
- What is $P\left(\beta_{1}, \beta_{2}\right)$?

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

- Suppose $\delta=\beta_{1}-\beta_{2}$ and $P(\delta)=N\left(\delta \mid 0, \sigma^{2}\right)$
- What is $P\left(\beta_{1}, \beta_{2}\right)$?
- Its a singular bivariate Normal

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

- Suppose $\delta=\beta_{1}-\beta_{2}$ and $P(\delta)=N\left(\delta \mid 0, \sigma^{2}\right)$
- What is $P\left(\beta_{1}, \beta_{2}\right)$?
- Its a singular bivariate Normal
- Its defined over β_{1}, β_{2} and constant in all directions but $\left(\beta_{1}-\beta_{2}\right)$.

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

- Suppose $\delta=\beta_{1}-\beta_{2}$ and $P(\delta)=N\left(\delta \mid 0, \sigma^{2}\right)$
- What is $P\left(\beta_{1}, \beta_{2}\right)$?
- Its a singular bivariate Normal
- Its defined over β_{1}, β_{2} and constant in all directions but $\left(\beta_{1}-\beta_{2}\right)$.
- We start with one-dimensional $P\left(\mu_{c a t}\right)$, and treat it as the multidimensional $P\left(\beta_{c a}\right)$, constant in all directions but $Z_{c a t} \beta_{c a}$.

Advantages of the resulting prior over $\boldsymbol{\beta}$, created from prior over μ

Advantages of the resulting prior over $\boldsymbol{\beta}$, created from prior over μ

- Fully Bayesian: The same theory of inference applies

Advantages of the resulting prior over $\boldsymbol{\beta}$, created from prior over μ

- Fully Bayesian: The same theory of inference applies
- Can use standard Bayesian machinery for estimation.

Advantages of the resulting prior over $\boldsymbol{\beta}$, created from prior over μ

- Fully Bayesian: The same theory of inference applies
- Can use standard Bayesian machinery for estimation.
- μ_{i} and μ_{j} can always be compared, even with different covariates.

Advantages of the resulting prior over $\boldsymbol{\beta}$, created from prior over μ

- Fully Bayesian: The same theory of inference applies
- Can use standard Bayesian machinery for estimation.
- μ_{i} and μ_{j} can always be compared, even with different covariates.
- The normalization matrix Φ is unnecessary (task is performed by \mathbf{Z}, which is known)

Advantages of the resulting prior over $\boldsymbol{\beta}$, created from prior over μ

- Fully Bayesian: The same theory of inference applies
- Can use standard Bayesian machinery for estimation.
- μ_{i} and μ_{j} can always be compared, even with different covariates.
- The normalization matrix Φ is unnecessary (task is performed by \mathbf{Z}, which is known)
- Priors are based on knowledge rather than guesses.

An Age Prior

An Age Prior

$$
\mathcal{P}(\mu \mid \theta) \rightsquigarrow \mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{\beta^{\prime}} \mathrm{C}_{2 a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{\beta}^{\prime}}\right)
$$

An Age Prior

$$
\mathcal{P}(\boldsymbol{\mu} \mid \theta) \rightsquigarrow \mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
$$

- The prior is normal (and improper);

An Age Prior

$$
\mathcal{P}(\boldsymbol{\mu} \mid \theta) \rightsquigarrow \mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper);
- Adjustable parameters: n and θ.

An Age Prior

$$
\mathcal{P}(\boldsymbol{\mu} \mid \theta) \rightsquigarrow \mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper);
- Adjustable parameters: n and θ.
- The choice of n uniquely determines the "interaction" matrix W^{n}

An Age Prior

$$
\mathcal{P}(\boldsymbol{\mu} \mid \theta) \rightsquigarrow \mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper);
- Adjustable parameters: n and θ.
- The choice of n uniquely determines the "interaction" matrix W^{n}
- The variance of the prior is inversely proportional to θ, which controls the "strength" of the prior.

An Age Prior

$$
\mathcal{P}(\boldsymbol{\mu} \mid \theta) \rightsquigarrow \mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper);
- Adjustable parameters: n and θ.
- The choice of n uniquely determines the "interaction" matrix W^{n}
- The variance of the prior is inversely proportional to θ, which controls the "strength" of the prior.
- Different age groups can have different covariates: the matrices $\mathbf{C}_{a a^{\prime}} \equiv \frac{1}{T} \mathbf{Z}_{a}^{\prime} \mathbf{Z}_{a^{\prime}}$ are rectangular $\left(d_{a} \times d_{a^{\prime}}\right)$.

Samples From Age Prior

All Causes (m), $\mathrm{n}=1$

Samples From Age Prior

All Causes (m), $\mathrm{n}=\mathbf{2}$

Samples From Age Prior

All Causes (m), $\mathbf{n = 3}$

Samples From Age Prior

All Causes (m) , $n=4$

Samples From Age Prior

All Causes (m), $\mathrm{n}=1$

All Causes (m), $\mathrm{n}=3$

All Causes (m), $\mathrm{n}=2$

All Causes (m), $\mathrm{n}=4$

Prior Indifference

Prior Indifference

- These priors are "indifferent" to transformations:

$$
\mu(a, t) \rightsquigarrow \mu(a, t)+p(a, t)
$$

Prior Indifference

- These priors are "indifferent" to transformations:

$$
\mu(a, t) \rightsquigarrow \mu(a, t)+p(a, t)
$$

- where $p(a, t)$ is a polynomial in a (whose degree is the degree of the derivative in the prior)

Prior Indifference

- These priors are "indifferent" to transformations:

$$
\mu(a, t) \rightsquigarrow \mu(a, t)+p(a, t)
$$

- where $p(a, t)$ is a polynomial in a (whose degree is the degree of the derivative in the prior)
- Prior information is about relative (not absolute) levels of log-mortality

Formalizing (Prior) Indifference

equal
$=$ equal

Formalizing (Prior) Indifference

equal $=$ equal

All Causes (m), $\mathrm{n}=1$

Level indifference

Formalizing (Prior) Indifference

equal $=$ equal

Level indifference
All Causes (m), $\mathrm{n}=1$

Level and slope indifference

Smoothness Parameter

Smoothness Parameter

- The prior:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
$$

Smoothness Parameter

- The prior:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
$$

- We figured out what n is

Smoothness Parameter

- The prior:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
$$

- We figured out what n is
- but what is the smoothness parameter, θ ?

Smoothness Parameter

- The prior:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
$$

- We figured out what n is
- but what is the smoothness parameter, θ ?
- θ controls the prior standard deviation

Samples from Age Prior

All Causes (f), $\mathbf{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathbf{n = 2}$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathbf{n = 2}$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Generalizations

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.
- Can smooth simultaneously over different types of variables (age, country, and time).

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.
- Can smooth simultaneously over different types of variables (age, country, and time).
- We can smooth interactions:

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.
- Can smooth simultaneously over different types of variables (age, country, and time).
- We can smooth interactions:
- Smoothing trends over age groups.

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.
- Can smooth simultaneously over different types of variables (age, country, and time).
- We can smooth interactions:
- Smoothing trends over age groups.
- Smoothing trends over age groups as they vary across countries, etc.

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.
- Can smooth simultaneously over different types of variables (age, country, and time).
- We can smooth interactions:
- Smoothing trends over age groups.
- Smoothing trends over age groups as they vary across countries, etc.
- The mathematical form for all these (separately or together) turns out to be the same:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\frac{\theta}{2} \sum_{i j} W_{i j} \boldsymbol{\beta}_{i}^{\prime} \mathbf{C}_{i j} \boldsymbol{\beta}_{j}\right), \quad \mathbf{C}_{a a^{\prime}} \equiv \frac{1}{T} \mathbf{Z}_{a} \mathbf{Z}_{a^{\prime}}
$$

Mortality from Respiratory Infections, Males

Mortality from Respiratory Infections, males, $\sigma=2.00$

Mortality from Respiratory Infections, males, $\sigma=1.51$

Mortality from Respiratory Infections, males, $\sigma=1.15$

Mortality from Respiratory Infections, males, $\sigma=0.87$

Mortality from Respiratory Infections, males, $\sigma=0.66$

Mortality from Respiratory Infections, males, $\sigma=0.50$

Mortality from Respiratory Infections, males, $\sigma=0.38$

Mortality from Respiratory Infections, males, $\sigma=0.28$

Mortality from Respiratory Infections, males, $\sigma=0.21$

Mortality from Respiratory Infections, males, $\sigma=0.16$

Mortality from Respiratory Infections, males, $\sigma=0.12$

Mortality from Respiratory Infections, males, $\sigma=0.09$

Mortality from Respiratory Infections, males, $\sigma=0.07$

Mortality from Respiratory Infections, males, $\sigma=0.05$

Mortality from Respiratory Infections, males, $\sigma=0.04$

Mortality from Respiratory Infections, males, $\sigma=0.03$

Mortality from Respiratory Infections, males, $\sigma=0.02$

Mortality from Respiratory Infections, males, $\sigma=0.01$

Mortality from Respiratory Infections, males

Mortality from Respiratory Infections, males, $\sigma=2.00$

Mortality from Respiratory Infections, males, $\sigma=1.51$

Mortality from Respiratory Infections, males, $\sigma=1.15$

Mortality from Respiratory Infections, males, $\sigma=0.87$

Mortality from Respiratory Infections, males, $\sigma=0.66$

Mortality from Respiratory Infections, males, $\sigma=0.50$

Mortality from Respiratory Infections, males, $\sigma=0.38$

Mortality from Respiratory Infections, males, $\sigma=0.28$

Mortality from Respiratory Infections, males, $\sigma=0.21$

Mortality from Respiratory Infections, males, $\sigma=0.16$

Mortality from Respiratory Infections, males, $\sigma=0.12$

Mortality from Respiratory Infections, males, $\sigma=0.09$

Mortality from Respiratory Infections, males, $\sigma=0.07$

Mortality from Respiratory Infections, males, $\sigma=0.05$

Mortality from Respiratory Infections, males, $\sigma=0.04$

Mortality from Respiratory Infections, males, $\sigma=0.03$

Mortality from Respiratory Infections, males, $\sigma=0.02$

Mortality from Respiratory Infections, males, $\sigma=0.01$

Smoothing Trends over Age Groups

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Age Groups

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Age Groups

(m) Belize

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Age Groups

(m) Belize

(m) Belize

Smoothing Trends over Age Groups and Time

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

(m) Bulgaria

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

Smoothing

Age and Time

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

Smoothing

 Age and Time

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

(m) Bulgaria

(m) Bulgaria

Using Covariates (GDP, tobacco, trend, log trend)

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

(m) Republic of Korea

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

(m) Republic of Korea

Smooth over age, time, age/time

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

Smooth over age, time, age/time

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

Smooth over age, time, age/time

m) Republic of Korea

(m) Republic of Korea

Using Covariates (GDP, tobacco, trend, log trend)

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Least Squares

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Least Squares

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Least Squares

Using Covariates (GDP, tobacco, trend, log trend)

 Lung cancer in Males, Singapore
Least Squares

Smooth over age, time, age/time

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Least Squares

Smooth over age, time, age/time

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Least Squares

Smooth over age, time, age/time

Demographic Forecasting
(m) Singapore

What about ICD Changes?

Other Infectious Diseases: USA, age 0 (m)

Other Infectious Diseases: Australia, age 0 (m)

Other Infectious Diseases: France, age 0 (m)

Other Infectious Diseases: United Kingdom, age 0 (m)

Fixing ICD Changes

Other Infectious Diseases: USA , age 0 (m)

Other Infectious Diseases: Australia, age 0 (m)

Other Infectious Diseases: France, age 0 (m)

Other Infectious Diseases: United Kingdom, age 0 (m)

A book manuscript, YourCast software, etc.

http://GKing.Harvard.edu

Preview of Results: Out-of-Sample Evaluation

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	\% Improvement	
Over Best		
Previous		

Conceivable\end{array}\right]\)

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	\% Improvement			
Over Best				
Previous				to Best
---:	:---:	:---:		
Conceivable	$~$	Cardiovascular	22	49
---:	:---:	:---:		
Lung Cancer	24	47		
Transportation	16	31		
Respiratory Chronic	13	30		
Other Infectious	12	30		
Stomach Cancer	8	24		
All-Cause	12	22		
Suicide	7	17		
Respiratory Infectious	3	7		

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	\% Improvement	
Over Best		
Previous		

Conceivable\end{array}\right]\)

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	\% Improvement	
Over Best		
Previous		

Conceivable\end{array}\right]\)

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	\% Improvement			
Over Best				
Previous				to Best
:---:	:---:	:---:		
Conceivable	\(~\left(\begin{array}{rc}22 \& 49 			

Cardiovascular \& 22

Lung Cancer \& 24

Transportation \& 16

Respiratory Chronic \& 13

Other Infectious \& 12

Stomach Cancer \& 8

All-Cause \& 12\end{array}\right.\)

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.
- Does considerably better with more informative covariates

Basic Prior: Smoothness over Age Groups

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv
$$

$$
[\mu(a, t)-\bar{\mu}(a)]
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv
$$

$$
\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv
$$

$$
\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv \quad \int_{0}^{A} d a\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv \quad \int_{0}^{T} d t \int_{0}^{A} d a\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv \frac{\theta}{A T} \int_{0}^{T} d t \int_{0}^{A} d a\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv \frac{\theta}{A T} \int_{0}^{T} d t \int_{0}^{A} d a\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

- Discretize age and time:

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} \theta \sum_{a a^{\prime} t}\left(\mu_{a t}-\bar{\mu}_{a}\right)^{\prime} W_{a a^{\prime}}^{n}\left(\mu_{a^{\prime} t}-\bar{\mu}_{a^{\prime}}\right)\right)
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv \frac{\theta}{A T} \int_{0}^{T} d t \int_{0}^{A} d a\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

- Discretize age and time:

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} \theta \sum_{a a^{\prime} t}\left(\mu_{a t}-\bar{\mu}_{a}\right)^{\prime} W_{a a^{\prime}}^{n}\left(\mu_{a^{\prime} t}-\bar{\mu}_{a^{\prime}}\right)\right)
$$

- where W^{n} is a matrix uniquely determined by n and θ

From a prior on μ to a prior on $\boldsymbol{\beta}$

From a prior on μ to a prior on $\boldsymbol{\beta}$

Add the specification $\mu_{a t}=\bar{\mu}_{a}+\mathbf{Z}_{a t} \boldsymbol{\beta}_{a}$:

From a prior on μ to a prior on $\boldsymbol{\beta}$

Add the specification $\mu_{a t}=\bar{\mu}_{a}+\mathbf{Z}_{a t} \boldsymbol{\beta}_{a}$:

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta} \mid \theta) & =\exp \left(-\frac{\theta}{T} \sum_{a a^{\prime} t} W_{a a^{\prime}}^{n}\left(\mathbf{Z}_{a t} \boldsymbol{\beta}_{a}\right)\left(\mathbf{Z}_{a^{\prime} t} \boldsymbol{\beta}_{a^{\prime}}\right)\right) \\
& =\exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
\end{aligned}
$$

From a prior on μ to a prior on $\boldsymbol{\beta}$

Add the specification $\mu_{a t}=\bar{\mu}_{a}+\mathbf{Z}_{a t} \boldsymbol{\beta}_{a}$:

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta} \mid \theta) & =\exp \left(-\frac{\theta}{T} \sum_{a a^{\prime} t} W_{a a^{\prime}}^{n}\left(\mathbf{Z}_{a t} \boldsymbol{\beta}_{a}\right)\left(\mathbf{Z}_{a^{\prime} t} \boldsymbol{\beta}_{a^{\prime}}\right)\right) \\
& =\exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} C_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
\end{aligned}
$$

where we have defined:

$$
\mathrm{C}_{a a^{\prime}} \equiv \frac{1}{T} \mathbf{Z}_{a}^{\prime} \mathbf{Z}_{a^{\prime}} \quad \mathbf{Z}_{a} \text { is a } T \times d_{a} \text { data matrix for age group a }
$$

The Prior on the Coefficients $\boldsymbol{\beta}$

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

The Prior on the Coefficients $\boldsymbol{\beta}$

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper);

The Prior on the Coefficients $\boldsymbol{\beta}$

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper);
- The prior is uniquely determined by the choice of n, through the "interaction" matrix W^{n}.

The Prior on the Coefficients $\boldsymbol{\beta}$

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{\mathbf{a}}^{\prime} \mathbf{C}_{a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper);
- The prior is uniquely determined by the choice of n, through the "interaction" matrix W^{n}.
- Different age groups can have different covariates: the matrices $\mathbf{C}_{a a^{\prime}}$ are rectangular $\left(d_{a} \times d_{a^{\prime}}\right)$.

The Prior on the Coefficients $\boldsymbol{\beta}$

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper);
- The prior is uniquely determined by the choice of n, through the "interaction" matrix W^{n}.
- Different age groups can have different covariates: the matrices $\mathbf{C}_{a a^{\prime}}$ are rectangular $\left(d_{a} \times d_{a^{\prime}}\right)$.
- The variance of the prior is inversely proportional to θ, which controls the "strength" of the prior.

Without Country Smoothing

With Country Smoothing

Formalizing Similarity

Formalizing Similarity

Standard Bayesian Approach

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients
- Requires the same covariates in each cross-section

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients
- Requires the same covariates in each cross-section - Why measure water quality in the U.S.?

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients
- Requires the same covariates in each cross-section - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients
- Requires the same covariates in each cross-section - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section - Does GDP mean the same thing in Botswana and the U.S.?

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients
- Requires the same covariates in each cross-section - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section - Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients
- Requires the same covariates in each cross-section - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section - Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality
- If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E\left(y_{t}\right)=X_{t} \beta$ in each cross-section]

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients
- Requires the same covariates in each cross-section - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section - Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality
- If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E\left(y_{t}\right)=X_{t} \beta$ in each cross-section]

Alternative Approach

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients
- Requires the same covariates in each cross-section - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section - Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality
- If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E\left(y_{t}\right)=X_{t} \beta$ in each cross-section]

Alternative Approach

- Assume expected mortality is similar

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients
- Requires the same covariates in each cross-section - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section - Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality
- If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E\left(y_{t}\right)=X_{t} \beta$ in each cross-section]

Alternative Approach

- Assume expected mortality is similar
- Coefficients are unobserved, mortality patterns are well known

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients
- Requires the same covariates in each cross-section - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section - Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality
- If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E\left(y_{t}\right)=X_{t} \beta$ in each cross-section]

Alternative Approach

- Assume expected mortality is similar
- Coefficients are unobserved, mortality patterns are well known
- Different covariates allowed in each cross-section

Formalizing Similarity

Standard Bayesian Approach

- Assume coefficients are similar
- But we know little about the coefficients
- Requires the same covariates in each cross-section - Why measure water quality in the U.S.?
- Requires covariates with the same meaning in each cross-section - Does GDP mean the same thing in Botswana and the U.S.?
- Imposes no assumptions on covariates or mortality
- If covariates are dissimilar, then making coefficients similar makes mortality dissimilar [since $E\left(y_{t}\right)=X_{t} \beta$ in each cross-section]

Alternative Approach

- Assume expected mortality is similar
- Coefficients are unobserved, mortality patterns are well known
- Different covariates allowed in each cross-section
- Covariates with the same name can have different meanings

Many
 Time Series

Coverage of WHO data base (age specific, all causes)

Preview of Results: Out-of-Sample Evaluation

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	Mean Absolute Error		\% Improvement		
	Best Previous	Our Method	Best Conceivable	Over Best Previous	to Best Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	Mean Absolute Error		\% Improvement		
	Best Previous	Our Method	Best Conceivable	Oer Best Previous	to Best Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	Mean Absolute Error			\% Improvement	
	Best Previous	Our Method	Best Conceivable	Oer Best Previous	to Best Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	Mean Absolute Error			\% Improvement	
	Best Previous	Our Method	Best Conceivable	Oer Best Previous	to Best Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	Mean Absolute Error			\% Improvement	
	Best Previous	Our Method	Best Conceivable	Oer Best Previous	to Best Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.
- Does much better with better covariates

